几何探究题

几何探究题
几何探究题

几何探究题

1.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;

(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.

①在旋转过程中,当∠OAG′是直角时,求α的度数;

②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

+2

2.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

【发现证明】

小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】

如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD 上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.

【探究应用】

如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(

﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:

=1.41,=1.73)

3.【问题提出】

如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE 绕点C顺时针旋转60°至△ACF连接EF

试证明:AB=DB+AF

【类比探究】

(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由

(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

4. 问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连结DE交AC于点F,点H是线段AF上一点

(1)初步尝试:如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,求证:HF=AH+CF

小王同学发现可以由以下两种思路解决此问题:

思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立. 思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.

请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)

(2)类比探究:如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值.

(3)延伸拓展:如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D、E

的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).

19.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.

(1)试说明AE2+CF2的值是一个常数;

(2)过点P作PM∥FC交CD于M,点P在何位置时线段DM最长,并求出此时DM的值.

20.在?ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;

(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,?ABCD的两边AB与BC应满足什么关系?

4.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;

(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;

(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,

∠EAF=1

2∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并

证明你的猜想.

动点型问题

一、中考专题诠释

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.

“动点型问题” 题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

二、解题策略和解法精讲

解决动点问题的关键是“动中求静”.

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

三、中考考点精讲

考点一:建立动点问题的函数解析式(或函数图像)

函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.

例1 如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()

A.B.C.D.

思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.

对应训练

1.如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()

A.B.C.D.

考点二:动态几何型题目

点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

(一)点动问题.

例2 如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()

A.B.C.D.

思路分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象.

对应训练

2.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO 的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()

A.B.

C.D.

(二)线动问题

例3 如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是()

A.B.

C.D.

思路分析:分三段考虑,①当直线l经过BA段时,②直线l经过AD段时,③直线l经过DC 段时,分别观察出面积变化的情况,然后结合选项即可得出答案.

3.如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()

A.B.

C.D.

(三)面动问题

例4 如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()

A.B.C.D.

思路分析:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.

对应训练

4.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()

A.B.C.D.

考点三:双动点问题

动态问题是近几年来中考数学的热点题型.这类试题信息量大,其中以灵活多变而著称的双动点问题更成为中考试题的热点中的热点,双动点问题对同学们获取信息和处理信息的能力要求更高高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.

例5 如图,在平面直角坐标系中,四边形ABCD 是梯形,AB ∥CD ,点B (10,0),

C (7,4).直线l 经过A ,

D 两点,且sin ∠DAB=2.动点P 在线段AB 上从点A 出发以每秒2个单位的速度向点B 运动,同时动点Q 从点B 出发以每秒5个单位的速度沿B→C→D 的方向向点D 运动,过点P 作PM 垂直于x 轴,与折线A→D→C 相交于点M ,当P ,Q 两点中有一点到达终点时,另一点也随之停止运动.设点P ,Q 运动的时间为t 秒(t >0),△MPQ 的面积为S .

(1)点A 的坐标为(-4,0),直线l 的解析式为 y=x+4

(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围;

(3)试求(2)中当t 为何值时,S 的值最大,并求出S 的最大值;

(4)随着P ,Q 两点的运动,当点M 在线段DC 上运动时,设PM 的延长线与直线l 相交于点N ,试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.

思路分析:(1)利用梯形性质确定点D 的坐标,利用sin ∠DAB=2特殊三角函数值,得到△AOD 为等腰直角三角形,从而得到点A 的坐标;由点A 、点D 的坐标,利用待定系数法求出直线l 的解析式;

(2)解答本问,需要弄清动点的运动过程:

①当0<t≤1时,如答图1所示;

②当1<t≤2时,如答图2所示;

③当2<t <16

7时,如答图3所示.

(3)本问考查二次函数与一次函数在指定区间上的极值,根据(2)中求出的S 表达式与取值范围,逐一讨论计算,最终确定S 的最大值;

(4)△QMN 为等腰三角形的情形有两种,需要分类讨论,避免漏解.

小学数学常见几何模型典型例题及解题思路

* 小学数学常见几何模型典型例题及解题思路(1) 巧求面积 常用方法:直接求;整体减空白;不规则转规则(平移、旋转等);模型(鸟头、蝴蝶、漏斗等模型);差不变 1、ABCG 是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE ,求阴影部分的面积。答案:72 A H F E C B I D G 思路:1)直接求,但是阴影部分的三角形和四边形面积都无法直接求;2)整体减空白。关键在于如何找到整体,发现梯形BCEF 可求,且空白分别两个矩形面积的一半。 2、在长方形ABCD 中,BE=5,EC=4,CF=4,FD=1。△AEF 的面积是多少答案:20 |

A D B F C E 思路:1)直接求,无法直接求;2)由于知道了各个边的数据,因此空白部分的面积都可求 3、如图所示的长方形中,E 、F 分别是AD 和DC 的中点。 (1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米答案: (2)如果已知长方形ABCD 的面积是64平方厘米,那么阴影部分的面积是多少平方厘米答案:24 B C D F E 思路(1)直接求,无法直接求;2)已经知道了各个边的数据,因此可以求出空白的位置;3)也可以利用鸟头模型 4、正方形ABCD 边长是6厘米,△AFD (甲)是正方形的一部分,△CEF (乙)的面积比△AFD (甲)大6平方厘米。请问CE 的长是多少厘米。答案:8 @

A B D C F 思路:差不变 5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S 2、S 3、S 4,且S 1=S 2=S 3+S 4。求S 4。答案:10 D C E F S 1 S 2 S 3 S 4 思路:求S4需要知道FC 和EC 的长度;FC 不能直接求,但是DF 可求,DF 可以由三分之一矩形面积S1÷AD ×2得到,同理EC 也求。最后一句三角形面积公式得到结果。 6、长方形ABCD 内的阴影部分面积之和为70,AB=8,AD=15。求四边形EFGO 的面积。答案10。 A B C D F O E G 思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三

初中数学动态几何问题

[导读] 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线 摘要:本文结合笔者的教学实践对初中数学教学中的动态几何问题进行了探讨。 关键词:二次函数;动点;动线;动态 作者简介:郭兴淑,任教于云南腾冲一中。 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线,函数为背景,集多个知识点为一体,集多种解题思想于一题。这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.本类问题主要有动点、动线、动面三个方面的问题。其中动点问题有单动点和双动点两种类型,无论是动点、动线、单动点还是双动点,我们都要注意到如何在动中求静,在静中求解,找到相应的关系式,把想知道的量用常量或含自变量的关系式表示出来。下面就以二次函数为背景的动态问题和单纯几何图形变化的动态问题采撷几例加以分类浅析,供读者参考。 动态问题在中考中占有相当大的比重,主要由综合性问题构成,就运动而言,可以分为三类:动点、动线、动形;就题型而言,包括计算题、证明题和应用题等。它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性。一般的,解题设计要因题定法。无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等。 动态问题一直是近几年数学中考的一个热点,随着编者的不断刨新,动态问题又有升温,比如双动问题就是中考中的最新风景区,他可以培养同学们在运动变化中发展空间想象能力.这类问题只要我们掌握“动中有静,静观其变,动静结合”的基本解题策略,我们就能以不变碰多变.以下列举近几年数学中考的两类双动问题供读者参考交流. 随着新课程改革的进行,全国各地的中考试卷异彩纷呈,尤其是解答题中的动态问题,集数与代数、空间与图形两大内容于一体,题型新颖,阅读量大,考查面广.为体现中考试

2018年安徽中考数学专题复习几何探究题

2018年安徽中考数学专题复习 几何探究题 类型一 与全等三角形有关的探究 ★1. 如图①,P 是△ABC 的边BC 上的任意一点,M 、N 分别在AB 和AC 边上,且PM =PB ,PN =PC ,则△PBM 和△PCN 叫做“孪生等腰三角形”. (1)如图②,若△ABC 是等边三角形,△PBM 和△PCN 是“孪生等腰三角形”,证明△PMC ≌△PBN ; (2)如图③,若△ABC 为等腰三角形,AB =AC ,△PBM 和△PCN 是“孪生等腰三角形”,证明:BN =CM ; (3)如图④,若(2)中P 点在CB 的延长线上,其他条件不变,是否依然有BN =CM ,若是,请证明,若不是,请说明理由. 第1题图 (1)证明:∵△ABC 是等边三角形, ∴∠ABC =∠ACB =60°, ∵△PBM 和△PCN 是“孪生等腰三角形”, ∴PM =PB ,PN =PC , ∴△PBM 和△PCN 是等边三角形, ∴∠BPM =∠NPC =60°, ∴∠BPM +∠MPN =∠NPC +∠MPN ,即∠BPN =∠MPC . 在△PMC 和△PBN 中, ???? ?PM =PB ∠MPC =∠BPN ,PC =PN ∴△PMC ≌△PBN (SAS); (2)证明:如题图③,∵△ABC 为等腰三角形,AB =AC , ∴∠ABC =∠ACB , ∵△PBM 和△PCN 是“孪生等腰三角形”, ∴PM =PB ,PN =PC , ∴∠PBM =∠PMB ,∠PCN =∠PNC , ∴∠BPM =∠CPN , ∴∠BPM +∠MPN =∠CPN +∠MPN , ∴∠BPN =∠MPC , 在△PMC 和△PBN 中, ???? ?PM =PB ∠MPC =∠BPN ,PC =PN

初三几何探究题

寒假提高班材料六:几何探究题 1、如图1,图2,图3,在ABC △中,分别以AB AC ,为边,向ABC △外作正三角形,正四边形,正五边形,BE CD ,相交于点O . ①如图1,求证:ABE ADC △≌△; ②探究:如图1,BOC ∠= o ; 如图2,BOC ∠= o ; 如图3,BOC ∠= o . (2)如图4,已知:AB AD ,是以AB 为边向ABC △外所作正n 边形的一组邻边; AC AE ,是以AC 为边向ABC △外所作正n 边形的一组邻边.BE CD ,的延长相交于点O . ①猜想:如图4,BOC ∠= o (用含n 的式子表示); ②根据图4证明你的猜想. 2、请阅读下列材料: 问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段()()a a b a b +-的中点,连结 PG PC ,.若60ABC BEF ∠=∠=o ,探究PG 与PC 的位置关系及 PG PC 的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PG PC 的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得 到的两个结论是否发生变化?写出你的猜想并加以证明. (3)若图1中2(090)ABC BEF ∠=∠=<

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

最新初中数学动态几何探究题汇总大全

最新初中数学动态几何探究题汇总大全 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角 函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解 决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、 覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含 的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综 合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题. 类型1 操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D 作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC; (2)若∠DAF=∠DBA. ①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由; ②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.

中考专题几何探究题(图形变换)

中国最负责的教育品牌 河南省数学中考专题----几何图形变换 1、(09年河南中考题)21. (10分)如图,在Rt△ABC 中,∠ACB =90°, ∠B =60°,BC =2.点 0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转, 交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α. (1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; (2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由. 2、(10年河南中考题)19.(9分)如图,在梯形ABCD 中,AD //BC ,E 是BC 的中点,AD =5,BC =12,CD =42,∠C =45°,点P 是BC 边上一动点,设PB 的长为x . (1)当x 的值为____________时,以点P 、A 、D 、E 为顶 点的四边形为直角梯形; (2)当x 的值为____________时,以点P 、A 、D 、E 为顶 点的四边形为平行四边形; (3)点P 在BC 边上运动的过程中,以P 、A 、D 、E 为顶点的四边形能否构成菱形?试 说明理由. 3、(11年河南中考题)22. (10分)如图,在Rt △ABC 中,∠B =90°,BC =53,∠C =30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE 、EF . (1)求证:AE =DF ; (2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由. (3)当t 为何值时,△DEF 为直角三角形?请说明理由. A D B P E C

如何提高数学几何证明题的解题能力

龙源期刊网 https://www.360docs.net/doc/e35292073.html, 如何提高数学几何证明题的解题能力 作者:林秀珍 来源:《中学教学参考·语英版》2012年第09期 初中几何证明题不但是学习的重点.而且是学习的难点.如何提高初中数学几何证明题的解题能力呢?经过这几年的教学,我总结了一些经验,我认为要提高证明题的解题能力,要做到以下几点 一、读题 1.读题要细心,有些学生一看到某一题前面部分有似曾相识的感觉,就直接写答案,这种还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取,我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置 2.要记.这里的记有两层意思.第一层意思是要标记,在读题的时候每个条件,你要在所给 的图形中标记出来.如给出对边相等,就用边相等的符号来表示;第二层意思是要牢记,题目 给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来 3.要引申.难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引 申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习 对于读题这一环节,我们之所以要求这么复杂,是因为在实际证题的过程中,学生找不到证明的思路或方法,很多时候就是由于漏掉了题中某些已知条件或将题中某些已知条件记错或想当然地添上一些已知条件,而将已知记在心里并能复述出来就可以很好地避免这些情况的发生 二、分析 指导学生用数学方法中的“分析法”,执果索因,一步一步探究证明的思路和方法.教师用启发性的语言或提问指导学生,学生在教师的指导下经过一系列的质疑、判断、比较、选择,以及相应的分析、综合、概括等认识活动,思考、探究,小组内讨论、交流、发现解决问题的思 路和方法.而对于分析证明题,有三种思考方式: 1.正向思维.对于一般简单的题目,我们正向思考,轻而易举可以做出 2.逆向思维.顾名思义,就是从相反的方向思考问题.运用逆向思维解题,能使学生从不同 角度、不同方向思考问题,探索解题方法,从而拓宽学生的解题思路.这种方法是推荐学生一

八年级数学动态几何综合探究题训练大全

八年级数学动态几何综合探究题训练大全 1.如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC . (1)请判断:FG 与CE 的数量关系是________,位置关系是________; (2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明; (3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断. 2.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交 ∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO =FO ; (2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论. A B C E F M N O (第19题图) B C

3.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α. (1)如图①,若α=90°,求AA′的长; (2)如图②,若α=120°,求点O′的坐标; (3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时, 求点P′的坐标(直接写出结果即可) 4.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE ⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE; (2)当正方形ABCD绕点A顺时针旋转至图2时.线段AF,BF与OE具有什么数量关系?并说明理由. (3)当运动到图3的位置时,线段AF、BF、OE之间又有怎样的数量关系?请直接写出你 的猜想.

2020中考数学几何探究题解析

2020中考数学几何探究题解析 分析: 第一小题比较简单,一看就知道是个正方形; 第二小题看图的话,感觉像是两个线段相等,那么要证明F是CE'中点,而这个时候要注意FE'是在正方形中的,所以要懂得线段的转换; 第三小题只有两个线段长度,咋一看感觉应该有难度吧,但是如果善于发现,就很容易找到突破口了。

解答: (1)正方形 理由:BE=BE', ∠EBE'=∠BE'F=90° 所以BE//FE' 同时可得EF//BE' 所以四边形FEBE'是矩形, 同时又邻边相等 所以正方形成立; (2)分析的时候已经说了,不能忘记FE'是在刚才的正方形中的,而同时两个线段都在线段CE'上,所以要好好研究这个CE' 根据旋转可知CE'=AE 而题中刚好又给了DA=DE 这不等腰三角形吗 有等腰三角形,那么首先就想到了三线合一,干脆画出来 如图,作DH⊥AE于H,则AH=EH 别忘了刚才的AE=CE' 现在AE倒被分成了两个线段的线段, 那么如果F是CE'中点,那么CF和FE'不是就和AH、EH一样吗所以我们如果能够得到FE'等于AE的一半不是也行嘛 根据条件可以得证 △DAH≌△ABE 所以AH=BE=BE'

现在正方形派上用场了,所以FE'=BE=AH=HE 即AE=2FE' 那么CE'=2FE' 所以CF=FE' (3)这一小题给出的两个线段其实是有联系的,不知道看到这的你是否发现了 CF=3,AB=15 看看CF在什么位置,不是在刚才的CE'上吗,凑上FE'就刚好变成CE'了,而CE'=AE,同时还有FE'=BE, 所以我们如果假设FEBE'的边长为x, 那么BE=x,AE=CE'=3+x,AB=15 勾股定理走起, 可得x2+(3+x)2=152 根据经验可以直接判断BE=9,AE=12,符合3、4、5的比例嘛 现在知道了BE和AE,那么题上让求DE, 我们可以让DE处于直角三角形,利用勾股定理解决 这里可以过D向AE作垂线,也可以过E向AD作垂线, 前者刚好能构造出前面用过的全等,所以作DM⊥AE于M

【精选】2020中考数学 几何综合探究 专题练习(含答案)

2020中考数学 几何综合探究 专题练习 例题1. 如图,在等腰梯形ABCD 中,AD BC ∥,5075135AB DC AD BC ====,,,点P 从点B 出发沿 折线段BA AD DC --以每秒5个单位长度的速度向点C 匀速运动,点Q 从点C 出发沿线段CB 方向以每秒3个单位长度的速度匀速运动,过点Q 向上作射线QK BC ⊥,交折线段CD DA AB --于点E ,点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止,设点P 、Q 运动的时间是t 秒()0t > (1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ DC ∥? (3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD DA ,上时,S 与t 的函数关系式;(不必写出t 的取值范围) 【答案】⑴507550 355 t ++= =()s 时,点P 到达终点C , 此时,353105QC =?=,所以BQ 的长为 13510530-=. ⑵如图1,若PQ DC ∥,又AD BC ∥,则四边形PQCD 为平行四边形,从而PD QC =, 由35QC t BA AP t =+=, 得507553t t +-=,解得125 8 t =, 经检验:当125 8 t =时,有PQ DC ∥. ⑶①当点E 在CD 上运动时,如图2,分别过点A 、D 作AF BC ⊥于点F ,DH BC ⊥于点H , 则四边形ADHF 为矩形,且ABF DCH △≌△, 从而75FH AD ==,于是30BF CH ==,∴40DH AF ==. 又3QC t =,从而tan 34DH QE QC C t t CH =?=?=(注:用相似三角形求解亦可) ∴21 62 QCE S S QE QC t ==?=△. ②当点E 在DA 上运动时,如图1,过点D 作DH BC ⊥于点H , 由①知4030DH CH ==,, 又3QC t =,从而330ED QH QC CH t ==-=- ∴()1 1206002 QCDE S S ED QC DH t ==+=-梯形. 例题2. 如图,E 、F 分别是边长为4的正方形ABCD 的边BC CD ,上的点,413 CE CF ==, ,直线EF 交AB 的延长线于G , 过线段FG 上的一个动点H 作HM AG ⊥,HN AD ⊥,垂足分别为M N ,,设HM x = ,C 图1 C 图2

几何探究题

- 128- (一)几何探究题 1.(07绍兴)课外兴趣小组活动时,许老师出示了如 下问题:如图1,己知四边形ABCD中,AC平分∠DAB, ∠DAB=60°, ∠B与∠D互补,求证:AB+AD= 3 AC. 小敏反复探索,不得其解.她想,若将四边形ABCD 特殊化,看如何解决该问题. (1)特殊情况入手 添加条件:“∠B=∠D”, 如图2,可证 AB+AD= 3 AC.(请你完成此证明) (2)解决原来问题 受到(1)的启发,在原问题中,添加辅助线:如图 3,过C点分别作AB、AD的垂线,垂足分别为E、 F.(请你补全证明) 2.(07盐城)操作:如图①,点O为线段MN的中 点,直线PQ与MN相交于点O,请利用图①画出一对以 点O为对称中心的全等三角形. 根据上述操作得到的经验完成下列探究活动. 探究一:如图②,在四边形ABCD中,AB∥DC,E 为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交 于点F.试探究线段AB与AF、CF之间的等量关系,并证 明你的结论; 探究二:如图③,DE、BC相交于点E,BA交DE于 点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若 AB=5,CF=1,求DF的长度.

-129 - 3.(07潍坊)已知等腰△ABC 中,AB =AC ,AD 平分∠BAC 交BC 于D 点,在线段AD 上任取一点P (A 点除外),过P 点作EF ∥AB ,分别交AC 、BC 于E 、F 点,作PM ∥AC ,交AB 于M 点,连结ME . (1)求证:四边形AEPM 为菱形; (2)当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半? 4.(07武汉)填空或解答: 点B 、C 、E 在同一直线上,点A 、D 在直线CE 的同侧,AB =AC , EC =ED ,∠BAC =∠CED ,直线AE 、BD 交于点F . 如图1,若∠BAC =60°,则∠AFB =_______; 如图2,若∠BAC =90°,则∠AFB =_______; 如图3,若∠BAC =α,则∠AFB =_______(用含α的式子表示); 将图3中的△ABC 绕点C 旋转(点F 不与点A 、B 重合),得图4或图5.在图4中,∠AFB 与∠α的数量关系是_______;在图5中,∠AFB 与∠α的数量关系是 _______. 请你任选其中一个结论证明. A B C P D F E M

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

几何问题解题思路

几何问题解题思路 数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。今天中公教育为考生整理了数量关系答题技巧中的几何问题解题思路,希望对考生有所帮助! 中公教育为考生整理了几何问题考点的解题思路和技巧,望考生注意以下几个方面。 第一个方面,几何基本公式: 三角形的面积=底×高÷2,长方形(正方形)的面积=长×宽,梯形的面积=(上底+下底)×高÷2,圆形的面积=π×半径的平方,长方体(正方体)的面积=长×宽×高,圆柱体的体积=底面积×高,圆锥体的面积=底面积×高÷3。 第二个方面,几何问题的“割补平移”思想。 中公教育提醒考生,当看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。 第三个方面,几何极限理论。 平面图形:①周长一定,越趋近于圆,面积越大,②面积一定,越趋近于圆,周长越小; 立体图形:①表面积一定,越趋近于球,体积越大,②体积一定,越趋近于球,表面积越小。 实战例题: 【例题】半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方米? A.25

B.10+5л C.50 D.55 【中公教育解析】如下图:连接BD,作矩形BDMN,将下面的四分之一圆弧的半径画出来,可见该部分面积分为彩色的两部分。上面部分是半圆,下半部分是矩形面积减去2个四分之一圆,即矩形面积减半个圆形面积二部分之和,正好是矩形面积,即10×5=50平方厘米。故答案为C。 最新招考公告、备考资料就在辽宁事业单位考试网 https://www.360docs.net/doc/e35292073.html,/liaoning/

动态几何型压轴题

C 动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD , 以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型背景和区分度测量点] 本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E 点在AB 边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系 (相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解. [区分度性小题处理手法] 1.直线与圆的相切的存在性的处理方法:利用d=r 建立方程. 2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R ±r(r R >)建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解] 解:(1) 证明CDF ?∽EBD ?∴ BE CD BD CF = ,代入数据得8=CF ,∴AF=2 (2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法 x CF 32 = , 相切时分外切和内切两种情况考虑: 外切, x x 32 1010+ -=,24=x ;

广东省深圳市中考数学专题专练 几何探究专题

几何探究专题 1.已知正方形ABCD 的边长为1,点P 为正方形内一动点,若点M 在AB 上,且满足△PBC∽△PAM,延长BP 交AD 于点N ,连接CM. (1)如图①,若点M 在线段AB 上,求证:AP⊥BN;AM =AN. (2)①如图②,在点P 运动过程中,满足△PBC∽△PAM 的点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 是否成立(不需说明理由)? ②是否存在满足条件的点P ,使得PC =1 2 ?请说明理由. 2.已知:如图,在矩形ABCD 中,AB =6 cm ,BC =8 cm.对角线AC ,BD 交于点O ,点P 从点A 出发,沿AD 方向匀速运动,速度为1 cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1 cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF∥AC,交BD 于点F.设运动时间为t(s)(0

AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF. (1)观察猜想 如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:____________. ②BC ,CD ,CF 之间的数量关系为:____________(将结论直接写在横线上). (2)数学思考 如图②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸 如图③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB =22,CD =1 4BC ,请求出 GE 的长. 4.(1)阅读理解: 如图①,在△ABC 中,若AB =10,AC =6,求BC 边上的中线AD 的取值范围. 解决此问题可以用如下方法:延长AD 到点E 使DE =AD ,再连接BE(或将△ACD 绕着点D 逆时针旋转180°得到△EBD).把AB ,AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断. 中线AD 的取值范围是________; (2)问题解决: 如图②,在△ABC 中,D 是BC 边上的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF.求证:BE +CF >EF ;

几何探究题(一)

几何探究题(一) 在四边形ABCD 中,对角线AC 、BD 相交于点O ,将△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,旋转角为θ(0°<θ<90°),连接AC 1、BD 1,AC 1与BD 1交于点P . (1)如图1,若四边形ABCD 是正方形. ①求证:△AOC 1≌△BOD 1. ②请直接写出AC 1 与BD 1的位置关系. (2)如图2,若四边形ABCD 是菱形,AC =5,BD =7,设AC 1=k BD 1. 判断AC 1与BD 1的位置关系,说明理由,并求出k 的值. (3)如图3,若四边形ABCD 是平行四边形,AC =5,BD =10,连接DD 1,设AC 1=kBD 1. 请直接写出k 的值和 的值. 解: (1)①证明: ∵四边形ABCD 是正方形 ∴AC=BD,OC =OA= 21AC,OD=OB=2 1 BD ∴OC=OA=OD=OB , ∵△C 1OD 1由△COD 绕点O 旋转得到 ∴O C 1= OC ,O D 1=OD ,∠CO C 1=∠DO D 1 ∴O C 1= O D 1 ∠AO C 1=∠BO D 1 ∴△A O C 1≌△BOD 1………………………………3分 ②AC 1⊥BD 1………………………………………4分 (2)AC 1⊥BD 1…………………………………………5分 理由如下:∵四边形ABCD 是菱形 ∴OC =OA=21AC,OD=OB=2 1 BD,AC ⊥BD ∵△C 1OD 1由△COD 绕点O 旋转得到 ∴O C 1= OC ,O D 1=OD ,∠CO C 1=∠DO D 1 ∴O C 1=OA ,O D 1=OB ,∠AO C 1=∠BO D 1 ∴ OB OD OA OC 1 1= ∴OB OA OD OC =11 212 1)(kDD AC + P A B C D D 1 O C 1 C D A B D 1 P C 1 O 图1 图2 图3 第25题图 C D A B D 1 P C 1 O P A B C D D 1 O C 1 图1 C D A B D 1 P C 1 O 图2 C D A B D 1 P C 1 O 图3 第25题图

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

动态几何问题的解题技巧

动态几何问题的解题技 巧 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

动态几何问题的解题技巧 解这类问题的基本策略是: 1.动中觅静:这里的“静”就是问题中的不变量、不变关系 ........,动中觅静就是在运动 变化中探索问题中的不变性 .... 2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓 住“静”的瞬间,使一般情形转化为特殊问题 ...........,从而找到“动”与“静”的关系. 3.以动制动:以动制动就是建立图形中两个变量的函数关系 .........,通过研究运动函数,用联系发展的观点来研究变动元素的关系. 总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形, 把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变 .............。 这类问题与函数相结合时,注意使用分类讨论的思想,运用方程的思想、数形结合思想、转化的思想等。 1、在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形。

(1)观察线段PD 和PE 之间的有怎样的大小关系,并以图②为例,加以说明; (2)△PBE 是否构成等腰三角形若能,指出所有的情况(即求出△PBE 为等腰三角形时CE 的长, 直接写出结果);若不能请说明理由。 2、如图,等腰Rt △ABC(∠ACB =90°)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y , (1)求y 与x 之间的函数关系式; (2)当△ABC 与正方形DEFG 重合部分的面积为32 时,求CD 的长. 3、在平面直角坐标系中,直线1l 过点A(2,0)且与轴y 平行,直线2l 过点B(0,1)且与轴x 平行,直线1l 与2l 相交于点P 。点E 为直线2l 上一点,反比例函数 0,0(>>=k x x k y 且k ≠2)的图象过点E 且与直线1l 相交于点F. (1)写出点E 、点F 的坐标(用k 的代数式 表示); (2)求 PF PE 的值; (3)连接OE 、OF 、EF , 若△OEF 为直角三角形,求k 的值。 4、如图,在Rt △ABC 中,∠C=90°,AC=4cm ,BC=5cm ,点D 在BC 上,且CD=3cm ,现有两个动点P ,Q 分别从点A 和点B 同时出发,其中点P 以1厘米/秒的速度沿AC 向终点C 运动;点Q 以厘米/秒的速度沿BC 向终点C 运动.过点P 作PE ∥BC 交AD 于点E ,连接EQ .设动点运动时间为t 秒(t >0).

相关文档
最新文档