面轮廓度误差检测方法介绍

面轮廓度误差检测方法介绍
面轮廓度误差检测方法介绍

面轮廓度误差检测方法介绍

摘要:所谓轮廓度是指被测实际轮廓相对于理想轮廓的变动情况。这一概念用于描述曲面或曲线形状的准确度。其中轮廓度包括面轮廓度与线轮廓度,本文主要针对面轮廓度的知识及误差检测方法等内容进行介绍.

面轮廓度

●面轮廓度:是限制实际曲面对理想曲面变动量的一项指标,它是对曲面的形

状精度要求。

●面轮廓度公差:是实际被测要素(轮廓面线要素)对理想轮廓面的允许变动。

●面轮廓度误差:描述曲面尺寸准确度的主要指标为轮廓度误差,它是指被测

实际轮廓相对于理想轮廓的变动情况。

面轮廓度公差标注方法

1)无基准要求

公差带是直径为公差值t、球心位于被测要素理论正确形状上的一系列圆球的两包络面所限定的区域。

2)有基准要求

公差带是直径为公差值t、球心位于由基准平面确定的被测要素理论正确几何形状上的一系列圆球的两包络面所限定的区域。

面轮廓度误差检测方法介绍

1、传统误差检测方法

传统的面轮廓度测量误差的测量方法包括仿形装置测量、截面轮廓样板测量、光学跟踪轮廓测量仪测量以及三坐标测量装置测量等。前3种测量方法要求做出理论轮廓样板后才能测量。由于理论轮廓样板制作非常困难,因此该测量方法适合于一种零件大批量生产过程中的检验。而采用三坐标测量装置进行测量时无需轮廓样板,只需要零件的CAD数学模型(零件的三维设计图形),因此该测量方法可应用于任何场合且测量数据可靠。

目前,用来采集物体表面三维坐标的测量设备和方法多种多样,其原理也各不相同。根据测量测头是否和零件表面接触可分为接触式与非接触式两类。

接触测量法以三坐标测量机测量为典型代表。三坐标测量机的测量精度高,对环境(如:温度、湿度、防振等)要求也高。由于测量时测头在工件上要逐点测量,所以测量速度较慢。另外还要求被测零件的材质不能太软、尺寸不宜过大且不易变形。

非接触测量法以结构光法为典型代表。该测量方法一次获取物体表面的数据(点坐标)多,测量范围大,对被测量物体的材质没有要求,特别适合于面积大且易变形的覆盖件类零件的测量。

2、利用数据采集仪连接百分表测量面轮廓度误差的方法

测量仪器:偏摆仪、百分表、QSmart 数据采集仪。

测量原理:数据采集仪会从百分表中自动读取测量数据,然后由数据采集仪软件里的计算软件自动计算出所测产品的面轮廓度误差,最后数据采集仪会自动判断所测零件的面轮廓度误差是否在面轮廓度公差范围内,如果所测面轮廓度误差大于面轮廓度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图:

优势:

1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差;

2)无需人工去处理数据,数据采集仪会自动计算出平面度误差值。

3)测量结果报警,一旦测量结果不在面轮廓度公差带时,数据采集仪就会自动报警。

自由曲面的加工精度是以其轮廓度来测量的,是一种较难定义的几何要素,它不像一般规则几何要素那样,能用少量的参数给出精确定义,所以自由曲面加工精度的检验也变得较为复杂,而利用数据采集仪连接百分表这种方法就能很好解决这个问题,是一种高效的测量方法.

形位公差检测方法

一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度

同轴度测量方法[1]

同轴度测量方法 方法一:用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备:百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax 与最小读数Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax -Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图: 数据采集仪连接百分表测量同轴度误差示意图 优势:1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差; 2)无需人工去处理数据,数据采集仪会自动计算出同轴度误差值。 3)测量结果报警,一旦测量结果不在同轴度公差带时,数据采集仪就会自动报警。

形位误差测量方法

形位误差测量方法

摘要:跳动测量是生产实践中应用较广泛的一种测量方法,检测方式简单实用,又具有一定的综合控制功能。 形位误差测量 径向圆跳动、全跳动、端面圆跳动实验 一、实验目的: 跳动测量是生产实践中应用较广泛的一种测量方法,检测方式简单实用,又具有一定的综合控制功能。本实验的目的是: 1、掌握形位公差检测原则中的跳动原则。 2、形状误差不大时,用以代替同轴度测量。 3、分析圆度误差与径向跳动的各自特点。 二、实验内容: 1、模拟建立理想检测基准。 2、径向圆跳动、全跳动、端面圆跳动的测量。 3、根据指示表读数值,确定各种跳动量。 三、实验仪器: 偏摆仪、测量表架、指示表。 四、实验方法: 调整偏摆仪两端顶尖同轴,以两顶尖的轴线模拟公共基准,被测工件对顶无轴向移动且转动自如,采用跳动原则,看指示表读数,确定跳动量。 具体检测方法见下表。

五、实验步骤: 1、径向圆跳动测量: (1)将指示表安装在表架上,指示表头接触被测圆柱表现,指针指示不得超过指示表量程的1/3,测头与轴线垂直,指示表调零。 (2)轻轻使被测工件回转一周,指示表读数的最大差值即为单个测量截面上的径向跳动。 (3)按上述方法在若干个正截面上测量,分别记录,取各截面上测的跳动量中的最大值作为该零件的径向圆跳动。 (4)将测量记录填表2-2。

2、径向全跳动测量 (1)按上述方法在被测工件连续转动过程中,同时让指示表沿基准轴线方向作直线移动。(2)在整个测量过程中,指示表读数最大差值即为该零件的全跳动。(3)所测数据填表2-2。 3、端面圆跳动测量 (1)将指示表测头与被测的台阶表面接触,注意指示表指针指示不得超过指示表量程的1/3,指示表读数调零。 (2)轻轻转动工件一周,指示表读数最大差值即为单个测量圆柱面上的端面圆跳动。(3)按上述方法,在任意半径处测量若干个圆柱面,取各测量圆柱面上测得的跳动中最大值作为该零件的端面圆跳动。(4)所测数据填表2-2。 六、实验记录表 表2-2 径向圆跳动、全跳动、端面圆跳动实验记录

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,

用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪

平行度检测仪的设计方法

第28卷第4期长春理工大学学报 Vo l 128No 142005年12月 J ou rnal of Changchun Un i versit y of Science and T echnology Dec .2005 收稿日期:2005-08-12 基金项目:振兴东北老工业基地项目(04-02GG156) 作者简介:张立颖,女(1976-),硕士研究生,主要从事光学仪器装调方面的研究。 平行度检测仪的设计方法 张立颖 刘德尚 王文革 (中国科学院长春光学精密机械与物理研究所,长春 130031) 摘 要:国内现有的平行度检测方法和检测设备都是用于检测可见光的平行度。对于激光和红外平行度的精密检测,还没有一个好的检测方法。本文介绍了一种既可以检测可见光又可以检测激光、红外平行度的检测仪,并且论述了设计原理、装调方法以及精度的验证,其检测精度可以达到?2d 。关键词:平行度;激光;红外 中图分类号:TH74512 文献标识码:A 文章编号:1672-9870(2005)04-0033-03 Design of t he L ight Parallelis m Detector Z HANG L i y ing LIU D es hang WANG W enge (Changchun Instit u te o f Op tics ,F i n eM echanics and Phy sics ,Chinese Acade my of Siences ,Changchun 130031)Abst ract :In our nation ,w e have l o ts o f m ethods and equ i p m ents to detect the parallelis m of v isible li g h.t But w e don t 'kno w how to detect the paralle lis m of laser and i n frared ,This paper descri b es briefly the desi g n idea,asse m b l y techn i q ue and ho w to test and verify its accuracy .A t las,t we get the conclu -si o n that the accuracy of the ne w detecto r is less than ?2d ,and the dectctor can be used i n v isi b l e ligh.t K ey w ords :Pa ra lle lis m;Laser ;Infrared 随着激光与红外技术的发展,红外跟踪器和激光测距机已被广泛应用在现代化的光电经纬仪上。 然而令人遗憾是,对于激光、红外系统的平行度的标校却一直没有一个令人满意的方法,无奈人们只能在几十公里外制造一个红外目标,并把这个目标假设为无穷远光源来标校激光、红外系统的平行度,这个方法测量误差大,实现也困难。本文设计的平行度检测仪(以下简称检测仪)从根本上解决了这个难题,它的结构简单、成本低,既可以在实验室使用,又可以直接安装在红外跟踪车上,在外场随时标校激光、红外的平行度,同时它又可兼做红外目标模拟器,因此具有良好的市场前景。 1 检测仪的结构及检测原理 111 检测仪的结构 用于检测激光、红外平行度的检测仪的组成包括,光学部分:(1)衰减片;(2)平面镜组;(3)分光镜;(4)平行光管;(5)红外光源;(6)特 制耙面。机械部分:(1)导轨;(2)可移动支架。用于可见光测量时,只需把红外光源更换为普通光源,将特制耙面更换为普通星点板即可。112 检测仪的检测原理11211 检测仪的光学系统 检测仪的光学系统如图1所示。检测仪由A 、B 两个光路组成。激光经过(光路A )衰减片衰减后,从平面镜2的周围入射到分光镜上,经过平行光管汇聚到特制耙面上,使耙面发热形成红外光源,发射出的光经过平行光管后变成平行光,经过分光镜把光分成两束,一束(光路A )原路返回,一束(光路B)进入红外接收系统。11212 检测仪的工作过程 ①红外光源发射出的光经过特制耙面(此时耙面可以视为一个星点)通过平行光管变成平行光,再经过分光镜进入光路B ,并呈像在红外成像器的光轴中心。 ②激光测距机发出的激光通过光路A 最终汇

第二章 误差理论及应用

第二章误差理论及应用 第一节误差的来源与分类 一、误差的来源与误差的概念 每一参数的测量都是由测试人员使用一定的仪器,在一定的环境条件下按照一定的测量方法和程序进行的。尽管被测参数在一定的条件下具有客观存在的确定的真值,但由于受到人们的观察能力、测量仪器、测量方法、环境条件等因素的影响,实际上其真值是无法得到的。所得到的测量值只能是接近于真值的近似值,其接近于真值的程度与所选择的测量方法、所使用的仪器、所处的环境条件以及测试人员的水平有关。 测量值与真值之差称为误差。在任何测量中都存在误差,这是绝对的,不可避免的。当对某一参数进行多次测量时,尽管所有的条件都相同,而所得到的测量结果却往往并不完全相同,这一事实表明了误差的存在。但也有这样的情况,当对某一参数进行多次测量时,所得测量结果均为同一数值。这并不能认为不存在测量误差,可能因所使用的测量仪器的灵敏度太低,以致没有反映出应有的测量误差。实际上,误差仍然是存在的。 由于在任何测量中,误差都是不可避免地存在着,因此对所得到的每一测量结果必须指出其误差范围,否则该测量结果就无价值。测量误差分析就是研究在测量中所产生误差的大小、性质及产生的原因,以便对测量精度作出评价。 二、测量误差的分类 在测量过程中产生误差的因素是多种多样的,如果按照这些因素的出现规律以及它们对测量结果的影响程度来区分,可将测量误差分为三类。 1.系统误差 在测量过程中,出现某些规律性的以及影响程度由确定的因素所引起的误差,称为系统误差。由于可以确知这些因素的出现规律,从而可以对它们加以控制,或者根据它们的影响程度对测量结果加以修正,因此在测量中有可能消除系统误差。在正确的测量结果中不应包含系统误差。 2.随机(偶然)误差 随机误差是由许多未知的或微小的因素综合影响的结果。这些因素出现与否以及它们的影响程度都是难以确定的。随机误差在数值上有时大、有时小,有时正、有时负,其产生的原因一般不详,所以无法在测量过程中加以控制和排除,即随机误差必然存在于测量结果之中,但在等精度(用同一仪器、按同一方法、由同一观测者进行测量)条件下,对同一测量参数作多次测量,若测量次数足够多,则可发现随机误差完全服从统计规律。误差的大小以及正负误差的出现,完全由概率决定,没有理由认为误差偏向一方比偏向另一方更为可能。因此,误差与测量的次数有关,随着测量次数的增加,随机误差的算术平均值将逐渐接近于零。因此,多次测量结果的算术平均值将更接近于真值。 3.过失误差 过失误差是一种显然与事实不符的误差,它主要由于测量者粗枝大叶、过度疲劳或操作不正确等引起,例如读错刻度值、记录错误、计算错误等。此类误差无规则可寻,只要多方注意,细心操作,过失误差就可以避免。包含过失误差的测量结果是不能采用的。 第二节系统误差

三米直尺法检测平整度作业指导书

三米直尺法检测平整度作 业指导书 This manuscript was revised by the office on December 10, 2020.

T0931-2008三米直尺法检测平整度作业指导书 一目的和适用范围及标准 本方法规定用三米直尺测定路表面的平整度。定义三米直尺基准面距离路表面的最大间隙表示路基路面的平整度,以mm计。 本方法适用于测定压实成型的路面各层表面的平整度,以评定路面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 二仪具与材料 本试验需要下列仪具与材料: (1)3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)最大间隙测量器具: 楔形塞尺:木或金属制的三角形塞尺,有手柄。塞尺的长度与高度之比不小于10,宽度不大于15mm,边部有高度标记,刻度精度不小于或等于0.2mm,也可使用其他类型的量尺。 深度尺:金属制的深度测量尺,有手柄。深度尺测量杆端头直径不小于10mm,刻度精度小于或等于。 (3)其它:皮尺或钢尺、粉笔等。 三方法与步骤 准备工作 (1)按有关规范规定选择测试路段。

(2)在测试路段路面上选择测试地点:当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测;当为路基路面工程质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮轮迹(距车道线80~100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上做好标记。 (3)清扫路面测定位置处的污物。 测试步骤 (1)在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 (2)目测3rn直尺底面与路面之间的间隙情况,确定间隙最大的位置。 (3)用有高度标线的塞尺塞进间隙处,量测其最大间隙的高度(mm);或者用深度尺在最大间隙位置量测直尺上顶面距地面的深度,该深度减去尺高即为测试点的最大间隙的高度,精确至。 四计算 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10次时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。 五报告

形位公差检测方法

、直线度的检验方法 1、将直尺平行地放于测定面,用塞尺测定直尺与被测定物的空隙。 (1)测定面凹时,与直线度相等数值厚度的塞尺不能插入中央的空隙。 (2)测定面凸时,在两端放置与直线度相等数值厚度的塞尺。 2、将杠杆百分表置于测定面,在A点调零,确认到B点。测定值=最大值-最小值 二、平面度的检验方法 1、用直尺测定部品平面度 测量方法:如图以不包括自重的方法将测量物支撑。 测量范围:测量是将直尺放在整个表面(纵、横、对角线方向)用塞尺(数值与平面度相符)测定。 判定:在所有的地方塞尺应不能通过。 2、用平台测定平面度 测量方法:将部品平放于平台,用塞尺测量部品与平台之间的间隙塞尺与平台要保持水平状态进行测量。 3、用百分表测定平面度'? |_______ 将杠杆百分表置于测定面,在A点调零,确认到B点。_ 测定值=最大值-最小值 三、平行度的检验方法 1、面与面的平行度 在平台上用V型块全面保持基准平面,用杠杆百分表测量测量面的全表面,在 调零,确认到B点 平台或V型块 在要求的测量的面上测量。 测定值=最大值-最小值 2、线与面的平行度 (1)将适合的塞规插入两个基准孔内。 (2)将塞规的两端用平行块(或磁铁)支撑。 (3)将公差的指定面调较至与平台平行,在A点调零,确认到B点 (4)测定指定面,将读数的最大差(最高点减去最低点)作平行度 3、面与线的平行度

在平台上,使用磁铁支撑基准面整体,测定两个孔到基准面的尺寸,将该尺寸差 作平行度 4、线与线的平行度 (1)将适合的塞规插入两个基准孔内。 (2)用平行块(或磁铁)将塞规两端固定。 (3)依照图在0°的位置求出B与C的中心偏移(X),并求出在90°回转位置上 的B与C的中心偏移(Y。 (4)将求出值用X 2+Y 算,所得值即平行度。 四、垂直度的检验方法 1、面与面的垂直度。 (1)将基准面用磁铁与平台平行地支撑。 (2)将百分表从弯曲根部起移动至前端止,将读数的最大差作垂直度。 注:测定是横过l幅所有地方。 2、面与线的垂直度。 (1)在平台上,用磁铁如图支撑测量物; (2)将百分表接触于测量物上,在B点调零,确认到C点。 (3)将百分表接触于测量物上,将其在指示范围内所有地方上下移动。 (4)测定在0°与90°两处进行。 (5)将各读数的最大差用以下公式计算,所得值即垂直度(在0°的读数最大差 -X;在90°的读数最大差-_Y): 垂直度()=X2+Y 3、线与面的垂直度。 (1)在2个基准孔内插入适合的塞规;在平台上用磁铁将塞规与平台成直角支撑。 (2)将测量面的所有地方用百分表(或高度规)测定,将读数的最大差作垂直度。 五、同轴度的检验方法 1、同轴度的两种基准型式: (1)指定基准 以零件上给定的一个圆柱面的轴心线为基准,如图A寸B和B寸A勺数值。 (2)公共轴心线为基准 如图,零件上有A、B两孔,测量同轴度误差时,不以A孔为基准,也不以B孔为基准,而以A B两孔的公共轴心线为基准。A、B两孔对公共轴心线的同轴度误差分别为B和A 2、同轴度的测量 (1)指定基准的同轴度误差的测量

测量同轴度误差的方法

测量同轴度误差的方法

一、同轴度 同轴度用于控制轴类零件的被测轴线对基准轴线的同轴度误差。 二、同轴度公差带 同轴度公差带是直径为公差值t,且与基准轴线同轴的圆柱面内的区域。如下图所示。?d孔轴线必须位于直径为公差值0.1mm,且与基准轴线同轴的圆柱面内。 三、任务:测量联动轴零件的同轴度误差 任务分析:被测项目是被测要素为大圆柱面的轴线,基准要素为两端小圆柱面的公共轴线。

含义:大圆柱面的轴线必须位于直径为公差值Φt(Φ0.08mm)的圆柱面内,此圆柱面的轴线与公共基准轴线A‐B(即 两个小圆柱面的公共轴线)重合。 根据含义可知,我们选择测量方法有两种。 四、测量方法 方法一: 用两个相同的刃口状 V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状 V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状 V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状 V 形块上,基准轴线由 V 形块模拟,如图 3-77 所示。

3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax 与最小读数 Mmin 的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面 A 、B、C、D),取各截面测得的最大读数 Mimax 与最小读数 Mimin 差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ=(Mmax - Mmin )/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二: 直接利用数据采集仪连接百分表实现高效测量 1、测量仪器:偏摆仪、百分表、太友科技QSmart 数据采集仪。 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值, 然后由数据采集仪软件里的计算软件自动计算出所测产品的同轴度误差(Δ=(Mmax - Mmin )/2),最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度公差范围内,如果所测同轴度误差大于圆度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。 测量效果示意图:

第二章机械零件几何精度形位公差

第四节形状与位置精度 由于加工误差的影响,机械零件的几何要素不仅有尺寸误差,还会产生形状误差和位置误差。 ※形位误差:零件的实际形状、位置对其理想形状、位置的变动量。 零件的形位误差同样将影响零件、机械的精度以及零件间配合的性质。形状和位置误差越大,其形状和位置精度越低;反之,则越高。 形位公差:形位公差是被测实际要素相对于其理想要素允许的最大变动量,形位公差是用以限制形位误差。

一、形位公差的研究对象 形位公差的研究对象就是零件的几何要素 ※几何要素:代表零件几何形状特 性的点、线、面。 几何要素可作如下分类: 指具有几何学意义的要素,即设计时在图样上 给定的要素,它不存在任何误差。在检测 中, 理想要素是评定实际要素形位误差的依 据,但 在实际生产中不可能得到。 实际要素5指零件上实际存在的要素。通常用测得的要 、素代 替。由于测量误差的存在,故测得的要素 并不是实际要素的真实状况。 '理想要素仁 1 ?按存在状态y

I ??? —指构成零件外形的、能直接被人们所感觉到的 轮廓 要素㈡点、线、面。如图所示的锥顶、球面、圆锥面、?? 端平面、圆柱面、圆柱和圆锥的素线。| . ,它是指轮廓要素的对称中心所表示的点、衣、 中心、要素0 面。如图所示的球心、轴线等。中心要素 不能被人们所感 知,可以通过相应的轮廓 要素模拟而体现。 —指图样上给出形状或(和)位置公差要求的要 做测 要素待,是检测的对象 指仅对其自身给出了形位公差要求的要 厂单一要素匕! 素。如图所示,0d 的圆柱面仅给出 L 了圆柱度公差要求,与其它要素无 相对位置关系,故为单一要素。 指与零件上其它要素有功能关系的要素,即 在图样上给出了位置公差要求的要素。 如图所示,0D 圆柱的轴线相对于0d 圆 柱的轴线有同轴功 能要求,故为被测关 联要素 '基准要素口旨用来确定被测要素方向或(和)位置的要素, 如图所 示的圆林0d 的轴线为基准要素 2 ?按结构特征分 〔关联要素仁 3 ?按在形状和位 置公差中所的地位 分 ?

第五节 平整度试验检测方法

第五节平整度试验检测方法 一、概述 平整度是路面施工质量与服务水平的重要指标之一。它是指以规定的标准量规,间断地或连续地量测路表面的凹凸情况,即不平整度的指标。路面的平整度与路面各结构层次的平整状况有着一定的联系,即各层次的平整效果将累积反映到路面表面上,路面面层由于直接与车辆及大气接触,不平整的表面将会增大行车阻力,并使车辆产生附加振动作用。这种振动作用会造成行车颠簸,影响行车的速度和安全及驾驶的平稳和乘客的舒适,同时,振动作用还会对路面施加冲击力,从而加剧路面和汽车机件损坏和轮胎的磨损,并增大油耗。而且,不平整的路面会积滞雨水,加速路面的破坏。因此;平整度的检测与评定是公路施工与养护的一个非常重要的环节。 平整度的测试设备分为断面类及反应类两大类。断面类实际上是测定路面表面凹凸情况的,如最常用的3m直尺及连续式平整度仪,还可用精确测定高程得到;反应类测定路面凹凸引起车辆振动的颠簸情况。反应类指标是司机和乘客直接感受到的平整度指标,因此它实际上是舒适性能指标,最常用的测试设备是车载式颠簸累积仪。现已有更新型的自动化测试役备,如纵断面分析仪,路面平整度数据采集系统测定车等。国际上通用国际平整度指数IRI衡量路面行驶舒适性或路面行驶质量,可通过标定试验得出IRI与标准差ó或单向累计值VBI之间的关系。 二、平整度测试方法 (一)3m直尺法 3m直尺测定法有单尺测定最大间隙及等距离( 1.5m)连续测定两种。两种方法测定的路面平整度有较好的相关关系。前者常用于施工质量控制与检查验收,单尺测定时要计算出测定段的合格率;等距离连续测试也可用于施工质量检查验收,要算出标准差,用标准差来表示平整程度。 1.试验目的和适用范围

同轴度测量方法

同轴度测量方法 方法一: 用两个相同的刃口状V 形块支承基准部位,然后用打表法测量被测部位。 1、测量器具准备 百分表、表座、表架、刃口状V 形块、平板、被测件、全棉布数块、防锈油等。 2、测量步骤 1)将准备好的刃口状V 形块放置在平板上,并调整水平。 2)将被测零件基准轮廓要素的中截面(两端圆柱的中间位置)放置在两个等高的刃口状V 形块上,基准轴线由V 形块模拟,如下图所示。 同轴度测量方法示意图 3)安装好百分表、表座、表架,调节百分表,使测头与工件被测外表面接触,并有1~2圈的压缩量。 4)缓慢而均匀地转动工件一周,并观察百分表指针的波动,取最大读数Mmax与最小读数Mmin的差值之半,作为该截面的同轴度误差。 5)转动被测零件,按上述方法测量四个不同截面(截面A 、B、C、D),取各截面测得的最大读数Mimax与最小读数Mimin差值之半中的最大值(绝对值)作为该零件的同轴度误差。 6)完成检测报告,整理实验器具。 3、数据处理 1)先计算出单个测量截面上的同轴度误差值,即Δ = (Mmax-Mmin)/2。 2)取各截面上测得的同轴度误差值中的最大值,作为该零件的同轴度误差。 4、检测报告 按步骤完成测量并将被测件的相关信息及测量结果填入检测报告单中,并 检验零件的行为误差是否合格。 方法二:利用数据采集仪连接百分表测量法[1] 1、测量仪器:偏摆仪、百分表、数据采集仪 2、测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆度误差,最后数据采集仪会自动判断所测零件的同轴度误差是否在同轴度范围内,如果所测同轴度误差大于同轴度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。测量效果示意图:

机械制图常用形位公差符号表示方法

机械制图常用形位公差符号表示方法

一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 标注符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。

定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差

三坐标测量同轴度方法

三坐标测量同轴度方法 方法一同轴度测量方法 两个孔的公共轴心线是指两孔各自被测表面长度的中点连线;假使是三个或三个以上的圆柱表面,它们的公共轴心线应该在图样上另做规定。 - 几种测量机通常采用的同轴度测量方法: 一、应用系统功能法: 即测量机软件系统中自带的同轴度和同心度测量标准子程序,用户在测量时可方便地进行调用。 二、极坐标测量法: 这是一种类似于平台测量的检测方法,其基准元素可以通过圆柱、阶梯柱、直线以及圆/圆等测量后构造的直线获得。可以说,几乎所有用作基准元素的单一基准或组合基准都将包括在内,而被测要素则更为简单,通常情况只是圆的测量。 其操作步骤如下: 1、测量单一基准轴线或公共基准轴线并用其建立第一轴(同心度测量除外); 2、将基准轴线清零(即平移原点到基准中心); 3、在被测元素(孔或轴)上测若干截圆(通常测两端); 4、输出被测截圆极径(PR值); 5、取其输出较大PR值的2倍为所测同轴度误差。 三、求距法: 该方法的基本原理是通过计算圆心到基准轴线距离的方法求得同轴度误差。与极坐标测量方法不同的是,被选定的基准轴线无须清零,但评定同轴度误差时同样要取计算结果中最大距离乘以2。 - 关于两个相邻较远的短基准同轴度的测量: 这是一个比较典型困扰测量机用户的问题,事实上已经证明由此单从测量数据上来看将有相当一部分工件被视为“超差品”,而那些“超差品”经装配实验后证明大多数没有问题。这就不得不需要引起测量机操作员的注意。分析其原因,既不是机器精度太低,也不是系统软件计算错误,主要是图样标注不妥。 对此,可采用以下几种相应的测量方法: 1、当基准元素为孔时,可插入配合间隙较为合适的心棒,以延长基准轴线的实测长度; 2、采用建立公共基准的测量方法,模拟专用心棒进行检验的方法,分别测量两圆柱对公共轴心线的同轴度;(参看前面公共基准轴线的建立方法和极坐标测量法); 3、在基准圆柱表面内测量更多的点,(多用于连续扫描测头)以加大计算的信息量,使系统确定最大内接圆或最小外接圆时有充足的表面形状信息。

3m直尺测定平整度试验方法

3m直尺测定平整度试验方法 1 目的和适用范围 1.1 本方法规定用3m直尺测定距离路表面的最大间隙表示路基路面的平整度,以mm计。 1.2 本方法适用于测定压实成型的路面各层表面的平整度,以评定路面的施工质量及使用质量,也可用于路基表面成型后的施工平整度检测。 2 仪具与材料 本试验需要下列仪具与材料: (1) 3m直尺:硬木或铝合金钢制,底面平直,长3m。 (2)楔形塞尺:木或金属制的三角形塞尺,有手柄。塞尺的长度与高度之比不小于10,宽度不大于15mm,边部有高度标记,刻度精度不小于0.2mm,也可使用其他类型的量尺。 (3)其它:皮尺或钢尺、粉笔等。 3 方法与步骤 3.1 准备工作 (1) 按有关规范规定选择测试路段。 (2) 在测试路段路面上选择测试地点:当为施工过程中质量检测需要时,测试地点根据需要确定,可以单杆检测;当为路基路面工程

质量检查验收或进行路况评定需要时,应连续测量10尺。除特殊需要者外,应以行车道一侧车轮轮迹(距车道线80~100cm)作为连续测定的标准位置。对旧路已形成车辙的路面,应取车辙中间位置为测定位置,用粉笔在路面上作好标记。 (3) 清扫路面测定位置处的污物。 3.2 测试步骤 (1) 在施工过程中检测时,按根据需要确定的方向,将3m直尺摆在测试地点的路面上。 (2)目测3m直尺底面与路面之间的间隙情况,确定间隙为最大的 位置。 (3)用有高度标线的塞尺塞进间隙处,量记其最大间隙的高度(mm),准确至0.2mm。 (4) 施工结束后检测时,按现行《公路工程质量检验评定标准》(JTJ071-94)的规定,每1处连续检测10尺,按上述(1)~(3)的步骤测记10个最大间隙。 4 计算 4.1 单杆检测路面的平整度计算,以3m直尺与路面的最大间隙为测定结果。连续测定10尺时,判断每个测定值是否合格,根据要求计算合格百分率,并计算10个最大间隙的平均值。

形位公差及其检测方法

形位公差及其检测方法 一、概念: 1.1定义: 形状公差:单一实际要素形状所允许的变动全量。 位置公差:关联实际要素的位置对基准所允许的变动全量。 形位公差:形状公差与位置公差的总称。它控制着零件的实际要素在形状、位置及方向上的变 化。 形位公差带:用以限制实际要素形状或位置变动的区域。由形状、大小、方向和位置四个要素 所确定。 公差原则:形位公差与尺寸公差之间的相互关系。包括独立原则与相关要求。 独立原则:图样上给出的尺寸公差与形位公差各自独立,彼此无关,分别满足要求的公差原 则。 相关要求:图样上给定的尺寸公差和形位公差相互有关的公差要求。具体可分为包容要求 (E )、最大实体要求(M )、最小实体要求(L )和可逆要求(R )。 1.2形位公差的项目及符号: 形位公差符号及其它相关符号 1.3形位公差带的形式: 形 位 公差带 的 形式 两平行直线 = 一个圆柱 两等距曲线 一个四棱柱 两同心圆 t * 两同轴圆柱 卡t 一个圆 两平行平面 一个球 球 两等距曲面 t 丰匸七二 项目 直线度 项目 平行度 垂直度 倾斜度 同轴度 对称度 位置度 圆跳动 全跳动 名称 符号 基准符号及代号 ■- —L 基准目标 亠 1 J 最大实体状态 包容原则 E 延伸公差带 P 理论正确尺寸 不准凹下 不准凸起 只许按小端方向减小 l) 位 平面度 置 圆度 公 圆柱度 差 线轮廓度 面轮廓度 苴 / 它 符 号

项目 公差带定义 示例 说明 、形状误差与形状公差: I 1 ° 一~ _ 一一 __ _ ___—1 在给 定平面 内 公差带是 距离为公差值t 的两平行直线 之间的区域 圆柱表面上的任一素线必 须位于轴向 内,距离D.p 为0.02的两平行线之间 、当给定一个方] 棱线必须位于箭头所 公差带是距 苜t 的 之间的 示方向距离为公 ~ | QJ 1F 值0.02的两平行平面内 在 给 定 方 向 上 离为公差值 平行平面 区域 0. 02 、当给定两 勺两个 互相垂直的 方向 个> 公差带为截 面边长t1* 棱柱内的区域 棱线必须位于水平方向距 3、在任意 公差 径为公差, 方向 带是直 值t 的圆 柱面的区域 圆柱体的轴线必须位 于直径为公差值0.02的的〔】W 圆柱面内 上表面必须位于距离为公 公差带是距 离为公差值t 的两 差值0.1的两 一 I — 0.1 公差带是在 同一正截面上半 径差为公差值t 的 两同心圆之间的 区域 平行平面之间的 区域

水泵机组同轴度的测量与校正

水泵机组同轴度的测量 与校正 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

水泵机组同轴度的测量与校正 状元水厂项慧均 摘要:本文主要是根据状元水厂的水泵机组的特点,叙述联轴器的配合偏差、机泵同轴度测量误差产生的原因及解决方法、主要以叙述水泵机组同轴度的测量和校正方法为主。 关键词:配合偏差,同轴度,联轴器,轴向窜动,径向偏差,轴向偏差,不同心度,不平行度。 前言:水泵机组的同轴度是指水泵轴和电机轴的装配偏差,而联轴器是电机和水泵传动的联接部件,机泵的配合偏差也就是联轴器的配合偏差,联轴器装配后都存在着配合偏差,联轴器的配合偏差过大会造成水泵机组的振动增大,是影响轴承、联轴器损坏的主要原因,因此,为了减少水泵机组的振动,就必须减少联轴器的配合偏差,把偏差调整到允许的范围内,才能有效地保证机组的机械寿命,在机泵的运行过程中,因机组自身的振动或基础与管路的沉降等等原因都会造成联轴器配合偏差变化,所以定期对水泵机组同轴度的测量与校正是机泵维护中的重要项目。 一. 联轴器配合偏差的介绍。 联轴器配合的偏差有三种:径向偏差、轴向偏差、角向偏差,径向偏差是指联轴器的两个圆心之间的偏差,可用不同心度来表示,轴向偏差是指两配合面之间的距离与标准配合距离之间的偏差,同轴度测量中用联轴器的间距来表示,间距的测量较简单,用游标尺可直接测量出来,由于轴向偏差的精度要求较低(误差为±3mm),且基座的沉降或设备的振动基本上不影响间距的变化,即使偏差超值校正也简单,所以在同轴度测量中以

测量径向偏差和角向偏差为主,角向偏差是指联轴器两端面与平行端面的角度偏差,角向偏差可用机泵轴心的不平行度来表示,定义为在轴向的一米的距离上的与基准轴中心线的偏差值。由于习惯上把联轴器的角向偏差称为机泵同轴度中的轴向偏差,所以此本文也依照习惯在接下来叙述中把联轴器的角向偏差称为“轴向偏差”,联轴器的轴向偏差用联轴器的间距来表示。 二. 机泵同轴度测量的误差原因分析 状元水厂以前测同轴度的方法是习惯上用一只百分表对联轴器的径向和轴向进行测量,往往在同一时间里多次测量的值都存在较大的偏差,而且数值有时为正偏差有时为负偏差,即使后来用激光校正仪来测,在同一时间里多次测量的值都存在偏差,因测量值不准,就无法校正机泵的同轴度。经过分析发现:我厂的机泵联轴器是膜片式联轴器,在测量中时将联轴器转动180°时,水泵或电机有轴向窜动现象出现,每次测量时其轴向窜动量都是不同的,窜动量从几丝到几十丝的之间变化,所以机泵同轴度测量的误差主要是机泵的轴向窜动造成的,轴向窜动对径向偏差的测量影响微小,对轴向偏差的测量影响很大,为了消除轴向窜动对轴向偏差测量的误差,准确地测量出轴向偏差值,通过在CAD图形上进行模拟分析,发现如在测量轴向偏差是用两只相隔180°的百分表同时测量,就可以消除掉轴向窜动引起的测量误差,如下的图1就是模拟轴向窜动时测量轴向偏差的分析图形。 图1 三. 机泵同轴度的测量只要是测量径向偏差和轴向偏差,径向偏差和轴向偏差说明如下:

平行度误差检测方法介绍

平行度误差检测方法介绍

摘要:平行度是属于形位公差中的一种,平行度评价直线之间、平面之间或直线与平面之间的平行状态。下面我们将对平行度的误差检测方法进行讲解。 什么是平行度? 指两平面或者两直线平行的程度,指一平面(边)相对于另一平面(边)平行的误差最大允许值。 平行度公差 平行度公差是一种定向公差,是被测要素相对基准在方向上允许的变动全量。所以定向公差具有控制方向的功能,即控制被测要素对准基准要素的方向。 平行度公差的分类 1、面对面的平行度公差 该项平行度公差为:所指表面必需位于距离为0.05mm,且平行于基准平面的两平行平面之间。公差带是距离为公差值t且平行于基准平面的两平行平面之间的区域。 2、面对线的平行度公差 指平面必须位于距离为0.05mm,且平行于基准轴线的两平行平面之间。公差带是距离为公差值t且平行于基准轴线的两平行平面之间的区域。 3、线对线的平行度公差 ●给定方向线对线的平行度公差 平行度公差为孔D的实际轴线必须位于距离为公差值0.2mm,平行位于基准轴线A且垂直于给定方向的两平行平面之间。公差带是距离为公差值t且平行于基准轴线且垂直于给定方向的两平行平面之间的区域。 ●任意方向上线对线的平行度公差 平行度公差为孔D的实际轴线必须位于直径为公差值0.1mm,轴线平行于基准轴

线A的圆柱面所构成的公差带区域内。任意方向上线对线的平行度公差带是直径为公差值t,轴线平行于基准轴线的圆柱面内的区域。 平行度误差检测方法 传统测量方法 1、测量面对面平行度误差 公差要求是测量面相对于基准平面的平行度误差。基准平面用平板体现,如下图所示。测量时,双手推拉表架在平板上缓慢地作前后滑动,用百分表或千分表在被测平面内滑过,找到指示表读数的最大值和最小值。 被测平面对基准平面的平行度误差可按公式计算为: 2、测量线对面平行度误差 公差要求是测量孔的轴线相对于基准平面的平行度误差。需要用心轴模拟被测要素,将心轴装于孔内,形成稳定接触,基准平面用精密平板体现,如下图所示: 测量时,双手推拉表架在平板上缓慢地作前后滑动,当百分表或千分表从心轴上素线滑过,找到指示表指针转动的往复点(极限点)后,停止滑动,进行读数。 在被测心轴上确定两个测点a、b,设二测点距离为1 ,指示表在二测点的 2 读数分别

相关文档
最新文档