(完整word版)电磁场与电磁波简答题归纳

(完整word版)电磁场与电磁波简答题归纳
(完整word版)电磁场与电磁波简答题归纳

电磁场与电磁波易考简答题归纳(四川理工大学)

1、什么是均匀平面电磁波?

答:平面波是指波阵面为平面的电磁波。均匀平面波是指波的电场→E 和磁场→H 只沿波的传播方向变化,而在波阵面内→E 和→

H 的方向、振幅和相位不变的平面波。 2、电磁波有哪三种极化情况?简述其区别。

答:(1)直线极化,同相位或相差 180;2)圆极化,同频率,同振幅,相位相差 90或 270;(3)椭圆极化,振幅相位任意。

3、试写出正弦电磁场的亥姆霍兹方程(即亥姆霍兹波动方程的复数形式),并说明意义。

答:0

02222=+?=+?→→→

→H k H E k E ,式中μεω22=k 称为正弦电磁波的波数。

意义:均匀平面电磁波在无界理想介质中传播时,电场和磁场的振幅不变,它们在时间上同相,在空间上互相垂直,并且电场、磁场、波的传播方向三者满足右手螺旋关系。电场和磁场的分量由媒质决定。 4、写出时变电磁场中麦克斯韦方程组的非限定微分形式,并简述其意义。 答:???????????=??=????-=????+=??→→→→→→→ρεμμεE H t H E t E J H )4(0)3()2()1(

物理意义:A 、第一方程:时变电磁场中的安培环路定律。物理意义:磁场是由电流和时变的电场激励的。

B 、第二方程:法拉第电磁感应定律。物理意义:说明了时变的磁场激励电场的这一事实。

C 、第三方程:时变电场的磁通连续性方程。物理意义:说明了磁场是一个旋涡场。

D 、第四方程:高斯定律。物理意义:时变电磁场中的发散电场分量是由电荷激励的。

5、写出麦克斯韦方程组的微分形式或积分形式,并简述其意义。

答:(1)微分形式

(2) 积分形式 物理意义:同第4题。

6、写出达朗贝尔方程,即非齐次波动方程,简述其意义。 答:→→→-=??-?J t A A μμε222,ερμε-=?Φ?-Φ?→

→222t

物理意义:→J 激励→

A ,源ρ激励Φ,时变源激励的时变电磁场在空间中以波动方式传播,是时变源的电场辐射过程。 7、写出齐次波动方程,简述其意义。 答:0222=??-?→→t H H με,0222=??-?→→

t E E με 物理意义:时变电磁场在无源空间中是以波动方式运动,故称时变电磁场为电磁波,且电磁波的传播速度为:με

υ1=p

8、简述坡印廷定理,写出其数学表达式及其物理意义。

答:(1)数学表达式:①积分形式:???++??=?-→→τττστεμd E d E H t S d S S 222)2

121(,其中,→→→?=H E S ,称为坡印廷矢量。 ???????????=??=????-=????+=??→→→→→→→ρD B t B E t D J H )4(0)3()2()1( ?????

??????=?=????-=????+=???????→→→→→→→→→→→→→q S d D l d B S d t B l d E S d t D J l d H S S S l s l )4(0)3()2()()1(

由于?=ττεd E W e 22

1为体积τ内的总电场储能,?=ττμd H W m 22

1为体积τ内的总磁场储能,?=ττσd E P 2 为体积τ内的总焦耳损耗功率。于是上式可以改写成:P W W t S d H E m e S ++??=??-?→→→)(,式中的S 为限定体积τ的闭合面。 ②微分形式:222)2121(E H E t S σμε++??=??-→,其中,→

→→?=H E S ,称为坡印廷矢量,电场能量密度为:221E w e ε=, 磁场能量密度:22

1H w m μ=。

(2)物理意义:对空间任意闭合面S 限定的体积τ,→

S 矢量流入该体积边界面的流量等于该体积内电磁能量的增加率和焦耳损耗功率。它给出了电磁波在空间中的能量守恒和能量转换关系。

9、写出麦克斯韦方程组的复数形式。

答:ρωω=??=??-=??+=??→→→→→→→D B B

j E D

j J H 0

10、写出达朗贝尔方程组的复数形式。

答:→

→→-=+?J A A μμεω22,ε

ρμεω-=Φ+Φ?→→22 11、写出复数形式的的坡印廷定理。 答:???-+++=?→→τ

ττωτd w w j d P P P S d S e m T e m S )(2)(平均平均 其中241H w m ‘平均μ=为磁场能量密度的平均值,2'41E w e ε=平均为电场能量密度的平均值。这里场量→→H E 、分别为正弦电场和磁场的幅值。

正弦电磁场的坡印廷定理说明:流进闭合面S 内的有功功率供闭合面包围的区域内媒质的各种功率损耗;而流进(或流出)的无功功率代表着电磁波与该区域功率交换的尺度。 坡印廷矢量)2

1Im()21Re(21***→→→→→→→?+?=?=H E j H E H E S 为穿过单位表面的复功率,实部)21Re(*→→→?=H E S 平均为穿过单位表面的平均功率,虚部)2

1Im(*→→→?=H E Q 平均为穿过单位表面的无功功率。 12、工程上,通常按

ωεσ的大小将媒质划分为哪几类? 答:当

∞→ωεσ时,媒质被称为理想导体; 当210>>ωε

σ时,媒质被称为良导体; 当221010<<-ωε

σ时,媒质被称为半导电介质; 当210-<<ωε

σ时,媒质被称为低损耗介质; 当

0=ωε

σ时,媒质被称为理想介质。

13、简述均匀平面电磁波在理想介质中的传播特性。 答:(1)电场、波的传播方向三者满足右手螺旋关系,电场与磁场处处同相,在传播过程中,波的振幅不变,电场与磁场的振幅之比取决于媒质特性,空间中电场能量密度等于磁场能量密度。

(2)相速度为:με

υ1=p ,频率πω2=f , 波长:)(221

μεωπμεωπ

μελ=====k k

f T v p 其中,

电场与磁场的振幅比,即本征阻抗:ε

μη==y x H E ,电场能量密度:221E w e ε=,磁场能量密度:22H w m μ= 二者满足关系:e m w E H H w ====2

22222

εμεμμ 14、试写出麦克斯韦位移电流假说的定义式,并简述其物理意义。 答:按照麦克斯韦提出的位移电流假说,电位移矢量对时间的变化率可视为一种广义的电流密度,称为位移电流密度,即

t D J d ??=→

→。物理意义:位移电流一样可以激励磁场,即变化的电场可以激励磁场。 15、简述什么是色散现象?什么是趋肤效应?

答:在导电媒质中波的传播速度随频率变化,这种现象称为色散现象。导电媒质中电磁波只存在于表面,这种现象称为趋肤效应,工程上常用穿透深度δ(m )表示趋肤程度,

16.相速度和群速度有什么区别和联系?

答:区别:相速度是波阵面移动的速度,它不代表电磁波能量的传播速度,也不代表信号的传播速度。而群速度才是电磁波信号和电磁波能量的传播速度。 联系:在色散媒质中,二者关系为:ω

υυωυd d p p g -=

11,其中,p ν为相速度,g

ν为群速度。在非色散媒质中,相速度不随频率变化,群速度等于相速度。

17、写出真空中安培环路定律的数学表达式,说明它揭示的物理意义。 答:

∑?=?→→I l d B C 0μ,它表明在真空中,磁感应强度沿任意回路的环量等于真空磁导率乘以与该回路相交链的电流的代

数和。 18、写出电荷守恒定律的数学表达式,说明它揭示的物理意义。

dV t S d J V S ????-=?ρ

答:电荷守恒定律表明任一封闭系统的电荷总量不变。也就是说,任意一个体积内的电荷增量必定等于流入这个体积的电荷量。

19、简述分界面上的边界条件

答:(1)法向分量的边界条件

A 、→D 的边界条件S D D n ρ=-

?→→→)(21,若分界面上0=S ρ,则0)(21=-?→→→D D n B 、→B 的边界条件0)(21=-

?→→→B B n (2)切向分量的边界条件

A 、→E 的边界条件0)

(21=-?→→→E E n B 、→H 的边界条件→→→→=-?S J H H n )

(21,若分界面上0=→S J ,则0)(21=-?→→→H H n (3)理想导体(

∞=σ)表面的边界条件

?????????=?=?=?=?=?=?=?=?→→→→→→→→→→→→00)4(0

0)3(00)2()1(ερερS n S n t S t S E E n B B n E E n J H J H n ,

式中→

n 是导体表面法线方向的单位矢量。上述边界条件说明:在理想导体与空气的分界面上,如果导体表面上分布有电荷,则在导体表面上有电场的法向分量,则由上式中的④式决定,导体表面上电场的切向分量总为零;导体表面上磁场的法向分量总为零,如果导体表面上分布有电流,则在导体表面上有磁场的切向分量,则由上式中的(1)决定。

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: ερ= ??E 0=??E 已知电荷分布求解电场强度: 1, )()(r r E ?-?=; ? ' '-'= V V d ) (41)(| r r |r r ρπε? 2, ? '''-'-'=V V 3 d |4) )(()(|r r r r r r E περ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1, t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2, s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ? S n -=?? 静电场的能量:

电磁场与电磁波(第四版)习题解答 第1章习题 习题1.1 给定三个矢量A 、B 和C 如下: 23 x y z =+-A e e e . 4y z =-+B e e , 52x z =-C e e , 解: (1 )22323) 12(3)A x y z e e e A a e e e A +-= = = +-++- (2 )2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e ?=+-?-+=- (4)arccos 135.5A B AB θ?===? (5)1711 cos -=?=??==B B A A B B A A A A AB B θ (6)1 2341310502 x y z x Y Z e e e A C e e e ?=-=---- (7)0 4185205 02 x y z x Y Z e e e B C e e e ?=-=++- ()(23)(8520)42x Y Z x Y Z A B C e e e e e e ??=+-?++=- 1 23104041 x y z x Y Z e e e A B e e e ?=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ??=---?-=- (8)()10142405502 x y z x Y Z e e e A B C e e e ??=---=-+-

()1 235544118520 x y z x Y Z e e e A B C e e e ??=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。 解: 29)4(32222=-++=A 776)5(4222=+-+=B 31)654()432(-=+-?-+=?z y x z y x e e e e e e B A 则A 与B 之间的夹角为 131772931cos =???? ???-=???? ? ? ???=ar B A B A arcis AB θ A 在B 上的分量为 532.37731cos -=-=?=???==B B A B A B A A A A AB B θ 习题1.9用球坐标表示的场2 25r r =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ; (2)求在直角坐标中点(3,4,5) --处E 与矢量2 2x y z = -+B e e e 构成的夹角。 解: (1)由已知条件得到,在点(-3,4,-5)处, r ===2 2525 0.550 E r = == 2 105 43252532z y x r e e e r r r e E -+-===

电磁场与电磁波第二章分章节复习 第二章:静电场 1、导体在静电平衡下,齐体内的电荷密度(B )。 A.为常数 B.为零 C.不为零 D.不确定 2、电介质极化后,其内部存在(D)。 A.自由正电荷 B.自由负电荷 C.自由正负电荷 D.电偶极子 3、在两种导电介质的分界面处,电场强度的(A)保持连续。 A.切向分量 B.幅值 C. 法向分量 D.所有分量 4、在相同的场源条件下,真空中的电场强度时电介质的(C)倍。 A.εoεr B.1/εoεr C.εr D.1/εr 5.导体的电容大小(B)。 A.与导体的电势有关 B.与导体的电势无关 C.与导体所带电荷有关 D.与导体间点位差有关 6、两个点电荷对试验电荷的作用力可表示为两个力的( D )。 A.算术和B.代数和 C.平方和D.矢量和 7、介质的极化程度取决于:( D )。 A. 静电场 B. 外加电场 C. 极化电场 D. 外加电场和极化电场之和 8、电场强度的方向(A)。 A.与正电荷在电场中受力的方向相同。 B.与负电荷在电场中受力的方向相同。 C.与正电荷在电场中受力的方向垂直。 D.垂直于正负电荷受力的平面。 9、在边长为a正方形的四个顶点上,各放一个电量相等的同性点电荷Q1,几何中心放置一个电荷Q2,那么Q2受力为(D); A.Q1Q2/2π B. Q1Q2/2πa C. Q1Q2/4πa D.0 10、两个相互平行的导体平板构成一个电容器,其电容与(B D)有关。 A.导体板上的电荷B.平板间的介质 C.导体板的几何形状D.两个导体板的距离 填空题: 1、静止电荷所产生的电场,称之为静电场。 2、电场强度的方向与正电荷在电场中受力的方向相同。 3、电位参考点就是指定电位值恒为零的点。 4、在正方形的四顶点上,各放一电量相等的同性点电荷,几何中心放置荷Q, 则Q 不论取何值,其所受这电场力为零。

习题解答 如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的 电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? = ?, 故得到槽内的电位分布 1,3,5, 41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 ~ a > 题图

解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? # 根据条件①和②,可设2 (,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=0022 121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞-=+∑ 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。并按 2 02U W C e f =定出边缘电容。 解 在导体板(0=y )上,相应于 2(,)x y ?的电荷面密度 题 图

第一章 习题解答 1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z a C =5x a -2z a 求:错误!未找到引用源。矢量A 的单位矢量A a ; 错误!未找到引用源。矢量A 和B 的夹角AB θ; 错误!未找到引用源。A ·B 和A ?B 错误!未找到引用源。A ·(B ?C )和(A ?B )·C ; 错误!未找到引用源。A ?(B ?C )和(A ?B )?C 解:错误!未找到引用源。A a =A A = 149A ++ =(x a +2y a -3z a )/14 错误!未找到引用源。cos AB θ =A ·B /A B AB θ=135.5o 错误!未找到引用源。A ·B =-11, A ?B =-10x a -y a -4z a 错误!未找到引用源。A ·(B ?C )=-42 (A ?B )·C =-42 错误!未找到引用源。A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a 1.3有一个二维矢量场F(r) =x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图 形。 解:由dx/(-y)=dy/x,得2 x +2 y =c 1.6求数量场ψ=ln (2 x +2y +2 z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2 z )=c 则c=ln(1+4+9)=ln14 那么2 x +2y +2 z =14 1.9求标量场ψ(x,y,z )=62 x 3y +z e 在点P (2,-1,0)的梯度。 解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3 y x a +182x 2y y a +z e z a 得 ψ?=-24x a +72y a +z a 1.10 在圆柱体2 x +2 y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为 A =x a 32x +y a (3y+z )+z a (3z -x) 错误!未找到引用源。验证散度定理。 解:错误!未找到引用源。??s d A = A d S ?? 曲 + A dS ?? xoz + A d S ?? yoz +A d S ?? 上 +A d S ?? 下 A d S ?? 曲 =232 (3cos 3sin sin )z d d ρθρθθρθ++?曲 =156.4 A dS ?? xoz = (3)y z dxdz +?xoz =-6 A d S ?? yoz =- 23x dydz ? yoz =0 A d S ?? 上+A d S ?? 下=(6cos )d d ρθρθρ-?上+cos d d ρθρθ?下=272π ??s d A =193 错误!未找到引用源。dV A V ???=(66)V x dV +?=6(cos 1)V d d dz ρθρθ+?=193 即:??s s d A =dV A V ??? 1.13 求矢量A =x a x+y a x 2 y 沿圆周2x +2 y =2a 的线积分,再求A ?? 对此圆周所包围的表 面积分,验证斯托克斯定理。 解:??l l d A =2 L xdx xy dy +? =44a π A ?? =z a 2 y

2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。 2.4简述 和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。 表明静电场是无旋场。 2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无关,即 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。 2.6简述 和 所表征的静电场特性。 表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即 如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 2.8简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2 ) 2.11 简述磁场与磁介质相互作用的物理现象? ερ/=??E 0=??E ερ/=??E 0= ??E ??=?V S dV S d E ρε01 0=??B J B 0μ=??0 =??B J B 0μ=??0 μI l d B C 0μ?= ? P ??=-p ρn sp e ?=P ρE P E D εε=+=0

电磁场与电磁波(第四版)谢处方 课后答案 第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ; (8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ = ==A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1235 02 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e

习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? =?L L , 故得到槽内的电位分布 1,3,5,41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ L 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 a 题4.1图

解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? 根据条件①和②,可设2(,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=0022 121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞-=+∑ 4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。并按 20 2U W C e f = 定出边缘电容。 解 在导体板(0=y )上,相应于 2(,)x y ?的电荷面密度 题 4.2图

第二章静电场 重点与难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式得静电场方程导出微分形式得静电场方程,即散度方程与旋度方程,并强调微分形式得场方程描述得就是静电场得微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间得关系。通过书中列举得4个例子,总结归纳出根据电荷分布计算电场强度得三种方法。 至于媒质得介电特性,应着重说明均匀与非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式得静电场方程,由于边界上场量不连续,因而微分形式得场方程不成立。 关于静电场得能量与力,应总结出计算能量得三种方法,指出电场能量不符合迭加原理。介绍利用虚位移得概念计算电场力,常电荷系统与常电位系统,以及广义力与广义坐标等概念。至于电容与部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: 微分形式: 已知电荷分布求解电场强度: 1,; 2, 3, 高斯定律 介质中静电场方程: 积分形式: 微分形式: 线性均匀各向同性介质中静电场方程: 积分形式: 微分形式: 静电场边界条件: 1,。对于两种各向同性得线性介质,则

2,。在两种介质形成得边界上,则 对于两种各向同性得线性介质,则 3,介质与导体得边界条件: ; 若导体周围就是各向同性得线性介质,则 ; 静电场得能量: 孤立带电体得能量: 离散带电体得能量: 分布电荷得能量: 静电场得能量密度: 对于各向同性得线性介质,则 电场力: 库仑定律: 常电荷系统: 常电位系统: 题解 2-1若真空中相距为d得两个电荷q1及q2得电量分别为q及4q,当点电荷位于q1及q2得连线上时,系统处于平衡状态,试求得大小及位置。解要使系统处于平衡状态,点电荷受到点电荷q1及q2得力应该大小相等,方向相反,即。那么,由,同时考虑到,求得 可见点电荷可以任意,但应位于点电荷q 1与q 2 得连线上,且与点电荷相 距。 2-2已知真空中有三个点电荷,其电量及位置分别为: 试求位于点得电场强度。

Course code: 131300112 Title: Electromagnetic Field and Electromagnetic wave Credit rating: 3.5 Time: Semester Six Brief description: This course makes students master the theorem and the physical meaning of the Maxwell equations and mathematical expressions. It includes the electromagnetic field and electromagnetic wave. Part one is the electromagnetic field. It makes students to learn using the method of vector analysis on the basis of electromagnetism course to describe the essential physical concept of electrostatic field and constant magnetic field, and giving the basic law of electromagnetic field based on summarizing the basic law of experiment, and studying the method to solve problems in the static field. Electromagnetic wave part mainly introduces about the propagation rules of electromagnetic waves in a variety of media and the basic theory of antenna. Syllabus 1.Vector analysis Vector algebra, three kinds of commonly used orthogonal coordinate system, the gradient of a scalar field, vector field flux and the divergence of the vector field of circulation and curl, irrotational field and solenoidal field, Laplace operation with green's theorem. 2.The basic rule of electromagnetic field Charge conservation law, the basic rule of electrostatic field in vacuum, the basic law of constant magnetic field in vacuum, electromagnetic properties of medium, the law of electromagnetic induction and the displacement current, Maxwell's equations, boundary conditions of electromagnetic field. 3. Static electromagnetic field and its solution of boundary value problems Electrostatic field analysis, a conductive medium constant electric field analysis, constant magnetic field analysis, the boundary value problem of

电磁场与电磁波第四版思考题答案 2.1 点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体 的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带 电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模 型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3 点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离 r 的平方成反比;电偶极子的电场强度与距离 r 的立方成反比。 2.4 简 述 E / 和 E 0 所表征的静电场特性 E / 表明空间任意一点电场强度的散度与该处的电荷密度有关, 静电荷是静电场的 通量源。 E 表明静电场是无旋场。 2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无 关,即 E 1 dV 在电场(电荷)分布具有某些对称性时,可应用高斯定 律求解给定电荷分 dS S 0 V 布的电场强度。 2.6 简 述 B 0 和 B 0J 所表征的静电场特 性。 B 表明穿过任意闭合面的磁感应强度的 通量等于 0,磁力线是无关尾的闭合线, B 0 J 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍,即 0 B dl 0I 如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 C 2.8 简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场

第二章静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分 形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方 程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特 性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。 通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三 种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、 各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密 度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静 电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量 不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常 电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可 以从简。 重要公式 真空中静电场方程: q E d SE d l 0积分形式: Sl EE 0微分形式: 已知电荷分布求解电场强度: 1(r ) 1,E (r )(r );(r )d V 4|rr| V 0 2, E (r ) V 4 (r 0 )( | r r r r ) 3 | d V q E d S 3, 高斯定律 S

1

介质中静电场方程: E d l0 积分形式:D d S q S l 微分形式:DE0 线性均匀各向同性介质中静电场方程: q E d SE d l0积分形式: S l 微分形式:EE0 静电场边界条件: 1,E1t E2t。对于两种各向同性的线性介质,则 D 1tD t 2 12 2,D2n D1ns。在两种介质形成的边界上,则 D 1 2n nD 对于两种各向同性的线性介质,则 E 2n 1 12 nE 3,介质与导体的边界条件: e n E0;e n DS 若导体周围是各向同性的线性介质,则 S S E; n n 静电场的能量:

电磁场与电磁波答案第 四版谢处方 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-

一章习题解答 给定三个矢量A 、B 和C 如下: 求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量; (6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由 cos AB θ = 14==?A B A B ,得 1cos AB θ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ= 17 =-A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502x y z -=-e e e 8520x y z ++e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e , 由此可见 故123 PP P ?为一直角三角形。

一:1.7什么是矢量场的通量?通量的值为正,负或0分别表示什么意义? 矢量场F穿出闭合曲面S的通量为: 当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S内必有发出矢量线的源,称为正通量源。 当小于0时,小于 有汇集矢量线的源,称为负通量源。 当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。 1.8什么是散度定理?它的意义是什么? 矢量分析中的一个重要定理: 称为散度定理。意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。 1.9什么是矢量场的环流?环流的值为正,负,或0分别表示什么意义? 矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿 的环流。 大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。

等于0,表示场中没有产生该矢量场的源。 1.10什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲面吗? 在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系 这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。能用于闭合曲面. 1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性? =0,即F为无散场。 1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性? =0即为无旋场 1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么? 不对。电力线可弯,但无旋。 1.14 无旋场与无散场的区别是什么? 无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=r r 。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?=r r 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E v 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 2 2 0000 1 114π4π4π1x y y x x y q q q E e e e e a a q e e εεε?=+++ ?=+r r r r r r r

电磁场 与电磁波(第四版) 课后答案 第一章 习 题 解答 1.1 给定三个矢量A 、B 和C 如下: 求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6) ?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由 cos AB θ =14==?A B A B ,得 1cos AB θ-=(135.5= (5)A 在B 上的分 量 B A =A cos AB θ= 17=-A B B (6)?=A C 1 23502 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e 1.2 三角形的三个顶点 为1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断 123 PP P ?是否为一 直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置 矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e , 由此可见 故123PP P ?为一直角三角形。 (2 )三角形的面积 122312231117.1322S =?=?==R R R R 1.3 求(3,1,4)P '-点到(2,2,3)P -点的距离矢量R 及R 的方向。

相关文档
最新文档