江苏省宿迁市高中数学第3章概率3.4互斥事件及其发生的概率2练习(含答案)苏教版必修3

江苏省宿迁市高中数学第3章概率3.4互斥事件及其发生的概率2练习(含答案)苏教版必修3
江苏省宿迁市高中数学第3章概率3.4互斥事件及其发生的概率2练习(含答案)苏教版必修3

3.4互斥事件及其发生的概率(二)

【新知导读】

1.某人玩飞镖,连射两次,设”恰有一次击中”为事件A,”恰有两次击中”为事件B,”没有一次击中”为事件C,问A+B,B+C,A+C 各表示什么?

2.甲,乙两人下棋,两人下成和棋的概率是

12,乙获胜的概率是13

,则乙输的概率为多少?

3.随着信息技术的发展,网际网络已经深入到每个家庭,电话是不可缺少的通讯工具.某家庭电话在家中有人时,打进的电话响第1声时被接的概率为0.1,响第2声时被接的概率为0.3,响第3声时被接的概率为0.4,响的第4声时被接的概率为0.1,那么电话在响前4声内被接的概率为多少?

【范例点睛】

例1:一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球,从中随机取出1球,求:(1)取出的1球是红球或黑球的概率;(2)取出的1球是红球或黑球或白球的概率. 思路点拨:可按互斥事件和对立事件求概率的方法,利用公式进行求解.

方法点评:在解决此类问题时首先依据定义分清是否为互斥事件,是否为对立事件,再确定用哪一种方法,该例还体现了转化思想.

例2:将6群鸽子任意分群放养在甲、乙、丙3片不同的树林里,求甲树林恰有3群鸽子的概率. 思路点拨:对于古典概型中的复杂问题,可以拆分成简单互斥事件来求解,当然这个题直接用古典概型处理也行.

方法点评: 设”甲树林恰有3群鸽子”为事件A,将”甲树林3群,乙树林3群”记为事件1A ,”甲树林3群,丙树林3群”记为事件2A ,”甲树林3群,乙树林2群,丙树林1群”记为事件3A ,”甲树林3群,乙树林1群,丙树林2群”记为事件4A ,则1234A A A A A =+++,且1234,,,A A A A 彼

此互斥,

1620()3P A =,2620()3P A =,36203()3P A ?=,46620360()33

P A ?==. 【课外链接】

1. 某单位组织4个部门的职工旅游,规定每个部门只能在韶山,衡山,张家界3个景区中任选一个.

假设各部门选择每个景区是等可能的.

(1) 求3个景区都有部门选择的概率;

(2) 求恰有2个景区有部门选择的概率.

【自我检测】

1.若事件A,B 互斥,则下列等式成立的是 ( )

A. ()()1P A P B +=

B. ()1P A B +=

C. ()1P A B +=

D. ()1P A B +=

2.将两枚均匀的正六面体的骰子各掷一次,出现点数之和不小于8的概率是

( )

A .512 B.518 C .16 D .718

3.一个人在打靶中连续射击2次,事件”至少有1次中靶”的对立事件是

( )

A .至少有1次中靶 B.2次都中靶

C .2次都不中靶

D .只有1次中靶

4.从装有5只红球,5只白球的袋中任意取出3只球,有事件:①”取出2只红球和1只白球”与”取出1只红球和2只白球”;②”取出2只红球和1只白球”与”取出3只红球”;③”取出3只红球”与”取出3只球中至少有1只白球”;④”取出3只红球”与”取出3只白球”.其中是对立事件的有

( )

A.①④

B.②③

C.③④

D.③

5.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为______________.

6.某产品分甲,乙,丙三级,其中乙,丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,抽验一只是正品(甲级)的概率为

__________________.

7.在公交汽车站,等候某条线路车的时间及其概率如下:

则至多等候3min的概率为_______,至少等候5min的概率为_________.

8.从标有1,2,3,…,9的9张纸片任取2张,那么这2张纸片数字之积为偶数的概率为多少?

9.从4双不同的鞋子中任取4只,则至少有2只配对的概率为多少?

3.4 互斥事件及其发生的概率(二)

【新知导读】

1. A+B 表示至少有一次击中;B+C 表示全中或全不中;A+C 表示不全中.

2.16

3. 0.9 【范例点睛】 例1. (1)

34 (2)1112 例2. 12341234()()()()()()P A P A A A A P A P A P A P A =+++=+++ 61601603729

== 【课外链接】

1. (1)4123439P ?== (2)4114192727

P =--= 【自我检测】

1.C

2.A

3.C

4.D

5.0.35

6.96%

7. 0.55, 0.2

8. 1318

9. 2735 10.(1)116807(2) 20412401

第7课互斥事件及其概率 【考点导读】 1.了解互斥事件及对立事件的概念,能判断某两个事件是否是互斥事件,进而判断它们是否是对立. 2.了解互斥事件概率的加法公式,了解对立事件概率之和为1的结论,会利用相关公式进行简单的概率计算. 【基础练习】 1.两个事件互斥是这两个事件对立的必要不充分条件(充分不必要、必要不充分、充要条件、既不充分 也不必要) 2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是③ . ①至少有1个白球,都是红球②至少有1个白球,至多有1个红球 ③恰有1个白球,恰有2个白球④至多有1个白球,都是红球 3.从 个同类产品(其中 个是正品, 个是次品)中任意抽取

个的必然事件是④ . ① 个都是正品②至少有 个是次品③ 个都是次品④至少有 个是正品 4.从一批羽毛球产品中任取一个,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率 是 0.38 . 5.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和棋的概率为 50% . 【范例解析】 例1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件. (1)恰好有1件次品恰好有2件次品; (2)至少有1件次品和全是次品; (3)至少有1件正品和至少有1件次品; (4)至少有1件次品和全是正品.

解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,但它们不是对立事件,同理可以判断:(2)(3)中的2个事件不是互斥事件,也不是对立事件.(4)中的2个事件既是互斥事件也是对立事件 点评解决此类问题,应结合互斥事件和对立事件的定义. 例2.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中: (1)射中10环或9环的概率; (2)少于7环的概率. 解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为P=0.21+0.23=0.44. (2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为P=1-0.97=0.03. 例3 一盒中装有各色小球共12只,其中5个红球、4个黑球、2个白球、1个绿球.现从中随机取出1球,求: (1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解:记事件A1={任取一球为红球},A2={任取一球为黑球},A3={任取一球为白球}, A4={任取一球为绿球},则

一、学习目标: 1. 了解事件、频率、概率的基本概念.理解古典概率与条件概率的特征、互斥事件与独立事件的含义、互斥事件与对立事件的区别,并能进行简单的概率计算. 2. 理解随机变量、离散型随机变量的分布列的含义及性质,并能求出离散型随机变量的分布列及数学期望(均值)与方差. 3. 了解模拟方法(几何概型)及二项分布的内容,超几何分布的特征及其简单应用. 4. 了解正态分布的概念、正态曲线的形状、正态分布中的参数含义. 二、重点、难点: 重点: 1. 概率的计算(古典概率、几何概率、条件概率、互斥事件和独立事件的概率) 2. 求离散型随机变量的分布列、均值、方差. 难点: 1. 互斥事件与对立事件的区别. 2. 古典概型与几何概型的区别. 三、考点分析: 从近几年的新课标的高考命题来看,对古典概率、条件概率、互斥事件的概率、独立事件的概率、概率的应用、离散型随机变量的分布列的性质等基础知识的考查常以选择、填空题的形式出现,题目难度小.同时新课标高考中常将对古典概率、条件概率、互斥事件的概率、独立事件的概率、离散型随机变量的分布列、期望、方差等内容结合在一起考查,题型多为解答题.此类问题在新课标高考的考查中属中档题. 一、古典概型与互斥事件 1. 频率与概率:频率是事件发生的概率的估计值. 2. 古典概率计算公式:P (A )=1P(A 0n m A ≤≤=),试验的基本事件总数包含的事件数事件. 集合的观点:设试验的基本事件总数构成集合I ,事件A 包含的事件数构成集合A ,则 I A ?. 3. 古典概型的特征:(1)每次试验的结果只有一个基本事件出现;(2)试验结果具有

2019-2020年高中数学第3章概率3.4互斥事件及其发生的概率自主练习 苏教版必修 我夯基我达标 1.如果事件A、B互斥,A、B的对立事件分别为C、D,那么( ) A.A+B是必然事件.C+D是必然事件 C.C与D一定互斥.C与D一定不互斥 思路解析:如果事件A、B互斥,则它们的对立事件也互斥. 答案:C 2.一个射手进行一次射击,试判断下面四个事件中哪些是互斥事件. 事件A:命中的环数大于8; 事件B:命中的环数大于5; 事件C:命中的环数小于4; 事件D:命中的环数小于6. 思路解析:互斥事件是指不能同时发生的两个事件.命中的环数大于8与命中的环数小于4及命中的环数小于6不能同时发生;命中的环数大于5与命中的环数小于4也不能同时发生. 答案:事件A与C,事件A与D,事件B与C分别为互斥事件. 3.同时掷3枚硬币,那么互为对立事件的是( ) A.至少有一次正面和最多有一次正面.最多有一次正面和恰有两次正面C.不多于一次正面和至少两次正面.至少有两次正面和恰有一次正面 思路解析:两个互斥事件必有一个发生,则称这两个事件为对立事件.也就是说,对立事件首先是互斥事件;至少有一次正面和最多有一次正面不是互斥事件;最多有一次正面和恰有两次正面也不是互斥事件及至少有两次正面和恰有一次正面. 答案:C 4.从一堆产品(其中正品与次品的个数都大于2)中任取两个,下列每对事件是对立事件的是( ) A.恰好有2个正品与恰好有2件次品 B.至少有1件正品与至少有1件次品C.至少1件次品与全是正品 D.至少1件正品与全是正品 思路解析:对立事件首先是互斥事件,且这两个事件中必有一个发生,它们的和事件是必然事件.恰好有2个正品与恰好有2件次品是互斥事件,但它们的和事件不是必然事件;至少有1件正品与至少有1件次品不是互斥事件;至少有1件正品与全是正品也不是互斥事件. 答案:C 5.某人打靶,连续射击2次,事件“至少有1次中靶”的对立事件是( ) A.至多有1次中靶 B.2次都中靶 C.2次都不中靶 D.只有1次中靶 思路解析:“至少有1次中靶”说明连续射击2次,中靶1次或2次,它的反面是2次都不中靶. 答案:C 6.有一道难题,甲能解出的概率是0.1,乙能解出的概率是0.2.现甲、乙两人共同独立地解此题,该难题被解出来的概率是0.1+0.2=0.3吗?为什么? 思路解析:利用概率的加法公式的前提是这些事件是彼此互斥的事件,否则就不能利用

第80课第课互斥事件及其发生的概率 . 理解互斥事件与对立事件的概念,能判断两个事件是否是互斥事件、对立事件. . 了解两个互斥事件概率的加法公式,了解对立事件概率之和为的结论. . 能用互斥事件的概率加法公式计算一些事件的概率. . 阅读:必修第~页. . 解悟:①读懂互斥事件、对立事件的定义;②归纳出互斥事件、对立事件的特征;③重解课本例题,体会方法. . 践习:在教材空白处,完成本节习题. 基础诊断 . 根据多年气象统计资料,某地月日下雨的概率为,阴天的概率为,则该日晴天的概率为. 解析:设事件“某地月日下雨”为事件,“某地月日阴天”为事件,“某地月日晴天”为事件,由题意可得事件,,为互斥事件,所以()+()+()=.因为()=,()=,所以()=. . 一个人在打靶中连续射击次,事件“至少有次中靶”的对立事件是次都不中靶. . 将两枚均匀的正六面体的骰子各掷一次,出现点数之和不小于的概率是. 解析:将两枚均匀的正六面体骰子各掷一次,则基本事件的总数是×=,且每个基本事件都是等可能的.出现点数之和不小于的基本事件有(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),共有种,所以出现点数之和不小于的概率为==. . 从装有只红球,只白球的袋中任意取出只球,有事件:①“取出只红球和只白球”与“取出只红球和只白球”;②“取出只红球和只白球”与“取出只红球”;③“取出只红球”与“取出只球中至少有只白球”;④“取出只红球”与“取出只白球”. 其中是对立事件的有③.(填序号) 解析:从袋中任意取只球,可能的情况有“只红球”“只红球、只白球”“只红球、

第9课时7.4.1 互斥事件及其发生的概率(1) 分层训练 1、某人在打阿靶中,连续射击2次,至少有1次中靶的对立事件是( ) A 、两次都中靶 B 、到多有一次中靶 C 、两次都不中靶 D 、只有一次中靶 2、某产品分甲、乙、丙三个等级,其中乙、丙两等级均属次品,若生产中出现乙级产品的概率为0.03,丙级产品的概率为0.01,则对成品抽查一件,恰好是正品的概率为( ) A 、0.99 B 、0.98 C 、0.97 D 、0.96 3、甲乙两人下棋,甲获胜的概率为0.2,两人下成和棋的概率为0.35,那么甲不输的概率为( ) A 、0.2 B 、0.35 C 、0.55 D 、0.65 4、一个盒内放有大小相同的10个小球,其中有5个红球、3个绿球、2个白球,从中任取2个球,至少有一个绿球的概率是( ) A 、 152 B 、158 C 、157 D 、5 2 5、某人进行射击表演,已知其击中10环的概 率0.35,击中9环的概率为0.30,中8环的概率是0.25,现准备射击一次,问击中8环以下(不含8环)的概率是多少? 6、若A 表示四件产品中至少有一件是废品的事件,B 表示废品不少于两件的事件,试问对立事件A 、B 各表示什么? 拓展延伸 7、已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是7 1 ,从中取出2粒都是白子的概率是 35 12 ,现从中任意取出2粒恰好是同一色的概率是多少? 8、四位同学各人写好一张贺卡,集中起来每人从中抽取一张,试求都抽不到自己所写卡片的概率。 9、某医院一天内派出医生下乡医疗,派出医生人 求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 本节学习疑点: 7.4.1随机事件及其概率(1)

高中数学学案:互斥事件及其发生的概率 1. 理解互斥事件与对立事件的概念,能判断两个事件是否是互斥事件、对立事件. 2. 了解两个互斥事件概率的加法公式,了解对立事件概率之和为1的结论. 3. 能用互斥事件的概率加法公式计算一些事件的概率. 1. 阅读:必修3第112~117页. 2. 解悟:①读懂互斥事件、对立事件的定义;②归纳出互斥事件、对立事件的特征;③重解课本例题,体会方法. 3. 践习:在教材空白处,完成本节习题. 基础诊断 1. 根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为0.35. 解析:设事件“某地6月1日下雨”为事件A,“某地6月1日阴天”为事件B,“某地6月1日晴天”为事件C,由题意可得事件A,B,C为互斥事件,所以P(A)+P(B)+P(C)=1.因为P(A)=0.45,P(B)=0.2,所以P(C)=0.35. 2. 一个人在打靶中连续射击2次,事件“至少有1次中靶”的对立事件是2次都不中靶. 3. 将两枚均匀的正六面体的骰子各掷一次,出现点数之和不小于8的概率是5 12. 解析:将两枚均匀的正六面体骰子各掷一次,则基本事件的总数是6×6=36,且每个基本事件都是等可能的.出现点数之和不小于8的基本事件有(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,2),(6,3),(6,4),(6,5),(6,6),共有15种,所以出 现点数之和不小于8的概率为P=15 36= 5 12. 4. 从装有5只红球,5只白球的袋中任意取出3只球,有事件:①“取出2只红球和1只白球”与“取出1只红球和2只白球”;②“取出2只红球和1只白球”与“取出3只红球”; ③“取出3只红球”与“取出3只球中至少有1只白球”;④“取出3只红球”与“取出3只白球”. 其中是对立事件的有③.(填序号) 解析:从袋中任意取3只球,可能的情况有“3只红球”“2只红球、1只白球”“1只红

第10课时7.4.2 互斥事件及其发生的概率(2) 分层训练 1、先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是123,,P P P ,则( ) A .123P P P =< B .123P P P << C .123P P P <= D .321P P P =< 2、已知直线36y x =-+与4y x =-+,现将一个骰子连掷两次,设第一次得的点数为x ,第二次得的点数为y ,则点(x ,y )在已知直线下方的概率为_____________. 3、 某工厂为节约用电,规定每天的用电量指标为1000千瓦时,按照上个月的用电记录,30天中有12天的用电量超过指标,若第二个月仍没有具体的节电措施,则该月的第一天用电量超过指标的概率为_______________. 4、抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )= 21,P (B )=6 1 ,求出现奇数点或2点的概率之和. 5、在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少? 拓展延伸 6、在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求: (1)取得两个红球的概率; (2)取得两个绿球的概率; (3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率. 7、.某单位36人的血型类别是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人,求此2人血型不同的概率. 8、一场篮球比赛到了最后5分钟,甲队比乙队少得5分.若甲队全投3分球,则有8次投篮机会.若甲队全投2分球,则有3次投篮机会.假设甲队队员投3分球的命中率均为0.6,投2分球的命中率均为0 .8,并且甲队加强防守,不给乙队投篮机会.问全投3分球与全投2分球这两种方案中选择哪一种甲队获胜的概率较大? 本节学习疑点: 7.4.2随机事件及其概率(2)

第八讲 概率统计的解题技巧 【命题趋向】概率统计命题特点: 1.在近五年高考中,新课程试卷每年都有一道概率统计解答题,并且这五年的命题趋势是一道概率统计解答题逐步增加到一道客观题和一道解答题;从分值上看,从12分提高到17分;由其是实施新课标考试的省份, 增加到两道客观题和一道解答题.值得一提的是此累试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如测试成绩、串联并联系统、计算机上网、产品合格率、温度调节等,所以在概率统计复习中要注意全面复习,加强基础,注重应用. 2.就考查内容而言,用概率定义(除法)或基本事件求事件(加法、减法、乘法)概率,常以小题形式出现;随机变量取值-取每一个值的概率-列分布列-求期望方差常以大题形式出现.概率与统计还将在选择与填空中出现,可能与实际背景及几何题材有关. 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是:

高三数学互斥事件有一个发生的概率 、课互斥事件有一个发生的概率 、教学目标:了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率. 三、教学重点: 互斥事件的概念和互斥事件的概率加法公式. 四、教学过程: (一) 主要知识: 仁互斥事件的概念: ___________________________________________________________ 2 .对立事件的概念: _________________________________________________________ 3 ?若 代B 为两个事件,则 A B 事件指 ______________________________ . 若A,B 是互斥事件,则 P(A B) ____________________________ . (二) 主要方法: 1 ?弄清互斥事件与对立事件的区别与联系; 2.掌握对立事件与互斥事件的概率公式; (三) 基础训练: 1?某产品分甲、乙、丙三个等级,其中乙、丙两等级为次品,若产品中出现乙级品的概率 为0.03,出 现丙级品的概率为 0.01,则在成品中任意抽取一件抽得正品的概率为 ( ) (A )0.04 (B )0.96 (C )0.97 (D )0.99 2.下列说法中正确的是 ( ) (A) 事件A 、B 中至少有一个发生的概率一定比 A 、B 中恰有一个发生的概率大 (B) 事件A 、B 同时发生的概率一定比事件 A 、B 恰有一个发生的概率小 (C) 互斥事件一定是对立事件,对立事件不一定是互斥事件 (四) 例题分析: 例1.袋中有5个白球,3个黑球,从中任意摸出 4个,求下列事件发生的概率: (1) 摸出2个或3个白球;(2)至少摸出1个白球;⑶至少摸出1个黑球. 3. (D) 互斥事件不一定是对立事件,对立事件 一盒内放有大小相同的 10个球,其中有 球,其中至少有1个绿球的概率为 2 8 (A ) (B )- -定是互斥事件 5个红球,3个绿球,2个白球,从中任取 ( 2 (C)5 4. 在5件产品中,有3件一等品和2件二等品, 5. (A)都不是一等品 (C)至少有一件一等品 今有光盘驱动器50个,其中一级品45个, 为 C 53 (A )荷 C 50 C 3 (C)1 - C 5 C 50 7 (D)- 15 从中任取2件,那么以—为概率的事件是( 10 (B)恰有一件一等品 (D)至多一件一等品 二级品5个,从中任取3个,出现二级品的概率 ( ) C 5 c ; c ; (B)」3 - C 50 (D )C 5C 45 C 5 C 45

第67讲 互斥事件的概率和条件概率的解法 【知识要点】 一、互斥事件 1、互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即.φ=B A I 一般地,如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就说事件12,,,n A A A L 彼此互斥. 2、互斥事件的概率:如果事件B A ,互斥,那么()()()P A B P A P B +=+;如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就说事件12,,,n A A A L 彼此互斥.则12()n P A A A +++L = 12()()()n P A P A P A +++L 3.对立事件: 如果事件B A ,互斥,在一次试验中,必然有一个发生的互斥事件,叫对立事件.即 B A B A Y I ,φ=为必然事件,事件A 的对立事件记为A .()1()1()P A A P A P A +=?=- 4、互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件. 二、条件概率 1、条件概率的定义 设A 和B 为两个事件,且0)(>A P ,那么,在“A 已发生”的条件下,B 发生的概率叫A 发生的条件下B 发生的条件概率,记作:(|)P B A ,读作A 发生的条件下B 发生的概率. 2、条件概率的公式 ()(|)()P AB P B A P A = . (|)P B A =() () n AB n A 3、条件概率的性质 (1) 0(|)1P A B ≤≤; (2)如果B 和C 是两个互斥事件,(|)(|)P B C A P B A =U +(|)P C A 4、条件概率一般有“在A 已发生的条件下”这样的关键词,表明这个条件已经发生, 发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别. 【方法讲评】

3.1.3《互斥事件及其和事件的概率》教学设计 课题:3.1.3 《互斥事件及其和事件的概率》 教材分析: 《必修三》在第三章引进概率后,首先介绍了概率的定义,以及古典概型、几何概型概率公式,为了将一些较复杂的概率的计算化成较简单的概率的计算,就要根据不同事件之间的联系和关系,将我们所考虑的事件作出相应的正确运算本节将围绕着解决求较复杂事件概率的问题,介绍互斥事件以及事件的和的意义 率 学情分析: 学生在此之前学习了概率的定义,并且学会运用古典概型,几何概型的相关公式公对一些简单的等可能随机事件求概率,但对于较复杂概率问题,如果学生直接根据概率的定义来进行计算是很不方便的,由于概率这一章所涉及到的内容与他们生活联系较紧密,学生有相对较大的兴趣,对于问题的解决都能够有自己的想法,然而想法是建立在他们的生活经验上,并没有理论知识的支持,而对于较复杂问题,仅凭已有认知和自己的生活经验,并不能够真正解决问题,他们需要学习新的理论知识,需要通过书本上的知识与已有认知的结合,从而完善他们的认知结构,解决更多的概率问题。 教法分析: 本节课主要采用的教学方法是讲授法,在设计教学内容的过程中,站在学生思维的角度,根据学生的最近发展区创设问题情景,引导学生从集合间的关系类比分析事件之间的关系,感悟数学划归的思想方法,将复杂的求概率的问题转化成几个互斥事件概率和的问题,或者是求其对立事件概率的问题,从而达到解决问题的目的,进而引导学生归纳猜想,得到多个事件彼此互斥的概率公式,通过验证、练习巩固、总结反思。整个教学过程以学生为主体,站在学生的角度,换位思考,通过预测学生的心理需求,预判学生的思维活动,预设课堂重点关注的问题,引导学生把所学、所悟、所感、所创激发出来,促进他们积极发现数学的内在规律、理解数学的本质、感悟数学的精神.教师也时刻监控学生的认知与思维过程,用鼓励性的语言与学生进行交流、探讨,帮助学生发现问题、解决问题。 教学重难点: 【教学重点】互斥事件的概念及其概率的求法。 【教学难点】对立事件与互斥事件的关系,事件A+B的概率的计算方法。 教学过程: 一、讲解新课:

一、复习预习 1.事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P A. () 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1 P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5.基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本

6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是 1 n 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n =8.二、知识讲解 1.事件的和的意义 对于事件A 和事件B 表示这样一个事件:在同 一试验下,A 或B 数字1、2、3、4、5、6的正方体玩具,如果掷出奇数点,记作事件A ;如果掷出的点数不大于3,记作事件B ,那么事件A+B 就是表示掷出的点数为1、2、3、5当中的一个. 事件“12n A A A ++ +”表示这样一个事件,在同一试验中,12,,,n A A A 中 至少有一个发生即表示它发生. 互斥事件的概念 不可能同时发生的个事件叫做互斥事件. 在一个盒子内放有10个大小相同的小球,其中有7个红球、2个绿球、1B,得到黄球叫事件C.若摸出的球是红的,就说事件A发生了;若摸出的球是绿的,就说事件B发生了,若摸出的球是黄的,就说事件C发生了.在摸球的时候,若A发生,则B一定不发生;若B发生,则A也一定不发生.即A、B不可能同时发生.

题高考数学概率与统计 知识点 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

高考数学第18题(概率与统计) 1、求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.

第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 2.离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值 i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表. 机变量ξ的概率分布,简称ξ的分布列. 为随由概 率的性质可知,任一离散型随机变量的 分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布

互斥事件有一个发生的概率 授课人王汉雄 一、教学目标: 1、知识教学点: 理解互斥事件与对立事件,并能加以应用。 2、能力训练点: 通过互斥事件概率的计算,提高分析问题与解决问题的能力。 3、德育渗透点: 结合互斥事件,对立事件的计算方法,培养学生的辩证唯物主义观点和用对立统一规律分析问题的方法。 二、教学重点与难点: 1、重点:互斥事件概率计算。 2、难点:对互斥事件,对立事件的理解。 三、教学过程: [设置问题] 在10个杯子里,有5个一等品,3个二等品,2个三等品。现在我们从中任取一个。 设:“取到一等品”记为事件A “取到二等品”记为事件B “取到三等品”记为事件C 分析:如果事件A发生,事件B、C就不发生,引出概念。 概念:在一次随机事件中,不可能同时发生的两个事件,叫做互斥事件。(如上述中的A与B、B与C、A与C) 一般的:如果事件A1、A2……An中,任意两个都是互斥事件,那么说A1、A2…… An彼此互斥。 例1某人射击了两次。问:两弹都击中目标与两弹都未击中,两弹都未击中与至少有一个弹击中,这两对是互斥事件吗?

例2:P213,想一想。 再回想到第一个例子:P (A )=105 P (B )=103 P (C )=102 问:如果取到一等品或二等品的概率呢? 答:P (A+B )=1035+=105+103 =P (A )+P (B ) 得到下述公式: 一般的,如果n 个事件A1、A2、……An 彼此互斥,那么事件“A1+A2+……+An ”发生的概率,等于这n 个事件分别发生的概率之和,即P (A1+A2+……+An )=P (A1)+P (A2)+……+P (An ) 例1:任在20件产品中,有15件正品,5件次品,从中任取3件,求 ①:其中,至少有1件次品的概率 ②:其中,没有次品的概率 析:这是属于互斥事件的概率计算,加强学生对公式的理解。 解①: 记其中有1件次品的概率为事件A1 记其中有2件次品的概率为事件A2 记其中有3件次品的概率为事件A3 P (A1)=4605.032021515=?C C C P (A2)=1316.032011525=?C C C P (A3)=0088.032035=C C ②:记“没有次品”为事件A0 P (A0)=3991.0320315=C C 根据题意:A1、A2、A3彼此互斥,所求概率 P (A1+A2+A3)=P (A1)+P (A2)+P (A3)=6009.0 综上所述,我们看到它的两个问题属于互斥事件,定义有一个发生,引出概念。 对立事件:其中必有一个发生的两个互斥事件。

第一课时随机事件、互斥事件及其概率 2.理解古典概型; 3.了解几何概型; 4.了解互斥事件及其发生的概率。 二 复习要求 在具体情境中了解随机事件发生的不确定性和频率的稳定性,进而知道概率的统计定义的意义以及概率和频率的区别;了解互斥事件、对立事件的概念,能判断两个事件是否是互斥事件,是否是对立事件,了解互斥事件的概率加法公式,了解两对立事件概率之和为1的结论,会用相关公式进行简单概率计算;理解古典概型及其计算公式,会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率;体会几何概型的几何意义,理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 在复习这一部分内容时,要能把这一章中所蕴含的主要思想方法贯穿于平常的教学实践中去,如利用树形图去确定基本事件数中的数形结合思想,利用互斥事件去求概率中的分类讨论思想,把实际问题转化为几何概型去求解中的转化与化归的思想,以达到培养学生数学思维的目的。 三 重难注意点 1.概率与频率,概率的频率定义是和一定的实验相联系的,频率反映了一个随机事件发生的频繁程度,频率是随机的,随着实验次数的改变而改变,而概率是确定的,是客观存在的,与实验的次数无关。概率是频率的稳定值,它从数量上反映了随机事件发生的可能性大小。 2.互斥事件与对立事件,判断事件是互斥还是对立,应主要抓住定义,不可能同时发生的事件称为互斥事件,必有一个要发生的两互斥事件称为对立事件,互斥事件是对立事件的必要而不充分条件,将所给事件转化为互斥事件和对立事件去处理,体现了化整为零,正难则反的思想。 3.古典概型,判断一个试验是否为古典概型,主要看试验结果的两个特征,一是有限 性,二是等可能性,在利用古典概型计算公式 ()n m A P =时,应首先完成古典概型的判断,而后进行相关计算,其中n 是试验所包含的所有基本事件数,m 是事件A 包含的基本事件数。 4.几何概型,判断一个概型是否为几何概型,主要看三个特征,一是试验结果的无限性,二是试验结果的等可能性,三是可以转化为求某个几何图形的测度的问题。在几何概型中,一个随机事件A 发生应理解为取到区域D 内的某个指定区域d 中的点,

高三一轮复习《互斥事件、独立事件与条件概率》 考纲考点:1、互斥事件的意义,会用互斥事件的概率加法公式计算事件的概率 2、独立事件的意义,会用独立事件的概率乘法公式计算事件的概率 3、条件概率的概念,会用条件概率公式计算条件概率 考情分析:互斥事件、独立事件(相互独立事件同时发生、独立重复)与条件概率是高考考查的中点内容,主要以应用题形式考查,以现实生活为背景,但实质仍是对互斥事件、独立事件与条件概率的考查。考查中选、填、解答题中都可出现。理科试题中往往与分布列、期望结合起来考查。试题总体难度不大。 知识点: 1、互斥事件:叫做互斥事件 互斥事件A、B有一个发生的概率计算公式:,则) P = 。 A (B 2、对立事件:叫做对立事件;A的对立事件通常 用表示,且) p= 。对立事件与互斥事件的关系:。 (A 3、独立事件:(1)若A、B为两个事件,如果,则称事件A与B 相互独立,即相互独立事件同时发生的概率满足乘法公式。 (2)独立重复试验:在相同条件下重复做n次试验,各次试验结 果相互不影响,那么就称为n次独立重复试验。若每次试验 事件A发生的概率都为p,则n次独立重复试验中事件A恰 = 。 好发生k次的概率) P (k n 4、条件概率:对于两个事件A和B,在已知事件A发生的条件下事件B发生的 概率,称为事件A发生的条件下事件B的。记为,且B P= 。 | ) (A 题型一、事件的判断 1、下列说法正确的是() A、事件A、B中至少有一个发生的概率一定比A、B恰有一个发生的概率大 B、只有当事件A、B为对立事件时,A、B中至少有一个发生的概率才等于 事件A发生的概率加上B事件发生的概率 C、互斥事件一定是对立事件,对立事件不一定是互斥事件 D、互斥事件不一定是对立事件,对立事件一定是互斥事件 2、从装有3个红球和2个白球的口袋内任取2个球,那么互斥而不对立的是() A、至少有一个白球;都是白球 B、至少有一个白球;至少有一个红球 C、至少有一个白球;都是红球 D、恰有一个白球;恰有2个红球 3、掷一颗质地均匀的骰子,观察所得的点数a,设事件A=“a为3”,B=“a为 4”,C=“a为奇数”,则下列结论正确的是() A、A与B为互斥事件 B、A与B为对立事件 C、A与C为对立事件 D、A与C为互斥事件 题型二、互斥事件与对立事件的概率及应用 1、中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军

本周课题:互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验 本周重点: 1、互斥事件、对立事件的概率的求法 2、相互独立事件同时发生的概率乘法公式. 3、正向思考:通过“分类”或“分步”将较复杂事件进行分解,转化为简单的互斥事件的和事件或相互独立事件的积事件. 4、n次独立重复试验中某事件恰好发生n次的概率计算公式. 本周难点: 1、互斥事件、对立事件的概念 2、事件的相互独立性的判定,独立重复试验的判定 3、事件的概率的综合应用. 本周内容: 1、事件的和、事件的积的意义 (1)A+B表示这样一个事件:在同一试验下,A或B中至少有一个发生就表示它发生. 事件“A1+A2+…+A n”表示这样一个事件:在同一试验中,A1,A2,…,A n中至少有一个发生即表示它发生. (2)A·B表示这样一个事件:事件A与事件B中都发生了就表示它发生. 事件“A1·A2·…·A n”表示这样一个事件:A1,A2,…,A n中每一个都发生即表示它发生. 2、互斥事件 (1)不可能同时发生的两个事件叫做互斥事件. 一般地:如果事件A1,A2,…,A n中的任何两个都是互斥的,那么就说事件A1,A2,…,A n,彼此互斥. (2)一般地:如果事件A,B互斥,那么事件A+B发生(即A,B中有一个发生)的概率,等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B) (说明:如果事件A,B不互斥,则P(A+B)=P(A)+P(B)-P(A·B)) 如果事件A1,A2,…,A n彼此互斥,那么事件A1+A2+…+A n发生(即A1,A2,…,A n中有一个发生)的概率,等于这n个事件分别发生的概率的和,即 P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n) 3、对立事件 (1)必有一个发生的两个互斥事件叫做对立事件,事件A的对立事件记作 (2)

高中数学解题方法系列:概率的热点题型及其解法 概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。 题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。 例1:甲、乙两人各射击一次,击中目标的概率分别是 32和4 3.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率; (Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (Ⅲ)假设某人连续2次未击中... 目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少? 解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()4 26511381P A P A ??=-=-= ???(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则 ()223 23442131133448P B C C ??????=?????= ? ? ???????(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。 故()22123313145444441024 P C C ??????=+????=?? ? ?????????例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率. 解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等. (I)3个景区都有部门选择可能出现的结果数为!32 4?C (从4个部门中任选2个作为1组, 另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为 P(A 1)=.943!3424=?C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2

随机事件、互斥事件的概率 1.下列事件中,随机事件的个数为 ( ) ①物体在只受重力的作用下会自由下落; ②方程x 2+2x +8=0有两个实根; ③某信息台每天的某段时间收到信息咨询的请求次数超过 10次; ④下周六会下雨. A .1 B .2 C .3 D .4 解析:①是必然事件;②是不可能事件;③、④是随机事件. 答案:B 2.掷一枚均匀的硬币两次,事件M :一次正面朝上,一次反面 朝上;事件N :至少一次正面朝上,则下列结果正确的是 ( ) A .P (M )=13,P (N )=12 B .P (M )=12 ,P (N )=12

C .P (M )=13,P (N )=34 D .P (M )=12 ,P (N )=34 解析:I ={(正,正)、(正,反)、(反,正)、(反,反)},M ={(正, 反)、(反,正)},N ={(正,正)、(正,反)、(反,正)}, 故P (M )=12,P (N )=34 . 答案:D 3.甲、乙二人下棋,甲获胜的概率是40%,甲不输的概率为90%, 则甲、乙二人下成和棋的概率为 ( ) A .60% B .30% C .10% D .50% 解析:甲不输即为甲获胜或甲、乙二人下成和棋,90%=40% +P ,∴P =50%. 答案:D

4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正 常生产情况下,出现乙级品和丙级品的概率分别是5%和 3%,则抽验一只是正品(甲级)的概率为 ( ) A .0.95 B .0.97 C .0.92 D .0.08 解析:记抽验的产品是甲级品为事件A ,是乙级品为事件B , 是丙级品为事件C ,这三个事件彼此互斥,因而抽验产品是 正品(甲级)的概率为P (A )=1-P (B )-P (C )=1-5%-3%= 92%=0.92. 答案:C 5.现有语文、数学、英语、物理和化学共5本书,从中任取1 本,取出的是理科书的概率为 ( ) A.15 B.25 C.35 D.45 解析:记取到语文、数学、英语、物理、化学书分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 是彼此互斥的,取到

高考理科数学《概率与统计》题型归纳与训练 【题型归纳】 题型一 古典概型与几何概型 例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 . 【答案】 【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为 . 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示: (1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同; (2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率. 【答案】(1)详见解析;(2) 20 11 . 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为 52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为75 64, ∵ 5 2 7564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高. (2) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有 5840155 408 -=

相关文档
最新文档