高大空间空调系统不同气流组织形式的能耗分析研究

高大空间空调系统不同气流组织形式的能耗分析研究
高大空间空调系统不同气流组织形式的能耗分析研究

高大空间空调系统不同气流组织形式的能耗分析研究

高大空间建筑有多种气流组织方式,但舒适性和能耗各有差异。最常见的气流组织方式有上送风的全室空调方式和侧送风的分层空调方式。采用分层空调技术具有较高的节能效益和经济效益是众所周之的,但是实际工程中气流组织方式的选择受到很多因素的影响,为了制定出最优方案,我们需要知道各种方案的能耗情况。本文的主要研究了宴会厅、办公大厅、门厅三种功能的高大空间建筑在不同的围护结构、不同的层高、不同气流组织方式、不同送风高度上的空调系统能耗以及在不同相对送风高度上分层空调相对于全室空调的节能率。

本文首先对分层空调负荷计算方法中围护结构内表面温度的求解方法进行了修正,提出了求解模型,对简化计算结果进行修正。然后运用理论计算方法对上送下回的全室空调和侧送下回的分层空调在各种工况下的负荷进行了计算分析,得出了两种方式的空调负荷以及分层空调的理论负荷节能率。为了验证实际运行时的温度场和风速场分布情况,寻找出最优的气流组织方案,本文运用Flunt软件对以上典型房间进行了夏季和冬季工况的模拟,得到了全室空调和分层空调的适用情况。为了验证理论计算和模拟的准确性,本文对位于重庆市的三个高大空间建筑:住院楼大厅、门诊楼大厅和办公大厅进行了夏季和冬季工况的实测和分析。

针对一个高大空间建筑而言,综合考虑其制冷能耗和和风柜输送能耗,得出达到设计要求时的空调系统能耗。随层高和窗墙比的不同,无外窗宴会厅全室空调单位面积耗功率为67-80W/m~2,分层空调单位面积耗功率为60-80W/m~2,分层空调相对于全室空调的节能率为13%-21%;当外窗面积较大时全室空调单位面积耗功率增加到104-206W/m~2,分层空调单位面积耗功率为91-168W/m~2,分层空调相对于全室空调的节能率增加到13%-34%。无外窗办公大厅全室空调单位面积耗功率为24-36.1W/m~2,分层空调单位面积耗功率为18-28W/m~2,分层空调相对于全室空调的节能率为21%-42%,当外窗面积较大时全室空调单位面积耗功率为62-162W/m~2,分层空调单位面积耗功率增加到47-115W/m~2,分层空调相对于全室空调的节能率增加到24%-39%。无外窗门厅全室空调单位面积耗功率为

14-26W/m~2,分层空调单位面积耗功率为9-17W/m~2,分层空调相对于全室空调的节能率为28%-54%,当外窗面积较大时全室空调单位面积耗功率为

51-151W/m~2,分层空调单位面积耗功率增加到38-105W/m~2,分层空调相对于全室空调的节能率降低到22%-39%。

本文的研究成果对高大空间空调系统的优化设计,能耗预测,气流组织和舒适性预测有一定的指导意义。

中央空调循环水泵选择方法介绍

中央空调循环水泵选择方法介绍 一问题的提出 在中央空调系统中,循环水泵夏季输送冷冻水,冬季输送热水至空调末端装置。工程设计应按照空调系统水流量和系统阻力选择性能良好的水泵。有关暖通空调设计手册都有详细设计计算方法。问题在于实际工程设计时,某些工程师未按照计算方法进行设计计算,而是凭经验想当然,对系统以及某些空调设备、配件等新产品缺乏认真研究,结果导致所选择的水泵不能满足要求,或者造成运行费用增加,甚至水泵不能正常工作,这不得不引起空调设计者的高度重视。 二理论分析 空调系统水流量的大小由负荷及供回水温差确定,系统阻力通过水力计算求得。按流量和阻力选择的水泵,运行时应处于高效区,其工作点为水泵性能曲线和管路特性曲线的交点,如图1中A点。而工程中选择的水泵常常出现两种不正常情况。 1)设计时比较保守,水系统实际流速取值较低,估算系统阻力较大,导致选水泵时扬程加 大,使所选择的循环水泵扬程比设计流量下的系统阻力大得多。如图2: 流量QA是系统设计流量,在此流量下水泵扬程为HB即可。实际选择的水泵扬程为HS。为了保证QA,则要改变管路特性,即通过关小水泵进出口的阀门,使管路特性曲线由Ⅰ变为Ⅱ。显然,ΔP=HB-HA完全通过阀门节流,这是非常不经济的,也是工程中需避免出现的情况,如果冬季运行采用同一套泵工作,由于流量变小,节流更严重,就更不经济,甚至造成水泵工作点不稳定。

2)设计过于自信,对空调系统阻力估算偏小,所选泵扬程小于设计流量下系统阻 力。如图3所示: 设计工作点为A,水泵流量为QA,扬程为HA。水泵实际运行时管路特性曲线不是Ⅰ,而是Ⅱ,运行工作点为B,流量QBA,且B点不在水泵高效区。显然这比第一种情况更为不利。解决的唯一办法只能更换水泵。 三工程实例 例1 甲工程为一单体高层建筑,建筑高度29m,泵房设在主楼地下室。设计选用进口开利离心式冷冻机一台,制冷量为1163 kW,配用2台循环水泵,1用1备,水泵参数见表1。 刚开始调试运动时,发现水泵电机电流过大,水泵出水管振动厉害,且有异常声音。水泵扬程仅为0.28MPa,电机电流I=115A。分析原因,为分集水器压差仅为0.13MPa,所选水泵扬程偏大。此时水泵工作点为低扬程大流量,电机严重超载;水泵气蚀严重,管路抖动厉害,声音异常;关小水泵和冷冻机蒸发器进、出口阀门,保证蒸发器进出口要求的压差Δp=(92±5)kPa,使水泵恢复正常工作。此时测试数据如表2(原泵)。 设计工作点为A,水泵流量为QA,扬程为HA。水泵实际运行时管路特性曲线不是Ⅰ,而是Ⅱ,运行工作点为B,流量QBA,且B点不在水泵高效区。显然这比第一种情况更为不利。解决的唯一办法只能更换水泵。三工程实例 例1 甲工程为一单体高层建筑,建筑高度29m,泵房设在主楼地下室。设计选用进口开利离心式冷冻机一台,制冷量为1163 kW,配用2台循环水泵,1用1备,水泵参数见表1。 刚开始调试运动时,发现水泵电机电流过大,水泵出水管振动厉害,且有异常声音。水泵扬程仅为0.28MPa,电机电流I=115A。分析原因,为分集水器压差仅为0.13MPa,所选水泵扬程偏大。此时水泵工作点为低扬程大流量,电机严重超载;水泵气蚀严重,管路抖动厉害,声音异常;关小水泵和冷冻机蒸发器进、出口阀门,保证蒸发器进出口要求的压差Δp=(92±5)kPa,使水泵恢复正常工作。此时测试数据如表2(原泵)。

建筑中央空调能耗现状及节能对策分析

描述:随着我国经济建设的快速发展,建筑中央空调的普及,中央空调的能耗已经成为建筑能耗的大户。因此,我国政府、业界以及消费者都十分关怀中央空调的节能问题。本文主要分析了我国建筑中央空调能耗的现状,从中央空调... 摘要:随着我国经济建设的快速发展,建筑中央空调的普及,中央空调的能耗已经成为建筑能耗的大户。因此,我国政府、业界以及消费者都十分关怀中央空调的节能问题。本文主要分析了我国建筑中央空调能耗的现状,从中央空调的工作原理和组成结构出发,提出对中央空调的冷热源、水输送系统以及末端设备三方面的节能措施,从而降低整个中央空调系统的能耗。 能源是国家经济可持续发展的重要保证,是人民生活水平提高的重要条件。在各类建筑物中安装中央空调可以为居民提供舒适的生活环境、高效的工作环境,而中央空调的能耗经常占建筑能耗的50%以上。因此,对中央空调系统的能耗进行研究,并力图在创造良好室内环境的同时尽量减小对外部环境的破坏势在必行。本文主要从工程的“生命周期”的观点对中央空调系统的能耗现状和节能措施进行了研究。 1 我国建筑中央空调能耗现状 建筑能耗主要包括采暖、空调、照明、电梯、家用电器、热水供应、通风等发面的能耗。随着居民生活水平的提高,建筑能耗也在快速增加。从 1990年开始发展空调到现在,空调的普及率已达到很高的水平。由于居民家用电器的数量和品种不断增加,尽管我们能源进口大量增加,但能源仍然紧缺。我国的技术条件较差,节能观念薄弱等问题,我国单位建筑面积能耗三倍于发达国家。因此目前建筑节能已经是节能领域的重要组成,是建筑技术的一个发展方向。随着经济建设的发展,我国兴建了大量公共建筑,比如大型商场、写字楼等,目前国内兴建的的公共建筑普遍采用中央空调,但高能耗是他们使用中央空调最大的问题比如清华大学对北京的十家大型商场进行的调研和统计数据中,可以看出,商场年平均运行能耗是188kwh/m2.a,而跟我们气候差不多的日本,其同类建筑物的年平均运行能耗约是135kwh/m2.a。由此可见,北京市商场能耗要比日本高四成。 空调能耗占商业建筑能耗的一半以上,是商业建筑能耗的主要部分。数据显示,我国的商用中央空调用电量为每年800万-950万kw;上海和重庆中央空调用电量更是占了全市总用电量的31.1%和23%,严重增加了各城市供电压力。随着我国现代化的经济的发展,能源会越来越紧张,只有将占据建筑能耗大头的

燃气空调系统的能耗分析及经济性分析

燃气空调系统的能耗分析及经济性分析 2004-11-24 摘要:本文先简述了我国目前电力供应、燃气供应现状,集中讨论了燃气空调的原理、形式和应用发展,对对各种燃气空调系统进行了能耗分析,最后选取了某建筑进行了三种空调冷热源的方案分析比较,分析了使用燃气空调的经济性。 关键词:燃气空调能耗分析经济性燃气热泵机组燃气冷水机组电力峰谷燃气调峰 0 引言 在过去20年,我国的发电量以每年8%至9%的速率增长,2003年底装机容量和发电量分别为3.8亿千瓦和1.9万亿度,仅次于美国。但近两年电力缺口仍在不断的增大,且用电峰谷差亦增大。其原因在于近几年夏季高温使得大量空调设备使用,且目前的空调设备中有70%为电力空调。2004年我国电力的缺口将达到600亿度。近4年上海地区用电情况如表1所示: 另一方面,由于西气东输工程的实施,使得上海地区燃气供应量剧增,而上海地区的燃气消费结构中民用燃气占据大部分半壁江山,民用燃气的一个最大特点就是用气量有季节性,夏季为低谷冬季为高峰,正好与电力相反,也成为城市燃气发展的一大难题。由于夏季的燃气用量处于低谷,冬季电力处于低谷,因而发展燃气空调促进城市能源结构调整,缓解城市夏季供电紧张,提高燃气管网利用率成为一种双赢的选择。 1 燃气作为热源的空调系统的特点 燃气空调是以天然气、液化石油气、人工煤气为能源进行发电、制冷、供热、供生活热水等的设备,具有四大优点:经济、环保、高效、节能。 1.1经济 燃气空调运行费用低,运行稳定性高,使用寿命长。 1.2环保

燃气空调以天然气、液化石油气、人工煤气等环保能源为热源,不会产生二氧化硫、粉尘等有害物质污染环境。 1.3高效、节能 燃气空调能够同时或单独提供空调、制冷、采暖、卫生热水等,能源利用效率高,经济效益和社会效益高。 2 以燃气作为热源的空调系统原理以及能耗分析 2.1燃气锅炉+蒸汽型单(双)效吸收式制冷机 原理如下:

中央空调水泵节能方案

中央空调水泵节能方案 作者admin来源浏览249发布时间08/06/25 中央空调水泵节能方案 1、中央空调运行控制方法分析 中央空调系统设计首先是根据室外气象参数和室内空调设计参数计算冷负荷,按分区结构特点,根据产品样本选择相应的设备,组合成一个系统。但空调系统绝大部分时间是在不满负荷的情况下工作。在不满负荷工作的控制方式不合理,系统能效比会大大降低。现在空调系统在运行调节方式上,风水系统主要是阀门(手动、自动阀门调节),主机利用卸荷方式,而这些方式是牺牲了阻力能耗来适应末端负荷要求,造成运行成本居高不下。 若采用变频控制,能量的传递和运输环节控制为变水量(VWV )和变风量(VAV),使传递和运输耦合并达到最佳温差置换,其动力仅为其它控制系统的30-60% ,而且节能是双效的,因为对制冷主机的需求能耗同时下降。主机采用变频节能控制,保持设计工况下的制冷剂运动的物理量(如温差、压力等)变化,节能较其它调荷方式明显,如约克(YORK )的YT型离心式冷水机组,配置变频机组在部分负荷下能效比可降至冷吨,可见变频控制方式在 空调系统中应用前景十分广阔。 过去在中央空调系统中应用变频技术为什么推广难呢?可能是价格的原因吧?在变频技术、计算机自动化控制技术非常成熟的今天,用此技术与暖通空调专业技术相结合,它并不是一门高价的技术,在小功率空调中其经济性都可承受,在中央空调系统中更不应该成问题:(1)中央空调运行时间更长,节能问题更突出;(2)变频控制在整个系统中所占的造价比例不高;(3)变频控制器的容量越大, 每千瓦功率单价越低。 中央空调系统采用变频器是可行的,其投资回收一般在6 ~ 12个月以变频控制器使用寿命10年计, 其净收益在10倍投资额以上。 2、中央空调调速节能原理制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将

基于PLC的中央空调水泵变频调速系统设计论文

基于PLC的中央空调水泵变频调速系统设计 摘要 本文针对中央空调的节能问题,对中央空调水泵变频调速系统进行分析及设计。利用可编程控制器、模拟量扩展模块、变频器、温度传感器等代替传统再热量调节系统,实现中央空调水泵的变频调速。通过对空调出口温度进行检测,变频系统实时调节中央空调水泵转速,达到节能目的。采用变频技术控制中央空调水泵,是当前空调系统节能改造的有效途径。 关键词:中央空调,变频调速技术,可编程控制器PLC,PID

目录 1 绪论 (1) 1.1 中央空调变频调速的意义 (1) 1.2 变频调速技术介绍 (1) 1.3 本文的主要工作 (3) 2 系统原理分析及方案设计 (5) 2.1 中央空调结构原理 (5) 2.2 变频调速系统工作原理 (7) 2.3空调变频控制系统的构架 (8) 2.4总体设计方案的确定 (9) 3 系统硬件设计 (11) 3.1 可编程控制器的选型 (11) 3.1.1 可编程控制器概述 (11) 3.1.2 可编程控制器的选型 (12) 3.2 模拟量I/O模块及传感器选型 (14) 3.2.1 模拟量输入模块选型(A/D) (14) 3.2.2 模拟量输出模块选型(D/A) (17) 3.2.3 温度传感器选型 (18) 3.3 变频器的选型及参数设置 (20) 3.3.1 变频器的选型 (20) 3.3.1 变频器的参数设置 (21) 3.4 总体电路图 (23) 4 系统软件设计 (25) 4.1内存变量分配 (25) 4.2 控制系统程序设计 (27) 4.2.1 主程序设计 (27) 4.2.2 PID控制的设计及实现 (31) 4.2.3 冷却水系统循环控制及PID调节程序 (33) 4.2.4 冷冻水系统循环控制及PID调节程序 (37)

空调系统水泵的选型

空调系统水泵的选型 第一步:水泵流量的确定 1.冷却水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量 L(m3/h)= Q(kW)/(4.5~5)℃x1.163X(1.15~1.2) 2.冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。 L(m3/h)= Q(kW)/(4.5~5)℃x1.163 第二步:水系统水管管径的计算 在空调系统中所有水管管径一般按照下述公式进行计算: D(m)=√L(m3/h)/0.785x3600xV(m/s) 公式中: L----所求管段的水流量(第一步已计算出) V----所求管段允许的水流速 流速的确定:一般,当管径在DN100到DN250之间时,流速推荐值为1.5m/s左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。进行计算是应该注意管径和推荐流速的对应。 目前管径的尺寸规格有:DN15、DN20、DN25、DN32、DN40、

DN50、DN65、DN80、DN100、DN125、DN150、DN200、DN250、DN300、DN350、DN400、DN450、DN500、DN600 注意:一般,选择水泵时,水泵的进出口管径应比水泵所在管段的管径小一个型号。例如:水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。 第三步:水泵扬程的确定 以水冷螺杆机组为例: 冷冻水泵扬程的组成 1.制冷机组蒸发器水阻力:一般为5~7mH2O;(具体值可参看产品样本) 2.末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力:一般为5~7mH2O;(据体值可参看产品样本) 3.回水过滤器阻力,一般为3~5mH2O; 4.分水器、集水器水阻力:一般一个为3mH2O; 5.制冷系统水管路沿程阻力和局部阻力损失:一般为7~10mH2O; 综上所述,冷冻水泵扬程为26~35mH2O,一般为32~36mH2O。 注意:扬程的计算要根据制冷系统的具体情况而定,不可照搬经验值! 冷却水泵扬程的组成 1.制冷机组冷凝器水阻力:一般为5~7mH2O;(具体值可参看产品样本) 2.冷却塔喷头喷水压力:一般为2~3mH2O

试析当前中央空调能耗与节能策略

试析当前中央空调能耗与节能策略 专家分析,未来15年,中国经济能否保持快速增长,一个重要的先决条件就是能源供应的充足,因此,节能非常重要。而作为电能消耗大户,空调业的节能与否无疑十分重要。随着计算机的发展,全面促进着制冷空调事业的发展和进步,计算机模拟仿真技术和人工智能技术在中央空调节能中的应用将成为下一步深入研究的重点方向。 标签建筑能耗;中央空调;节能措施 1.引言 能源是经济和社会发展的重要物质基础,也是实现四个现代化以提高我国人民生活水平的先决条件。能源是保证国家经济可持续发展和居民生活水平不断提高的重要因素。因此,很多国家已经着手制定符合本国国情的能源发展战略。 随着我国经济的高速发展,许多城市出现了电力紧张等能源问题。据统计,建筑能耗在总能耗中占有很大的比例,而中央空调能耗又是建筑能耗中的大户。随着能源供应的日趋紧张及人们对室内环境和室内空气品质的要求越来越高,要求我们在保持空调区域舒适度的前提下,最大限度地降低中央空调能耗是迫在眉睫的事情(这句话是不是有语病?)。本文对我国建筑能耗的现状进行了分析,提出从空调冷热源、水输送系统和空调机组末端设备三个方面对中央空调系统采取节能措施,有效地实现整个系统的节能运行,达到降低整个中央空调能耗的目的。 2.我国建筑能耗现状 按照国际通行的分类,建筑能耗是指民用建筑(包括居住建筑和公共建筑)使用过程中的能耗,主要包括采暖、空调、通风、热水供应、照明、家用电器、电梯等方面的能耗”。 随着我国人民生活水平的提高,建筑能耗增长很快。过去采暖区限定在陇海线以北,现在从福州到桂林,冷天居民都用上了电暖气。1990年初我国才开始发展空调,现在空调的普及率已相当高。居民家用电器品种、数量不断增加,建筑照明条件也日益改善,能源进口逐年量增大,但还是出现能源紧缺的现象。建筑节能是节能领域的组成部分,已经成为建筑技术发展的一个方向。世界平均建筑能耗占总能耗的37%,其中,包括采暖、通风、空调、照明在内的民生能耗又占建筑能耗的80%以上。我国建筑能耗约占全国总能耗的25%,且由于近年来住宅建筑迅速增多,年增长率高达15%。而我国采暖空调标准远低于国际水平,据统计,目前我国单位建筑面积能耗是发达国家标准的3倍以上。随着生活水平的逐步提高,建筑能耗,特别是中央空调能耗,呈增长趋势。 随着经济建设的发展,各类公共建筑,比如写字楼、宾馆饭店、大中型商场

暖通空调系统运行能耗的影响因素分析 韩钧

暖通空调系统运行能耗的影响因素分析韩钧 摘要:空调系统的运行能耗主要取决于运行方式和机组调节水平,要加大新技术的投入使用,采用先进的自控工艺和运行策略,实现空调系统运行的动态调节策略,最大限度节约能耗。 关键词:暖通空调系统;运行能耗;影响因素 引言 在建筑过程中应当更加注重空调系统的节能作用,这对其之后的实际运行有着重要意义。在设计过程中应当注重系统在节能方面的表现,并合理地使用节能技术。在选择节能技术时应当确保其适合当前的需求,并且设计中每一个环节都能够被合理地控制。在系统运行中也应当注意操作人员的综合素质,防止由于人为因素而造成的资源的浪费。节能问题的解决可以减少资源的不必要消耗,也可以节省人们在这方面的花费,同时对经济的发展也有着重要意义。 1提升暖通空调节能技术的现实意义 在经济全球化的基础上,我国的社会形态不断完善。由于人们长时间生活在建筑环境内开展办公或生活,建筑环境内的室内温度或空气湿度与人们的健康密切相关,因此对其办公和居住的环境具有严格的要求。在城市化进程中,越来越多的人涌入大城市,城市内的高大建筑物不断增加。受建筑物、汽车、等因素影响,使得人们所生活的环境质量逐渐下降,很大程度上威胁了人们的健康。通过暖通空调的节能技术,可以对室内环境的温度和湿度进行有效的改善和调节,降低室内空气中对人体有害的物质,满足人们的健康需求,可以为用户提供一个舒适、健康的生活与办公环境。但是,暖通空调在使用过程中,为我国的能耗问题带来了巨大压力,能源的使用量不断增加,为可持续发展带来阻碍,同时暖通空调在实际运行的过程中,会消耗大量的能源。所以,相关的研究人员要针对暖通空调的节能问题制定行之有效的解决措施,将节能技术高效地融入暖通空调系统中,在确保人们室内生活环境的同时,还能有效地改善能耗问题。 2暖通空调系统节能方面存在的问题 2.1在设计中缺乏对节能技术的评价标准 关于暖通空调的节能设计有很多,同时技术之间存在着较大的差异,但是都能从不同的方向起到一定的节能作用。随着目前人们对各种设施的节能方面越来越重视,相关技术也在不断地被开发出来,每种技术都存在着自身独有的有点与缺陷,并且以自身的技术特点为基础不断地发展。大量的技术也就是设计方案有了更多的选择,由于每个设计者的眼光都是不同的,所以他们对自身设计中应用的技术进行选择时,也存在着很大差异。每一项技术都会受到许多人的推崇,但是同样也会被许多人所质疑,这样就导致了设计者在选择时存在着一定的困难,很难通过一项技术受到的评价来对其进行判定。这主要是由于目前缺少一套合理的评价标准,从技术的各个方面来对其进行衡量,使设计者无法快速地从众多技术中选择自身需要的节能技术,或者在选择过程中出现错误。如果选择的技术不满足当前的设计需求,在日后的系统使用过程中就很可能出现许多问题与故障,不但起不到良好的节能效果,反而会浪费许多的资源在维持其运行上,并且由于技术不匹配的原因,使运行过程中会有故障频发的现象。 2.2在运行管理方面存在的问题

大型公共建筑冷源系统能耗调查

大型公共建筑冷源系统能耗调查 和主要问题分析 中国建筑科学研究院牛利敏宋业辉曹勇路宾 摘要:本文对四个典型城市多个项目的冷源系统进行测试、调查,给出了部分测试调查结果,并对结果进行分析讨论,指出了现有公共建筑冷源系统在系统配置、运行管理、自动控制方面存在的普遍问题和节能潜力,为空调系统的设计、运行提出了建议。 关键词:公共建筑建筑节能冷源系统 1 引言 目前,建筑节能已成为全社会普遍关注的问题。在所有民用建筑中,大型公共建筑能耗水平最高,而在大型公建的能耗构成中,空调能耗约占建筑能耗的50%。因此公共建筑中央空调系统能耗问题越来越受到人们的重视。冷源系统能耗一般占空调系统总能耗的40-60%。因此如何提高冷源系统运行效率、降低冷源系统的能耗,对于建筑节能非常重要。冷源系统的实际运行能耗除与冷水机组本身性能有关外,还受系统设计、运行管理和维护保养等诸多因素的影响。近年来的调查结果显示,目前我国现有建筑,特别是大型公共建筑中由于空调系统设计的不合理、设备安装的不规范、运行管理水平低、维护保养不到位和运行策略不科学等原因,导致冷源系统长期在低效率下运行,能源浪费严重。为了能够掌握现有大型公共建筑中冷源系统的实际能耗水平、系统性能、存在的问题,我们对广州、上海、北京和沈阳四个典型城市,共20个公共建筑的冷源系统进行测试和调查。本文将重点对次测试调查的结果及主要问题进行分析。 2 测试项目概况及调查方法 2.1 测试项目概况 测试20个项目中,建筑面积最小的为10000平方米,最大为100000平方米。使用功能包括酒店、商场、办公和医院。从空调冷源形式分,有8个项目用的是溴化锂吸收式冷水机组,其余12个项目采用电制冷机组,其中包括3个多联式空调系统,4个水源热泵空调系统和5个常规的水冷冷水空调系统。每个项目冷源系统的配置情况在这里不做介绍。 2.2 方法 首先在开展测试之前,通过现场勘查、查阅系统设计图纸等了解项目的概况和冷源系统的配置情况,查阅制冷系统的运行记录,了解系统的运行模式;然后根据系统的配置情况和运行模式,确定检测内容和方法,对制冷系统的实际运行参数进行现场测试;最后根据测试结果对运行记录进行整理、必要的修正计算,根据计算机过对系统的运行情况进行评价。

泵的基础知识与水泵选型及空调水泵的变频控制

泵的基础知识与水泵选型及空调水泵的变频控制

泵的基础知识与水泵选型及空调水泵的变频控制泵属于流体机械的一种,流体机械是指以流体为工作介质和能量载体的机 械设备。流体机械根据能量传递的方向不同,可分为原动机(水轮机、汽轮机)和工作机(泵、风机、压缩机)。泵属于工作机,即消耗能量的机械。 从泵的性能范围看,巨型泵的流量每小时可达几十万立方米以上,而微型 泵的流量每小时则在几十毫升以下;泵的压力可从常压到高 19.61Mpa(200kgf/cm2)以上;被输送液体的温度最低达-200摄氏度以下,最高可达800摄氏度以上。泵输送液体的种类繁多,诸如输送水(清水、污水等)、油液、酸碱液、悬浮液、和液态金属等。 在化工和石油部门的生产中,原料、半成品和成品大多是液体,而将原料 制成半成品和成品,需要经过复杂的工艺过程,泵在这些过程中起到了输送液 体和提供化学反应的压力流量的作用,此外,在很多装置中还用泵来调节温度。 泵的操作原理、构造及分类 1)工作原理可分为又分为叶片式、容积式和其它形式。 ①叶片式泵,依靠旋转的叶轮对液体的动力作用,把能量连续地传递给液 体,使液体的动能(为主)和压力能增加,随后通过压出室将动能转换为压力 能,又可分为离心泵、轴流泵、部分流泵和旋涡泵等。 ②容积式泵,依靠包容液体的密封工作空间容积的周期性变化,把能量周 期性地传递给液体,使液体的压力增加至将液体强行排出,根据工作元件的运 动形式又可分为往复泵和回转泵。 ③其他类型的泵,以其他形式传递能量。如射流泵依靠高速喷射的工作流 体将需输送的流体吸入泵后混合,进行动量交换以传递能量;水锤泵利用制动 时流动中的部分水被升到一定高度传递能量;电磁泵是使通电的液态金属在电 磁力作用下产生流动而实现输送。另外,泵也可按输送液体的性质、驱动方法、 结构、用途等进行分类。

中央空调能耗分析办法

文件号:NYG10062911A 拟文单位: 运营管理部 中央空调能耗分析办法 类别:纲领及流程(红) 可阅范围: 运营人员 编制: 审核: 批准: 页数:11 熟读:运营人员 日期: 日期: 日期: 生效日:2011.1.1 默写:无 前提 1机房统一的水、电、主能源、冷热量、卫生热水计量器具;冷却水泵电表、冷温水泵电表,冷却水补水表、排污表。 2单一建筑功能区。 每日能耗分析 1每班由值班运营人员作能耗分析,具体数据填入《运行日志》的“节能笔记”栏 1.1平均气温:取《值班记录表》中数个室外气温的平均值(℃)。 1.2机房系统空调能耗:分为机房系统主能源耗量Qp、输配系统电耗Np(冷温水泵电耗Nhp、冷却水泵电耗Ncp)、机房 系统水耗Wp(冷却水补水量Wc、冷却水排污量Wcw),分别取计量器具的实时数据。 其中,Np=Nhp+Ncp+Nfp式中Nhp-指冷温水泵电耗,取电表的实时数据, Ncp-指冷却水泵电耗,取电表的实时数据, Nfp-指风机电耗(kwh),取电表的实时数据,如未独立计量,则根据风机功率(运行电流)、使用时间及运行方式(台数或频率)计算。 当空调附带卫生热水情形时,应扣除卫生热水能耗: Qp=Qt-Qh式中Qt-指所有运行机组的主能源输入量,取计量器具的实时数据, Qh-指卫生热水主能源耗量,计算方法参照第3条。 Np=Nj-Nh式中Nj-指机房总电耗(kwh),取计量器具的实时数据,机房如有其它大功率用电设备,则相应扣除, Nh-指卫生热水一次泵电耗(kwh),计算方法参照第3条。 1.3机房系统卫生热水能耗:分为卫生热水主能源耗量Qh、卫生热水一次泵电耗Nh。 Qh的计算分两种情形: 第一情形:单独卫生热水,Qh等于输入机组的主能源耗量,取计量器具的实时数据。 第二情形:空调附带卫生热水。 Qh的计算办法: a.依据《值班记录表I》中计量器具的实时数据,分别计算每2小时的卫生热水主能源耗量Qh2, Qh2=(Th2-补水水温)×补水量×1.368+(Th2-Ta2)×保有水量×1.368(kwh) 式中Th2-指本次记录的保有水温(卫生热水罐水温)℃, Ta2-指上次记录的保有水温(卫生热水罐水温)℃, 当Th2-Ta2≤5℃时,Th2-Ta2约等于0, 保有水量=(DN/1000)2×L×0.785+V (m3),其中,DN-指卫生热水主管管径(mm),L-指卫生热水主管长度(m), V-指卫生热水罐容积(m3)。 b.(本班)累计Qh=数个Qh2的累加值 Nh(kwh)取电表的实时数据,如未独立计量,则根据卫生热水泵功率(运行电流)、使用时间及运行方式(台数或频率)计算。 1.4末端及新风电耗:末端电耗Nm(kwh),新风电耗Nx(kwh),一般根据末端及新风设备功率、使用时间及运行方式(档位 或频率)计算。 1.5运行面积与时间统计: 分两种情形: 第一情形:运行面积固定,运行时间变化,统计运行面积S(㎡)、运行时间t(h)。 第二情形:运行面积与时间都变化,统计白班运行面积Sa(㎡)、时间ta(h)或晚班运行面积Sb(㎡)、时间tb(h)。 1.6冷热量:系统提供的冷热量Qq(kwh),取热量表的实时数据。 1.7卫生热水计量Wh(T):取水表的实时数据。 1.8平均负荷: CCA=Qq×1000÷(S×t)或CCA=Qq×1000÷(Sa×ta)或CCA=Qq×1000÷(Sb×tb)(w/㎡) 式中S、Sa、Sb-指运行面积(㎡),t、ta、tb-指对应的运行时间(h),Qq-指系统提供或建筑消耗的冷热量(kwh)。 1.9机组效率:COP=Q q÷Q p 式中Qq-指系统提供或建筑消耗的冷热量(kwh),Qp-指机房系统的主能源耗量(kwh)。 注:多台机组统一计算。 1.10系统效率:EER S=Q q÷(Q p +N p)

中央空调水泵改造节能原理

中央空调水泵改造节能原理 一、水泵的基本知识 水泵的几个参数 1、流量Q 水泵在单位时间内所输送的液体的体积,称体各流量,常用单位米3/小时(m3/h)、米3/秒(m3/s)或开/秒(L/S) 2、扬程H 水泵对单位重量的液体所做的功,即单位重量的液体通过水泵后其能量的增值,法定单位Kpa或Pa,习惯上折算成抽送液柱高度m< 3、轴功率N 原动机传送给泵轴的功率(输入功率)称水泵轴功率。常用单位KW。 4、效率Y] 水泵输出功率与轴功率比值。 水泵的扬程特性(如下图) 扬程特性是一条不规则的下倾曲线,在任一个流量下都有一个相应的(固有的)扬程,即水泵选定了,它的扬程特性也就定了。 设计工况点: 水泵运行时,在某一流量下效率(门)是不同的。其中最局效率点即是设计工况点。选泵时应使水泵在设计工况点(最高效率点)附近工作。 水泵的选型 中央空调系统的主机和系统设备管路确定后,

流量根据主机额定流量来确定,流量确定后也就是管内水的流速确定,就可以根据水的流速计算出系统的阻力。 流速越大,阻力越大,并以此为依据确定水泵的扬程。知道了水泵的流量和扬程就可以选水泵了。 深圳国际商品交易大厦中央空调系统原设三台相同型号的主机。选用一机一泵的形式,即一台主机对应一台冷冻泵,一台冷却泵。 假设三台主机同时开启,三台冷冻泵也同时开启,这时一台主机需要流量212m3/h,三台主机就需要212X3=636 m3/h,这时系统扬程在40米水柱,也就是每台水泵约按流量212,扬程40m来运型。 当二台主机同时开启,二台冷冻泵也同时开启,二台主机需要流量212 x 2=424m3/h,那么二台冷冻泵正常工作时应提供212 X 3=424m3/h,这时系统扬程在30m水柱,也就是每台水泵应按212 m3/h、30m 扬程。 当一台主机开启,即一台冷冻泵开启,主机需要212X 1=212m3/h, 那么,冷冻泵正常工作应按212X 1=212m3/h,这时系统扬程20m, 水大厦的冷冻泵是按设计三台主机,三台冷冻水泵同时开始,即每台水型按Q=212, H=40米送型。

暖通空调系统水泵的使用与选型

暖通空调系统水泵的使用与选型 1、冷水泵: 在冷水环路中,驱动水进行循环流动的装置。我们知道,空调房间内的末端(如风机盘管,空气处理机组等)需要冷水机组提供的冷水,但是冷水由于阻力的限制不会自然流动,这就需要水泵驱动冷水进行循环以达到换热的目的。 2、冷却水泵: 在冷却水环路中驱动水进行循环流动的装置。我们知道,冷却水在进入冷水机组后带走制冷剂一部分热量,而后流向冷却塔将这部分热量释放掉。而冷却水泵就是负责驱动冷却水在机组与冷却塔这个闭合环路中进行循环。外形同冷冻水泵。 3、补水泵: 空调补水所用装置,负责将处理后的软化水打入系统中。外形同上水泵。 常用的水泵有卧式离心泵和立式离心泵,它们都可以用在冷水系统,冷却水系统和补水系统中。对于机房面积大的地方可以用卧式离心泵,对于机房面积较小的地方可以考虑使用立式离心泵。 水泵并联运行情况

水泵并联运行时,流量有所衰减;当并联台数超过3台时,衰减尤为厉害。故建议: 1)选用多台水泵时,要考虑流量的衰减,一般附加5%~10%的余量。 2)水泵并联不宜超过3台,即进行制冷主机选择时也不宜超过3台。 3)大中型工程应分别设置冷、热水循环泵。 一般,冷水泵和冷却水泵的台数应和制冷主机一一对应,并考虑一台备用。补水泵一般按照一用一备的原则选取,以保证系统可靠的补水。 4、水泵流量的计算: 1)冷水泵/冷却水泵流量计算公式:L=Q×(1.15~1.2)/(5℃×1.163)式中:Q为制冷主机的制冷量,kW;L为冷水/冷却水泵的流量,m3/h。 2)补给水泵的流量:正常补给水量为系统循环水量的1%~2%,但是选择补给水泵时,补给水泵的流量除应满足上述水系统的正常补水量外,还应考虑发生事故时所增加的补给水量,因此,补给水泵的流量通常不小于正常补水量的4倍。补给水箱的有效容积可按1~1.5h的正常补水量考虑。 5、水泵扬程的确定: 1)冷水泵扬程的组成: 制冷机组蒸发器水阻力: 一般为5~7m H2O; 末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力: 一般为5~7m H2O(具体值可参看产品样本); 回水过滤器,二通调节阀等的阻力: 一般为3~5m H2O;

中央空调能耗与管理系统

中央空调能耗计量与管理系统 系统概述及组成 本工程采用自动计费系统对建筑内中央空调能耗数据进行采集、运算、综合分析处理,并形成报表自动计费,提高用户的节能意识,降低物业管理成本,提升了物业管理水平。 本系统管理服务器安装于机房或监控中心,通过总线将中央空调计费仪表等集成在一个系统中,从而中央空调的计费实行自动化管理。 系统组成: 系统由中央空调计量仪表、中央空调计时温控器、能耗采集设备(如集中器、数据采集器等)、数据传送设备(如信号隔离放大器、路由器等)、通讯线路(如通讯总线、网线)、管理电脑、管理软件等组成。中央空调能耗计量对象全,不留下任何死角,便于统一管理! 1、中央空调计量管理 对于使用中央空调的建筑,采用区域能量计量方式,末端温控计量方式: (1)区域能量计量原理和方法 用户所消耗的能量是一段时间内供水的流量和供回水的温差的乘积对时间的积分,用流量计测量逐时的流量并用温度传感器测量逐时的供回水温差,将这些数据输入结算控制器计算就能得出用户所用的能量。 能量Q=∫μ*ΔΤ*ΔΜdt 能量计量由一个流量计、一对温度传感器、和一个结算控制器组成。流量计安装在系统的供水管上,并将温度传感器分别装在供、回水管路上。对于制冷系统和制热系统,均可使用以上方法计量能耗。 中央空调监控系统温湿度控制的分析 空调系统结构组成一般包括以下几部分: (1)新风部分 空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。新风的导入口一般设在周围不受污染影响的地方。这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。 (2)空气的净化部分 空调系统根据其用途不同,对空气的净化处理方式也不同。因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。 (3)空气的热、湿处理部分 对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。 在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置在空调房间送风口之前的空气加热器,称为空气的三次加热器。三次空气加热器主要起调节空调房间内温度的作用,常用的热媒为热水或电加热。在表面式换热器内通过低温冷水或制冷剂的称为水冷式表面冷却器或直接蒸发式表面冷却器,也有采用喷淋冷水或热水的喷水室,此外也有采用直接喷水蒸汽的处理方法来实现空气的热、湿处理过程。

数据中心能耗分析

数据中心能耗实例分析 前言:本文着重分析了影响数据中心能耗的因素,从数据中心的空调、UPS、运维等方面对其能耗进行了综合分析。本文认为影响数据中心能耗的关键因素是空调系统,并以2个数据中心的空调系统为例,结合作者在数据中心建设和运维中的经验,提出了数据中心节能的建议。 一、数据中心节能的必要性 近年国内大型数据中心的建设呈现快速增长的趋势,金融、通信、石化、电力等大型国企、政府机构纷纷建设自己的数据中心及灾备中心。随着物联网、云计算及移动互联概念的推出,大批资金投资到商业IDC的建设中。数据中心对电力供应产生了巨大的影响,已经成为一个高耗能的产业。在北京数据中心较集中的几个地区,其电力供应都出现饱和的问题,已无法再支撑新的数据中心。目前某些数据中心移至西北等煤炭基地,利用当地电力供应充足、电价低的优势也不失为一个明智的选择。 随着数据中心的不断变大,绿色节能数据中心已经由概念走向实际。越来越多的数据中心在建设时将PUE值列为一个关键指标,追求更低的PUE值,建设绿色节能数据中心已经成为业内共识。例如,微软公司建在都柏林的数据中心其PUE值为1.25。据最新报道Google公司现在已经有部分数据中心的PUE降低到1.11。而我们国内的PUE平均值基本在1.8~2.0,中小规模机房的PUE值更高,大都在2.5以上。我们在数据中心绿色节能设计方面与国外还存在很大差距,其设计思想及理念非常值得我们借鉴。 根据对国内数据中心的调查统计,对于未采用显著节能措施的数据中心,面积为1000平方米的机房,其每年的用电量基本都在500多万kWH左右。因此对于新建的大型数据中心,节能的必要性十分重要。 从各大数据中心对电力的需求来看,数据中心已经成为重要的高耗能产业而非“无烟工业”,建设绿色、节能的数据中心急需从概念走向实际。 二、影响数据中心能耗的因素 数据中心的能耗问题涉及到多个方面,主要因素当然是空调制冷系统,但UPS、机房装修、照明等因素同样影响着数据中心的能耗,甚至变压器、母线等选型也影响着能耗。例如,对UPS而言,根据IT设备的实际负荷选择合理的UPS 容量,避免因UPS效率过低而产生较大的自身损耗。同时,选择更加节能的高频UPS、优化UPS拓扑结构都可起到节能的效果。 1、UPS对数据中心能耗的影响 UPS主机的自身损耗是影响数据中心能耗的一项重要因素。提高UPS的工作

中央空调系统水泵设计

中央空调系统水泵设计 -----水泵选型索引----- 所谓水泵的选取计算其实就是估算(很多计算公式本身就是估算的),估算分的细致些考虑的内容全面些就是精确的计算。 特别补充一句:当设计流量在设备的额定流量附近时,上面所提到的阻力可以套用,更多的是往往都大过设备的额定流量很多。同样,水管的水流速建议计算后,查表取阻力值。 关于水泵扬程过大问题。设计选取的水泵扬程过大,将使得富裕的扬程换取流量的增加,流量增加才使得水泵噪音加大。特别的,流量增加还使得水泵电机负荷加大,电流加大,发热加大,“换过无数次轴承”还是小事,有很大可能还要烧电机的。 另外“水泵出口压力只有0.22兆帕”能说明什么呢?水泵进出口压差才是问题的关键。例如将开式系统的水泵放在100米高的顶上,出口压力如果是0.22MPa,就这个系统将水泵放在地上向100米高的顶上送,出口压力就是0.32MPa了! -----水泵扬程简易估算法----- 暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O): Hmax=△P1+△P2+0.05L (1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6 -----冷冻水泵扬程实用估算方法----- 这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是量常用的系统。 1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。

基于大数据分析中央空调能耗管理系统及使用方法与设计方案

本技术公开了一种基于大数据分析中央空调能耗管理系统,可对空调的电流数据、电压数据和用电量统计数据进行采集,可对中央空调所在空间室内温湿度和室外温湿度数据进行监测,可对中央空调所在室内进行视频监测和人体红外感应监测,可对系统设备的运行状态进行监测,可对数据进行分析处理,可提供温湿度调节方案,可对中央空调长期数据进行储存,可对中央空调进行温湿度调节,进行供电管理,可对设备功率进行调节,可对系统进行控制,查看中央空调电流数据、电压数据和用电量数据的实时数据和长期数据,可为中央空调的改进提供数据基础;本技术还提供了一种基于大数据分析中央空调能耗管理系统使用方法,操作方便快捷,便于推广。 权利要求书 1.一种基于大数据分析中央空调能耗管理系统,包括数据采集模块(1)、数据监测模块(2)、数据库(3)、云平台(4)、空调管理模块(5)、警示模块(6)和智能终端(7),其特征在于:所述数据采集模块(1)、所述数据监测模块(2)、所述数据库(3)、所述空调管理模块(5)和所述智能终端(7)的输出端均分别与所述云平台(4)的输入端连接,所述云平台(4)的输出端分别与所述数据采集模块(1)、所述数据监测单元(2)、所述数据库(3)、所述空调管理模块(5)、所述警示模块(6)和所述智能终端(7)的输入端连接,所述数据库(3)的输出端与所述智能终端(7)的输入端连接,所述数据监测模块(2)和所述数据采集模块(1)均分别与所述空调管理模块(5)连接,所述

数据采集模块(1)包括电流采集单元(8)、电压采集单元(9)和电量统计单元(10),所述数据监测模块(2)包括温度监测单元(11)、湿度监测单元(12)、运行监测单元(13)、视频监测单元(14)和人体红外感应单元(15),所述云平台(4)包括中央处理单元(16)、信息收发单元(17)和存储单元(18),所述空调管理模块(5)包括供电管理单元(19)、温度调节单元(20)、湿度调节单元(21)、通风调节单元(22)和功率调节单元(23),所述智能终端(7)包括显示单元(24)和输入单元(25)。 2.根据权利要求1所述的一种基于大数据分析中央空调能耗管理系统,其特征在于:所述智能终端(7)包括中央空调触控屏和移动设备,所述移动设备为智能手机、平板电脑或者联网计算机等其他智能设备。 3.根据权利要求1所述的一种基于大数据分析中央空调能耗管理系统,其特征在于:所述温度监测单元(11)包括室内温度监测单元和室外温度监测单元,所述湿度监测单元(12)包括室内湿度监测单元和室外湿度监测单元。 4.根据权利要求1所述的一种基于大数据分析中央空调能耗管理系统,其特征在于:所述警示模块(6)包括警示灯和蜂鸣器,且所述警示灯和所述蜂鸣器均设于中央空调外侧。 5.根据权利要求1所述的一种基于大数据分析中央空调能耗管理系统,其特征在于:所述运行监测单元(13)分别与数据采集设备、数据监测设备和空调管理设备连接。 6.根据权利要求1所述的一种基于大数据分析中央空调能耗管理系统,其特征在于:所述存储单元(18)包括云储存空间和本地储存器。 7.根据权利要求1所述的一种基于大数据分析中央空调能耗管理系统,其特征在于:所述电流采集单元(8)、所述电压采集单元(9)和所述电量统计单元(10)均分别与中央空调连接。 8.一种基于大数据分析中央空调能耗管理系统的使用方法,其特征在于:包括以下步骤: S1.管理者通过所述智能终端(7)的所述输入单元(25)开启系统,所述智能终端(7)

中央空调系统水泵选型设计

中央空调系统水泵选型设计 简介:所谓水泵的选取计算其实就是估算(很多计算公式本身就是估算的),估算分的细致些考虑的内容全面些就是精确的计算。包括水泵选型索引,水泵扬程简易估算法,冷冻水泵扬程实用估算方法,水泵扬程设计等。 关于水泵扬程过大问题。设计选取的水泵扬程过大,将使得富裕的扬程换取流量的增加,流量增加才使得水泵噪音加大。特别的,流量增加还使得水泵电机负荷加大,电流加大,发热加大,“换过无数次轴承”还是小事,有很大可能还要烧电机的。 另外“水泵出口压力只有0.22兆帕”能说明什么呢?水泵进出口压差才是问题的关键。例如将开式系统的水泵放在100米高的顶上,出口压力如果是0.22MPa,就这个系统将水泵放在地上向100米高的顶上送,出口压力就是0.32MPa了! 水泵扬程简易估算法 暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2.按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O): Hmax=△P1+△P2+0.05L (1+K) △P1为冷水机组蒸发器的水压降。 △P2为该环中并联的各占空调未端装置的水压损失最大的一台的水

压降。 L为该最不利环路的管长 K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.6 冷冻水泵扬程实用估算方法 这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是量常用的系统。 1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa. 2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。目前设计中冷水管路的比摩组宜控150~200Pa/m 范围内,管径较大时,取值可小些。 3.空调未端装置阻力:末端装置的类型有风机盘管机组,组合式空调器等。它们的阻力是根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。此项阻力一般在20~50kPa范围内。 4.调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。如果此允许压力降取值大,则阀门的控制性能好;若取值小,则控制性能差。阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa.

相关文档
最新文档