半导体材料的发展

半导体材料的发展
半导体材料的发展

半导体材料的发展

什么是半导体材料?

物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导热性差或不好的材料,如右图中所示的金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与金属和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。很多人会疑问,为什么半导体被认可需要这么多年呢?主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。

半导体材料的早期应用

半导体的第一个应用就是利用它的整流效应作为检波器,就是点接触二极管(也俗称猫胡子检波器,即将一个金属探针接触在一块半导体上以检测电磁波)。除了检波器之外,在早期,半导体还用来做整流器、光伏电池、红外探测器等,半导体的四个效应都用到了。

从1907年到1927年,美国的物理学家研制成功晶体整流器、硒整流器和氧化亚铜整流器。1931年,兰治和伯格曼研制成功硒光伏电池。1932年,德国先后研制成功硫化铅、硒化铅和碲化铅等半导体红外探测器,在二战中用于侦探飞机和船舰。二战时盟军在半导体方面的研究也取得了很大成效,英国就利用红外探测器多次侦探到了德国的飞机。

晶体管的发明

晶体管的发明实际上是在1947年的12月23日的半年之前,当时贝尔实验室的研究人员已经看出了晶体管的商业价值,为写专利,保密了半年,到1947年12月23日,巴丁和布尔吞才正式公布了他们的发明,这也成为晶体管的正式发明日。他们用了一个非常简单的装置,就是在一块锗晶体上,用两个非常细的金属针尖扎在锗的表面,在一个针上加正电压,在另外一个探针上加一个负电压,我们现在分别称为发射极和集电极,N型锗就变成了一个基极,这样就形成了一个有放大作用的PNP晶体管。

巴丁和布尔吞当时在肖克莱领导的研究小组工作,虽然肖克莱时任组长,但是在发明专利上

没有他的名字,他心里很不愉快。为此,在很短的时间内,即在晶体管发明不久之后的1948年1月23日,他提出了一个不是点接触而是面接触式晶体管结构。后来证明这种结构才真正有价值。

巴丁和布尔吞在保密了将近半年后才公布了他们的发明,发明公布以后,当时的反应并不如期望的热烈。《纽约时报》将这个消息放在了第46版收音机谈话的最后,只有短短的几句话;当时的学术杂志对此也不是非常热衷。由于当时的反应并不是他们想象的那样强烈,所以在1952年的4月份,为了推广他们的这个发明,又再次举办了公众听证会,就是想把他们的研究成果公布于企业界。当时他们邀请了美国众多做真空管的公司,每一个公司只需交纳25000美元就可以参加这个听证会,而且给予的许诺是如果将来要是采用了他的技术,听这个报告会的25000美元入场费可以从中扣除。当时大概有几十家公司参加了听证会,然而大多数的人都是做真空管的,他们对半导体晶体管的意义不以为然,不是非常感兴趣。试想如果晶体管的发明得到了成功应用,那么真空管就会慢慢的消失了。所以从这个角度看,他们的热情不高也是可以理解的。但是科学界对这个发明还是给予了很高的评价,1956年,巴丁、布尔吞和肖克莱三人被授予诺贝尔物理学奖。

但今日来看,晶体管的发明不仅引起了电子工业的革命,而是彻底的改变了我们人类的生产、生活方式。我们今天日常所用的电器几乎没有一样不用晶体管,如通信、电脑、电视、航天、航空等等。

半导体材料

今天,半导体已广泛地用于家电、通讯、工业制造、航空、航天等领域。1994年,电子工业的世界市场份额为6910亿美元,1998年增加到9358亿美元。而其中由于美国经济的衰退,导致了半导体市场的下滑,即由1995年的1500多亿美元,下降到1998年的1300多亿美元。经过几年的徘徊,目前半导体市场已有所回升。

硅单晶及其外延

现在电子元器件90%以上都是由硅材料制备的,全世界与硅相关的电子工业产值接近一万亿美元。直拉法是目前主要用于生产硅单晶的方法。上世纪50到60年代,拉出的硅单晶直径只有两英寸,现在8英寸,12英寸、长达1米多的硅单晶都已实现了规模生产。18英寸,就是直径为45厘米硅单晶业已研制成功。下图是一个12英寸直拉硅单晶照片,有1米多长!(编者注:图略)

目前,单晶硅的世界年产量已超过一万吨。硅集成电路主要用的是8英寸硅,但12英寸硅的用量逐年增加,预计到2012年18英寸的硅可能用于集成电路制造,27英寸的硅晶体研制也正在筹划中。

硅的直径为什么不是按8英寸、10英寸、12英寸、14英寸发展,而是从8到12英寸,由12到18英寸,18到27英寸发展呢?硅集成电路的发展遵循《摩尔定律》,所谓《摩尔定律》就是每18个月集成电路的集成度增加一倍,而它的价格也要降低一半。所以目前在大城市里,差不多每家每户,甚至每个人都有一个PC机,因为机器性能好,价格又低。正是由于硅单晶的直径增大带来的好处,生产线用12英寸的硅片要比用8英寸硅片生产的芯片

成本低得多。

随着硅的直径增大,杂质氧等杂质在硅锭和硅片中的分布也变得不均匀,这将严重的影响集成电路的成品率,特别是高集成度电路。为避免氧的沉淀带来的问题,可采用外延的办法解决。何为外延?即用硅单晶片为衬底,然后在其上通过气相反应方法再生长一层硅,如2个微米,1个微米,或0.5个微米厚等。这一层外延硅中的氧含量就可以控制到1016/cm3以下,器件和电路就做在外延硅上,而不是原来的硅单晶上,这样就可解决由氧导致的问题。尽管成本将有所提高,但集成电路的集成度和运算速度都得到了显著提高,这是目前硅技术发展的一个重要方向。

硅材料的发展趋势,从提高集成电路的成品率、降低成本看,增大硅单晶的直径是发展的大趋势,向12英寸,18英寸方向发展;另一方面,从提高硅集成电路的速度和它的集成度看,发展适用于深亚微米乃至纳米电路的硅外延技术,制备高质量硅外延材料是关键。如前文所述,硅单晶中氧的沉淀将产生微缺陷,目前集成电路的线条宽度已达到0.1微米以下,如果缺陷的直径大小为1个微米或者是0.5个微米,一个电路片上有一个缺陷就会导致整个片子失效,这对集成电路的成品率将带来严重影响。

目前全世界硅单晶的产量大约是一万吨,我国每年大约是1000吨。制备硅单晶的原材料是多晶硅,而我国多晶硅的年产量不足100吨,仅占全世界的千分之几。从目前我国硅材料的发展势头来看,估计到2010年,我国的微电子的技术会有一个大发展,大概可能达到世界百分之二十左右的水平。从集成电路的线宽来看,我国目前集成电路工艺技术水平在0.35-0.25微米,而国际上目前的生产技术已达到0.13-0.09微米,在实验室70纳米的技术也已经通过考核。去年,在北京建成投产的(中芯国际)集成电路技术已进入0.13微米,并即将升级到0.09微米,因而我国的微电子集成电路技术同国外的差距也缩短到1-2代了。

硅微电子技术

硅微电子技术是不是可以按照《摩尔定律》永远发展下去呢?目前硅的集成电路大规模生产技术已经达到0.13-0.09微米,进一步将到0.07微米,也就是70个纳米甚至更小。根据预测,到2022年,硅集成电路技术的线宽可能达到10个纳米,这个尺度被认为是硅集成电路的“物理极限”。就是说,尺寸再减小,就会遇到有很多难以克服的问题。当然这里说的10纳米,并不是一个最终的结论。随着技术的发展,特别是纳米加工技术的发展,也可能把这个“极限”尺寸进一步减小;但总有一天,当代的硅微电子技术会走到尽头。

随着集成电路线宽的进一步减小,硅微电子技术必然要遇到许多难以克服的问题,如CMOS 器件沟道掺杂原子的统计分布涨落问题。比如说长度为100个纳米的源和漏电极之间,掺杂原子也只有100个左右,如何保证这100个原子在成千上万个器件里的分布保持一致,显然是不可能的,至少也是非常困难的。也就说杂质原子分布的涨落,将导致器件性能不一,性质的不一致,就难保证电路的正常工作。又如MOS器件的栅极下面的绝缘层就是二氧化硅,它的厚度随着器件尺寸的变小而变小,当沟道长度达到0.1个微米时,SiO2的厚度大概也在一个纳米左右。尽管上面加的栅电压很低,如一个纳米上加0.5伏或者是一伏电压,但是加在其上的电场强度就要达到每厘米5-10兆伏以上,超过了材料的击穿电压。当这个厚度非常薄的时候,即使不发生击穿,电子隧穿的几率也很高,将导致器件无法正常工作。

随着集成电路集成度的提高,芯片的功耗也急剧增加,使其难以承受;现在电脑CPU的功耗已经很高,如果说将来把它变成“纳米结构”,即不采用新原理,只是按《摩尔定律》走下去,进一步提高集成度,那么加在它上面的功耗就有可能把硅熔化掉!另外一个问题是光刻技术,目前大约可以做到0.1微米,虽然还有些正在发展的光刻技术,如X光、超紫外光刻技术等,但要满足纳米加工技术的需求,还相差很远。再者,就是电路器件之间的互连问题,对每一个芯片来说,每一个平方厘米上有上千万、上亿只管子,管子与管子之间的联线的长度要占到器件面积的60—70%,现在的连线就多达8层到10多层,尽管两个管子之间的距离可以做得很小,但是从这个管子到另外一个管子,电子走的路径不是直线,而要通过很长的连线。我们知道线宽越窄,截面越小,电阻越大,加上分布电容,电子通过引线所需的时间就很长,这就使CPU的速度变慢。另外纳米加工的制作成本也很高,由于这些原因,硅基微电子技术最终将没有办法满足人类对信息量不断增长的需求。

人们要想突破上述的“物理极限”,就要探索新原理、开发新技术,如量子计算、光计算机等,它们的工作原理是与现在的完全不同,尚处于初始的探索阶段。在目前这个过渡期间,人们把希望放在发展新型半导体材料和开发新技术上,比如说GaAs、InP和GaN基材料体系,采用这些材料,可以提高器件和电路的速度以及解决由于集成度的提高带来的功耗增加出现的问题。

GaAs和InP单晶材料

化合物半导体材料,以砷化镓(GaAs)为例,有以下几个特点,一是发光效率比较高,二是电子迁移率高,同时可在较高温度和在其它恶劣的环境下工作,特别适合于制作超高速、超高频、低噪音的电路,它的另一个优势是可以实现光电集成,即把微电子和光电子结合起来,光电集成可大大的提高电路的功能和运算的速度。

宽带隙半导体材料

氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;金刚石如果做成半导体,温度可以更高,器件可用在石油钻探头上收集相关需要的信息。它们还在航空、航天等恶劣环境中有重要应用。现在的广播电台、电视台,唯一的大功率发射管还是电子管,没有被半导体器件代替。这种电子管的寿命只有两三千小时,体积大,且非常耗电;如果用碳化硅的高功率发射器件,体积至少可以减少几十到上百倍,寿命也会大大增加,所以高温宽带隙半导体材料是非常重要的新型半导体材料。

现在的问题是这种材料非常难生长,硅上长硅,砷化镓上长GaAs,它可以长得很好。但是这种材料大多都没有块体材料,只得用其它材料做衬底去长。比如说氮化镓在蓝宝石衬底上生长,蓝宝石跟氮化镓的热膨胀系数和晶格常数相差很大,长出来的外延层的缺陷很多,这是最大的问题和难关。另外这种材料的加工、刻蚀也都比较困难。目前科学家正在着手解决这个问题。如果这个问题一旦解决,就可以为我们提供一个非常广阔的发现新材料的空间。

低维半导体材料

实际上这里说的低维半导体材料就是纳米材料,之所以不愿意使用这个词,主要是不想与现

在热炒的所谓的纳米衬衣、纳米啤酒瓶、纳米洗衣机等混为一谈!从本质上看,发展纳米科学技术的重要目的之一,就是人们能在原子、分子或者纳米的尺度水平上来控制和制造功能强大、性能优越的纳米电子、光电子器件和电路,纳米生物传感器件等,以造福人类。可以预料,纳米科学技术的发展和应用不仅将彻底改变人们的生产和生活方式,也必将改变社会政治格局和战争的对抗形式。这也是为什么人们对发展纳米半导体技术非常重视的原因。

电子在块体材料里,在三个维度的方向上都可以自由运动。但当材料的特征尺寸在一个维度上比电子的平均自由程相比更小的时候,电子在这个方向上的运动会受到限制,电子的能量不再是连续的,而是量子化的,我们称这种材料为超晶格、量子阱材料。量子线材料就是电子只能沿着量子线方向自由运动,另外两个方向上受到限制;量子点材料是指在材料三个维度上的尺寸都要比电子的平均自由程小,电子在三个方向上都不能自由运动,能量在三个方向上都是量子化的。

由于上述的原因,电子的态密度函数也发生了变化,块体材料是抛物线,电子在这上面可以自由运动;如果是量子点材料,它的态密度函数就像是单个的分子、原子那样,完全是孤立的函数分布,基于这个特点,可制造功能强大的量子器件。

现在的大规模集成电路的存储器是靠大量电子的充放电实现的。大量电子的流动需要消耗很多能量导致芯片发热,从而限制了集成度,如果采用单个电子或几个电子做成的存储器,不但集成度可以提高,而且功耗问题也可以解决。目前的激光器效率不高,因为激光器的波长随着温度变化,一般来说随着温度增高波长要红移,所以现在光纤通信用的激光器都要控制温度。如果能用量子点激光器代替现有的量子阱激光器,这些问题就可迎刃而解了。

基于GaAs和InP基的超晶格、量子阱材料已经发展得很成熟,广泛地应用于光通信、移动通讯、微波通讯的领域。量子级联激光器是一个单极器件,是近十多年才发展起来的一种新型中、远红外光源,在自由空间通信、红外对抗和遥控化学传感等方面有着重要应用前景。它对MBE制备工艺要求很高,整个器件结构几百到上千层,每层的厚度都要控制在零点几个纳米的精度,我国在此领域做出了国际先进水平的成果;又如多有源区带间量子隧穿输运和光耦合量子阱激光器,它具有量子效率高、功率大和光束质量好的特点,我国已有很好的研究基础;在量子点(线)材料和量子点激光器等研究方面也取得了令国际同行瞩目的成绩。

小结

从整个半导体材料和信息技术发展来看,目前的信息载体主要是电子,即电子的电荷(电流)。电子还有一个属性,电子的自旋,我们尚未用上。如果我们再把电子的自旋用上,就增加了一个自由度,这也是人们目前研究的方向之一。我们从电子材料硅、锗发展到光电子材料GaAs和InP,GaN等,就是电子跟光子可以结合一起使用的材料,光电子材料比电子材料的功能更强大;再下一代的材料很可能是光子材料。我们现在只用了光子的振幅,而光的偏振和光的位相应用还未开发出来,所以这给我们研究者留下了非常广阔的天地。从材料的发展来看,从块体材料向薄层、超薄层,低维(纳米)结构材料和功能芯片材料方向发展;功能芯片可能是有机跟无机的结合,也可以是生命与有机和无机的结合,这也为我们提供了一个非常广阔的创新的天地,我相信人们将来能在这个领域大有作为。(end)

半导体材料发展情况

实用标准文案 1、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smart cut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al 引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

(新)半导体材料发展现状及趋势 李霄 1111044081

序号:3 半导体材料的发展现状及趋势 姓名:李霄 学号:1111044081 班级:电科1103 科目:微电子设计导论 二〇一三年12 月23 日

半导体材料的发展进展近况及趋向 引言:随着全球科技的飞速发展成长,半导体材料在科技进展中的首要性毋庸置疑,半导体的发展进展历史很短,但半导体材料彻底改变了我们的生活,从半导体材料的发展历程、半导体材料的特性、半导体材料的种类、半导体材料的制备、半导体材料的发展。从中我们可以感悟到半导体材料的重要性 关键词:半导体、半导体材料。 一、半导体材料的进展历程 20世纪50年代,锗在半导体产业中占主导位置,但锗半导体器件的耐高温和辐射性能机能较差,到20世纪60年代后期逐步被硅材料代替。用硅制作的半导体器件,耐高温和抗辐射机能较好,非常适合制作大功率器件。因而,硅已经成为运用最多的一种半导体材料,现在的集成电路多半是用硅材料制作的。二是化合物半导体,它是由两种或者两种以上的元素化合而成的半导体材料。它的种类不少,主要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。此中砷化镓是除了硅以外研讨最深切、运用最普遍的半导体材料。氮化镓可以与氮化铟(Eg=1.9eV)、氮化铝(Eg=6.2eV)构成合金InGaN、AlGaN,如许可以调制禁带宽度,进而调理发光管、激光管等的波长。三是非晶半导体。上面介绍的都是拥有晶格构造的半导体材料,在这些材料中原子布列拥有对称性和周期性。但是,一些不拥有长程有序的无定形固体也拥有显著的半导体特征。非晶半导体的种类繁多,大体上也可按晶态物质的归类方式来分类。从现在}研讨的深度来看,很有适用价值的非晶半导体材料首推氢化非晶硅(α-SiH)及其合金材料(α-SiC:H、α-SiN:H),可以用于低本钱太阳能电池和静电光敏感材料。非晶Se(α-Se)、硫系玻璃及氧化物玻璃等非晶半导体在传感器、开关电路及信息存储方面也有普遍的运用远景。四是有机半导体,比方芳香族有机化合物就拥有典范的半导体特征。有机半导体的电导特征研讨可能对于生物体内的基础物理历程研究起着重大推进作用,是半导体研讨的一个热点领域,此中有机发光二极管(OLED)的研讨尤为受到人们的看重。 二、半导体材料的特性 半导体材料是常温下导电性介于导电材料以及绝缘材料之间的一类功效材

半导体材料文献综述

姓名:高东阳 学号:1511090121 学院:化工与材料学院专业:化学工程与工艺班级:B0901 指导教师:张芳 日期: 2011 年12月 7日

半导体材料的研究综述 高东阳辽东学院B0901 118003 摘要:半导体材料的价值在于它的光学、电学特性可充分应用与器件。随着社会的进步和现代科学技术的发展,半导体材料越来越多的与现代高科技相结合,其产品更好的服务于人类,改变着人类的生活及生产。文章从半导体材料基本概念的界定、半导体材料产业的发展现状、半导体材料未来发展趋势等方面对我国近十年针对此问题的研究进行了综述,希望能引起全社会的关注和重视。 关键词:半导体材料,研究,综述 20世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;20世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。彻底改变人们的生活方式。在此笔者主要针对半导体材料产业的发展、半导体材料的未来发展趋势等进行综述,希望引起社会的关注,并提出了切实可行的建议。 一、关于半导体材料基础材料概念界定的研究 陈良惠指出自然界的物质、材料按导电能力大小可分为导体、半导体、和绝缘体三大类。半导体的电导率在10-3~ 109欧·厘米范围。在一般情况下,半导体电导率随温度的升高而增大,这与金属导体恰好相反。凡具有上述两种特征的材料都可归入半导体材料的范围。[1] 半导体材料(semiconductormaterial)是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。[2]随着社会的进步以及科学技术的发展,对于半导体材料的界定会越来越精确。 二、关于半导体材料产业的发展现状及解决对策的分析 王占国指出中国半导体产业市场需求强劲,市场规模的增速远高于全球平均水平。不过,产业规模的扩大和市场的繁荣并不表明国内企业分得的份额更大。相反,中国的半导体市场正日益成为外资公司的乐土。[3]

院士讲材料——半导体材料的发展现状与趋势汇总

主持人: 观众朋友,欢迎您来到CETV学术报告厅,最近美国的一家公司生产出一千兆的芯片,它是超微技术发展史上的一个分水岭,个人电脑业的发展,也将步入一个新的历史阶段,对整个信息业来说,它的意义不亚于飞行速度突破音速的极限,当然整个技术上的突破,也要依赖于以硅材料为基础的大规模集成电路的进一步微型化,50年代以来,随着半导体材料的发现与晶体管的发明,以硅为主的半导体材料,成为整个信息社会的支柱,成为微电子、光电子等高技术产业的核心与基础,这个情况,将会持续到下个世纪的中叶,当然,面对更大信息量的需求,硅电子技术也有它的极限,将会出现新的、替补性的半导体材料。关于半导体材料的发展现状与发展趋势,请您收看中国科学院王占国院士的学术报告。 王占国: 材料已经成为人类历史发展的里程碑,从本世纪的中期开始,硅材料的发现和硅晶体管的发明以及五十年代初期的以硅为基的集成电路的发展,导致了电子工业大革命。今天,因特网、计算机的到户,这与微电子技术的发展是密不可分的,也就是说以硅为基础的微电子技术的发展,彻底地改变了世界的政治、经济的格局,也改变着整个世界军事对抗的形式,同时也深刻影响着人们的生活方式。今天如果没有了计算机,没有了网络,没有了通信,世界会是什么样子,那是可想而知的。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。 70年代超晶格概念的提出,新的生长设备,像分子束外延和金属有机化合物化学汽相淀积等技术的发展,以及超晶格、量子阱材料的研制成功,使半导体材料和器件的设计思想发生了彻底的改变。就硅基材料的器件和电路而言,它是靠P型与N型掺杂和PN结技术来制备二极管、晶体管和集成电路的。然而基于超晶格、量子阱材料的器件和电路的性质,则不依赖于杂质行为,而是由能带工程设计决定的。也就是说,材料和器件的光学与电学性质,可以通过能带的设计来实现。设计思想从杂质工程发展到能带工程,以及建立在超晶格、量子阱等半导体微结构材料基础上的新型量子器件,极有可能引发新的技术革命。从微电子技术短短50年的发展历史来看,半导体材料的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 现在,我来讲一讲几种重要的半导体材料的发展现状与趋势。我们首先来介绍硅单晶材料。硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。根据预测,到2000年底,它的规模将达到60多亿平方英寸,整个硅单晶材料的产量将达到1万吨以上。目前,8英寸的硅片,已大规模地应用于集成电路的生产。到2000年底,或者稍晚一点,这个预计可能会与现在的情况稍微有点不同,有可能完成由8英寸到12英寸的过渡。预计到2007年前后,18英寸的硅片将投入生产。我们知道,直径18英寸相当于45厘米,一个长1米的晶锭就有几百公斤重。那么随着硅单晶材料的进一步发展,是不是存在着一些问题亟待解决呢?我们知道硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂

半导体材料发展史

1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。 不久, 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。 在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。 前言 自从有人类以来,已经过了上百万年的岁月。社会的进步可以用当时人类使用的器物来代表,从远古的石器时代、到铜器,再进步到铁器时代。现今,以硅为原料的电子元件产值,则超过了以钢为原料的产值,人类的历史因而正式进入了一个新的时代,也就是硅的时代。硅所代表的正是半导体元件,包括记忆元件、微处理机、逻辑元件、光电元件与侦测器等等在内,举凡电视、电话、电脑、电冰箱、汽车,这些半导体元件无时无刻都在为我们服务。 硅是地壳中最常见的元素,许多石头的主要成分都是二氧化硅,然而,经过数百道制程做出的积体电路,其价值可达上万美金;把石头变成硅晶片的过程是一项点石成金的成就,也是近代科学的奇蹟! 在日本,有人把半导体比喻为工业社会的稻米,是近代社会一日不可或缺的。在国防上,惟有扎实的电子工业基础,才有强大的国防能力,1991年的波斯湾战争中,美国已经把新一代电子武器发挥得淋漓尽致。从1970年代以来,美国与日本间发生多次贸易摩擦,但最后在许多项目美国都妥协了,但是为了半导体,双方均不肯轻易让步,最后两国政府慎重其事地签订了协议,足证对此事的重视程度,这是因为半导体工业发展的成败,关系着国家的命脉,不可不慎。在台湾,半导体工业是新竹科学园区的主要支柱,半导体公司也是最赚钱的企业,台湾如果要成为明日的科技硅岛,半导体工业是我们必经的途径。

半导体材料的历史现状及研究进展(精)

半导体材料的历史现状及研究进展(精)

半导体材料的研究进展 摘要:随着全球科技的快速发展,当今世界已经进入了信息时代,作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。半导体材料凭借着自身的性能特点也在迅速地扩大着它的使用领域。本文重点对半导体材料的发展历程、性能、种类和主要的半导体材料进行了讨论,并对半导体硅材料应用概况及其发展趋势作了概述。 关键词:半导体材料、性能、种类、应用概况、发展趋势 一、半导体材料的发展历程 半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。宰二十世纪初,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。 新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展.以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表和第二代半导体材料(以砷化镓和磷化铟为代表之后,在近10年发展起来的新型宽带半导体材料.作为第一代半导体材料,硅基半导体材料及其集成电路的发展导致了微型计算机的出现和整个计算机产业的飞跃,并广泛应用于信息处理、自动控制等领域,对人类社会的发展起了极大的促进作用.硅基半导体材料虽然在微电子领域得到广泛应用,但硅材料本身间接能带结构的特点限制了其在光电子领域的应用.随着以光通

半导体材料研究的新进展

半导体材料研究的新进展 作者简介王占国,1938年生,半导体材料物理学家,中科学院院士。现任中科院 半导体所研究员、半导体材料科学重点实验室学委会主任和多个国际会议顾问委员会 委员。主要从事半导体材料和材料物理研究,在半导体深能级物理和光谱物理研究, 半导体低维结构生长、性质和量子器件研制等方面,取得多项成果。先后获国家自然 科学二等奖、国家科技进步三等奖,中科院自然科学一等奖和科技进步一、二和三等 奖及何梁何利科技进步奖等多项,在国内外学术刊物和国际会议发表论文180多篇, 被引用数百次。摘要本文重点对半导体硅材料,GaAs和InP单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料,宽带隙半导体材料,光子 晶体材料,量子比特构建与材料等目前达到的水平和器件应用概况及其发展趋势作了 概述。最后,提出了发展我国半导体材料的建议。关键词半导体材料量子线量子点材 料光子晶体1半导体材料的战略地位上世纪中叶,单晶硅和半导体晶体管的发明及其 硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人 类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功, 彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水 平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、 经济格局和军事对抗的形式,彻底改变人们的生活方式。2几种主要半导体材料的发 展现状与趋势2.1硅材料从提高硅集成电路成品率,降低成本看,增大直拉硅(Z-Si)单晶的直径和减小微缺陷的密度仍是今后Z-Si发展的总趋势。目前直径为8英寸(200)的Si单晶已实现大规模工业生产,基于直径为12英寸(300)硅片的集成电 路(I’s)技术正处在由实验室向工业生产转变中。目前300,0.18μ工艺的硅 ULSI生产线已经投入生产,300,0.13μ工艺生产线也将在2003年完成评估。18英 寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单 晶研制也正在积极筹划中。从进一步提高硅I’S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SI材料,包括智能剥离(Sartut)和SIX材料等也发展很快。目前,直径8英寸的硅外延片和 SI材料已研制成功,更大尺寸的片材也在开发中。理论分析指出30n左右将是硅S集

半导体行业发展趋势分析

半导体行业发展趋势分析 新型计算架构浪潮推动,中国半导体产业弯道超车机会来临

核心观点: ●2018,半导体市场供需两旺,中国市场迎弯道超车机遇 需求端新市场新应用推动行业成长:1)比特币市场的火爆带动矿机需求快速增加,ASIC 芯片矿机凭借设计简单,成本低,算力强大等优势被大量采用。国内ASIC 矿机芯片厂商比特大陆、嘉楠耘智、亿邦股份自身业绩高增长的同时,其制造与封测环节供应商订单快速增长。2)汽车电子、人工智能、物联网渐行渐近,带动行业成长。供给端国内建厂潮加剧全球半导体行业资本开支增长,上游确定性受益。 ● 1 月半导体行情冰火两重天 A 股市场:18 年1 月以来(至1 月26 日)申万半导体指数下跌9.03%,半导体板块跑输电子行业5.9 个百分点,跑输上证综指16.59 个百分点,跑 输沪深300 指数17.72 个百分点;其中制造(-5.59%)>封装(-5.64%)> 分立器件(-5.66%)>存储器(-5.85%)>设计(-7.34%)>设备(-9.57%)> 材料(-11.17%);估值大幅回落。海外市场:费城半导体指数上涨6.79%,创历史新高,首次超过2001 年最高值;矿机及人工智能带动GPU 需求量增长,英伟达作为全球GPU 龙头深度受益,1 月以来(至1 月26 日)股价上涨22.14%;设备龙头整体上涨。 ●12 月北美半导体设备销售额创历史新高,存储芯片价格平稳波动 根据WSTS 统计,11 月全球半导体销售额达376.9 亿美金,同比增长21.5%,环比增长1.6%,创历史新高。其中北美地区半导体11 月销售额87.7 亿美金,同比增长40.2%,环比增长2.6%,是全球半导体销售额增长最快区域。分版块看,12 月北美半导体设备销售额23.88 亿美金,同比增长27.7%,环比增长16.35%,创历史新高;存储芯片价格1 月以来(至1 月26 日)价格 波动。 ●投资建议 我们认为国内IC 产业进入加速发展时期,由市场到核“芯”突破这一准则不断延续,从智能手机领域起步,未来有望在人工智能、汽车电子、5G、物联网等新兴市场实现加速追赶。本月重点推荐卡位新兴应用市场,业绩快速成长的华天科技、长电科技,建议关注通富微电;同时下游资本开支扩张带给上游设备领域的投资机会,建议关注北方华创、长川科技。

中国半导体材料行业市场调研报告

2011-2015年中国半导体材料行业市场调 研及投资前景预测报告 半导体材料是指电阻率在10-3~108Ωcm,介于金属和绝缘体之间的材料。半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料,支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。电子信息产业规模最大的是美国。近几年来,中国电子信息产品以举世瞩目的速度发展,半导体材料及应用已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。 中国报告网发布的《2011-2015年中国半导体材料行业市场调研及投资前景预测报告》共十六章。首先介绍了半导体材料相关概述、中国半导体材料市场运行环境等,接着分析了中国半导体材料市场发展的现状,然后介绍了中国半导体材料重点区域市场运行形势。随后,报告对中国半导体材料重点企业经营状况分析,最后分析了中国半导体材料行业发展趋势与投资预测。您若想对半导体材料产业有个系统的了解或者想投资半导体材料行业,本报告是您不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 第一章半导体材料行业发展概述 第一节半导体材料的概述 一、半导体材料的定义 二、半导体材料的分类 三、半导体材料的特点 四、化合物半导体材料介绍 第二节半导体材料特性和制备 一、半导体材料特性和参数 二、半导体材料制备

第三节产业链结构及发展阶段分析 一、半导体材料行业的产业链结构 二、半导体材料行业发展阶段分析 三、行业所处周期分析 第二章全球半导体材料行业发展分析 第一节世界总体市场概况 一、全球半导体材料的进展分析 二、全球半导体材料市场发展现状 三、第二代半导体材料砷化镓发展概况 四、第三代半导体材料GaN发展概况 第二节世界半导体材料行业发展分析 一、2010年世界半导体材料行业发展分析 二、2011年世界半导体材料行业发展分析 三、2011年半导体材料行业国外市场竞争分析 第三节主要国家或地区半导体材料行业发展分析 一、美国半导体材料行业分析 二、日本半导体材料行业分析 三、德国半导体材料行业分析 四、法国半导体材料行业分析 五、韩国半导体材料行业分析 六、台湾半导体材料行业分析 第三章我国半导体材料行业发展分析 第一节2010年中国半导体材料行业发展状况 一、2010年半导体材料行业发展状况分析 二、2010年中国半导体材料行业发展动态 三、2010年半导体材料行业经营业绩分析 四、2010年我国半导体材料行业发展热点 第二节2011年半导体材料行业发展机遇和挑战分析一、2011年半导体材料行业发展机遇分析

半导体材料发展情况

1、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ - Si)单晶的直 径和减小微缺陷的密度仍是今后CZ-Si 发展的总趋势。目前直径为8 英寸(200mm )的Si 单晶已实现大规模工业生产,基于直径为12英寸(300mm )硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm , 0.18阿工艺的硅ULSI生产线已经投入生产,300mm , 0.13阿工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC‘S 的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI 材料,包括智能剥离(Smart cut )和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI 材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm 左右将是硅MOS 集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2 自身性质的限制。尽管人们正在积极寻找高K 介电绝缘材料(如用Si3N4等来替代SiO2 ),低K介电互连材料,用Cu代替Al 引线以及采用系统集成芯片技术等来提高ULSI 的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA 生物计算等之外,还把目光放在以GaAs、InP 为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi 合金材料等,这也是目前半导体材料研发的重点。 2、GaAs 和InP 单晶材料

半导体材料的发展简史

半导体材料的发展简史 半导体的发现实际上可以追溯到很久以前,1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。 半导体材料是半导体工业的基础,它的发展对半导体工业的发展具有极大的影响。如果按化学成分及内部结构,半导体材料大致可以分为以下几类:一是元素半导体材料,包括锗(Ge)、硅(Si)、硒(Se)、硼(B)等。20世纪50年代,锗在半导体工业中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到20世纪60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种半导体材料,目前的集成电路大多数是用硅材料制造的。二是化合物半导体,它是由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。其中砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。由于砷化镓是一种直接带隙的半导体材料,并且具有禁带宽度宽、电子迁移率高的优点,因而砷化镓材料不仅可直接研制光电子器件,如发光二极管、可见光激光器、近红外激光器、量子阱大功率激光器、红外探测器和高效太阳能电池等,而且在微电子方面,以半绝缘砷化镓(Si-GaAs)为基体,用直接离子注入自对准平面工艺研制的砷化镓高速数字电路、微波单片电路、光电集成电路、低噪声及大功率场效应晶体管,具有速度快、频率高、低功耗和抗辐射等特点。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。氮化镓材料是近十年才成为研究热点,它是一种宽禁带半导体材料(Eg=3.4eV),具有纤锌矿结构的氮化镓属于直接跃迁型

半导体器件的发展趋势

龙源期刊网 https://www.360docs.net/doc/e37680170.html, 半导体器件的发展趋势 作者:张川 来源:《科技传播》2012年第06期 社会发展快速发展,一些传统的功能材料很单一,已经不能够满足人们的需求,所以就出现了具有半导体特性的有机材料,比如塑料、高分子聚合物,这些有机半导体材料有可能会取代传统的由Si和GaAs来制作的材料。有机半导体材料具有独特的优势,它的原料很容易得到,而且原料的重量轻、成本低,制作的工艺简易,还有就是具有良好的环境稳定性。有机半导体材料所制作的器件属于可回收利用的器件,能做到有效环保。根据传统的知识体系来讲,有机体是不能够导电的,所以都是被作为绝缘材料。上个世纪70年代,科学家发现了如果对聚乙炔分子掺杂,就可以成为良性的导体,之后,半导体技术就开始被深入研究,并且取得了很大的成绩。上个世纪80年代,有机半导体研究领域迅速扩张,很多世界知名的企业都使用半导体技术,比如IBM通用、柯达等等;还有剑桥大学和普林斯顿大学也都设立了半导体的研究院。开发出了能够改善半导体稳定性以及特性的新技术以及新型的材料,这些新技术以及新型材料被广泛应用到各行各业当中,大大提高了有机电子器件的性能,比如有机发光二极管、有机传感器、有机场效应晶体管以及有机光伏电池等等。有机半导体器件正在越来越多的应用到各个行业当中,市场份额也在逐年快速增长。 在大家的不懈努力下,有机半导体技术和材料都取得了很大的发展,这个学科集合了材料学、物理和化学等等很多学科,是一个交叉学科,半导体技术正在不断发展,将来还会以更快的速度发展。一些专家认为,有机半导体材料开发出的各种器件正在改变未来高科技的发展。 1 有机太阳电池 传统的太阳电池是化合物薄膜太阳电池,而新型的太阳电池要采用新型的技术,有机太阳电池将作为一种新型产物摆在大家的面前,有机太阳电池的生产流程很简单,而且可以通过讲解来减少对环境的污染,由于这些优点符合当代社会的需要,所以有机太阳电池越来越受到大家的关注。如此廉价的太阳电池会让世界的能源发生巨大的改变。有机太阳电池比传统的电池更薄,重量更轻,受光面积在不断增加,所以可以大大提高光电的使用效率,在电脑等小型设备当中可以当作电源来用。可以使用有机太阳电池作为OLED屏幕的电源,可以大大减少重量。虽然太阳电池很薄、很轻,也很有柔性,但是它的效率不高,而且寿命也比较短,通过研究,改变太阳电池的缺点,使得效率达到10%,寿命也可以超过5年。 2 有机半导体晶体管 有机半导体材料的晶体管是有机电子器件当中很重要的一种器件,比如OFET。当前OFET的技术主要有聚合物、小分子蒸发或者是小分子溶液铸模等等。OFET的优点是成本低、柔性大等等,有很好的发展前景。OFET的发展很迅速,无论是材料还是制备工艺方面都有了突破,它可以使OLED发光,形成逻辑电路,发光场效应晶体管以及单晶场效应晶体管等

几种半导体材料的现状与发展趋势

几种半导体材料的现状与发展趋势 摘要:本文重点对半导体硅材料,gaas和inp单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料等目前达到的水平和器件应用概况及其发展趋势作了概述。 关键词:半导体材料量子线量子点材料 上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和gaas激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。 一、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(cz-si)单晶的直径和减小微缺陷的密度仍是今后cz-si发展的总趋势。目前直径为8英寸(200mm)的si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(ic’s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ulsi生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅ic’s的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,soi材料,包括智能剥离(smart cut)和simox材料等也发展很快。目前,直径8英寸的硅外延片和soi材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅mos集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、sio2自身性质的限制。尽管人们正在积极寻找高k介电绝缘材料(如用si3n4等来替代sio2),低k介电互连材料,用cu代替al引线以及采用系统集成芯片技术等来提高ulsi的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和dna生物计算等之外,还把目光放在以gaas、inp为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容gesi合金材料等,这也是目前半导体材料研发的重点。 二、gaas和inp单晶材料 gaas和inp与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。 目前,世界gaas单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(vgf)和水平(hb)方法生长的2-3英寸的导电gaas衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的si-gaas 发展很快。美国莫托罗拉公司正在筹建6英寸的si-gaas集成电路生产线。inp具有比gaas更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的inp单晶的关键技术尚未完全突破,价格居高不下。

半导体材料的发展

半导体材料的发展文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一,半导体材料(semiconductor material) 引言 导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电阻率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。半导体材料按化学成分和内部结构,大致可分为以下几类。1.元素半导体有锗、硅、硒、硼、碲、锑等。50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。2.化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化铟、锑化铟、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。3.无定形半导体材料用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。4.有机增导体材料已知的有机半导体材料有几十

半导体材料发展简史

半导体材料的发展简史 半导体材料是半导体工业的基础,它的发展对半导体工业的发展具有极大的影响。如果按化学成分及内部结构,半导体材料大致可以分为以下几类:一是元素半导体材料,包括锗(Ge)、硅(Si)、硒(Se)、硼(B)等。20世纪50年代,锗在半导体工业中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到20世纪60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种半导体材料,目前的集成电路大多数是用硅材料制造的。 二是化合物半导体,它是由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。其中砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。由于砷化镓是一种直接带隙的半导体材料,并且具有禁带宽度宽、电子迁移率高的优点,因而砷化镓材料不仅可直接研制光电子器件,如发光二极管、可见光激光器、近红外激光器、量子阱大功率激光器、红外探测器和高效太阳能电池等,而且在微电子方面,以半绝缘砷化镓(Si-GaAs)为基体,用直接离子注入自对准平面工艺研制的砷化镓高速数字电路、微波单片电路、光电集成电路、低噪声及大功率场效应晶体管,具有速度快、频率高、低功耗和抗辐射等特点。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。氮化镓材料是近十年才成为研究热点,它是一种宽禁带半导体材料(Eg=3.4eV),具有纤锌矿结构的氮化镓属于直接跃迁型半导体,是制作绿光、蓝光、紫光乃至紫外发光二极管、探测器和激光器的材料。氮化镓可以与氮化铟(Eg=1.9eV)、氮化铝(Eg=6.2eV)形成合金InGaN、AlGaN,这样可以调制禁带宽度,进而调节发光管、激光管等的波长。 三是非晶半导体。上面介绍的都是具有确定晶格结构的半导体材料,在这些材料中原子排列具有对称性和周期性。然而,一些不具有长程有序的无定形固体(非晶体)也具有明显的半导体特征。非晶半导体的种类繁多,大体上也可按晶态物质的归类方法来分类。从目前研究的深度来看,颇有实用价值的非晶半导体材料首推氢化非晶硅(α-SiH)及其合金材料(α-SiC:H、α-SiN:H),可以用于低成本太阳能电池和静电光敏感材料。非晶Se(α-Se)、硫系玻璃及氧化物玻璃等非晶半导体在传感器、开关电路及信息存储方面也有广泛的应用前景。 四是有机半导体,例如芳香族有机化合物就具有典型的半导体特征。有机半导体的电导特性研究可能对生物体内的基本物理过程研究起着重大推动作用,是半导体研究的一个热门领域,其中有机发光二极管(OLED)的研究尤其受到人们的重视。 半导体材料有重要的战略地位,上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地着世界的、格局和军事对抗的形式,彻底改变人们的生活方式。 常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体

相关文档
最新文档