[工学]运筹学单纯形法

《运筹学》习题集

第一章线性规划 1.1将下述线性规划问题化成标准形式 1)min z=-3x1+4x2-2x3+5 x4 -x2+2x3-x4=-2 4x st. x1+x2-x3+2 x4 ≤14 -2x1+3x2+x3-x4 ≥ 2 x1,x2,x3≥0,x4无约束 2)min z =2x1-2x2+3x3 +x2+x3=4 -x st. -2x1+x2-x3≤6 x1≤0 ,x2≥0,x3无约束 1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。 1)min z=2x1+3x2 4x1+6x2≥6 st2x1+2x2≥4 x1,x2≥0 2)max z=3x1+2x2 2x1+x2≤2 st3x1+4x2≥12 x1,x2≥0 3)max z=3x1+5x2 6x1+10x2≤120 st5≤x1≤10 3≤x2≤8 4)max z=5x1+6x2 2x1-x2≥2 st-2x1+3x2≤2 x1,x2≥0 1.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解 (1)min z=5x1-2x2+3x3+2x4 x1+2x2+3x3+4x4=7 st2x1+2x2+x3 +2x4=3 x1,x2,x3,x4≥0

1.4 分别用图解法与单纯形法求解下列LP 问题,并对照指出最优解所对应的顶点。 1) maxz =10x 1+5x 2 3x 1+4x 2≤9 st 5x 1+2x 2≤8 x 1,x 2≥0 2) maxz =2x 1+x 2 3x 1+5x 2≤15 st 6x 1+2x 2≤24 x 1,x 2≥0 1.5 分别用大M 法与两阶段法求解下列LP 问题。 1) minz =2x 1+3x 2+x 3 x 1+4x 2+2x 3≥8 st 3x 1+2x 2 ≥6 x 1,x 2 ,x 3≥0 2) max z =4x 1+5x 2+ x 3 . 3x 1+2x 2+ x 3≥18 St. 2x 1+ x 2 ≤4 x 1+ x 2- x 3=5 3) maxz = 5x 1+3x 2 +6x 3 x 1+2x 2 -x 3 ≤ 18 st 2x 1+x 2 -3 x 3 ≤ 16 x 1+x 2 -x 3=10 x 1,x 2 ,x 3≥0 123123 123123123 4)max 101512539561515.25,,0z x x x x x x x x x st x x x x x x =++++≤??-++≤?? ++ ≥??≥? 1.6

最新管理运筹学(第二版)课后习题参考答案

最新管理运筹学(第二版)课后习题参考答案 第1章 线性规划(复习思考题) 1.什么是线性规划?线性规划的三要素是什么? 答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么? 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。 答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示: 5.用表格单纯形法求解如下线性规划。

运筹学课后习题解答_1

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题 a) 12 12 12 12 min z=23 466 ..424 ,0 x x x x s t x x x x + +≥ ? ? +≥ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为 最优解,即该问题有无穷多最优解,这时的最优值为 min 3 z=2303 2 ?+?= P47 1.3 用图解法和单纯形法求解线性规划问题 a) 12 12 12 12 max z=10x5x 349 ..528 ,0 x x s t x x x x + +≤ ? ? +≤ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点, 即 1 12 122 1 349 3 528 2 x x x x x x = ? += ?? ? ?? +== ?? ? ,即最优解为* 3 1, 2 T x ?? = ? ?? 这时的最优值为 max 335 z=1015 22 ?+?=

单纯形法: 原问题化成标准型为 121231241234 max z=10x 5x 349 ..528,,,0x x x s t x x x x x x x +++=?? ++=??≥? j c → 10 5 B C B X b 1x 2x 3x 4x 0 3x 9 3 4 1 0 0 4x 8 [5] 2 0 1 j j C Z - 10 5 0 0 0 3x 21/5 0 [14/5] 1 -3/5 10 1x 8/5 1 2/5 0 1/5 j j C Z - 1 0 - 2 5 2x 3/2 0 1 5/14 -3/14 10 1x 1 1 0 -1/7 2/7 j j C Z - -5/14 -25/14

管理运筹学参考习题

一、单项选择题(2分/小题×10小题=20分) 1. 线性规划模型三个要素中不包括()。 A决策变量 B目标函数 C约束条件 D基 2. 能够采用图解法进行求解的线性规划问题的变量个数为 ( )。 A1个 B2个 C3个 D4个 3. 求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有()。 A无界解 B无可行解 C 唯一最优解 D无穷多最优解 4.若某个b k≤0, 化为标准形式时原约束条件()。 A 不变 B左端乘负1 C 右端乘负1 D两边乘负1 5. 线性规划问题是针对()求极值问题。 A约束 B决策变量 C秩 D目标函数 6.一般讲,对于某一求目标最大化的整数规划问题的目标最优值()该问题对应的线性规划问题的目标最优值。 A不高于 B不低于 C二者相等 D二者无关 7.表上作业法的基本思想和步骤与单纯形法类似,那么基变量所在格为()。 A有单位运费格 B无单位运费格 C填入数字格 D空格 8.在表上作业法求解运输问题过程中,非基变量的检验数()。 A大于0 B小于0 C等于0 D以上三种都可能 9.对于供过于求的不平衡运输问题,下列说法错误的是()。 A仍然可以应用表上作业法求解 B在应用表上作业法之前,应将其转化为平衡的运输问题 C可以虚设一个需求地点,令其需求量为供应量与需求量之差。 D令虚设的需求地点与各供应地之间运价为M(M为极大的正数) 1. 线性规划可行域的顶点一定是()。 A非基本解 B可行解 C非可行解 D是最优解 2.为化为标准形式而引入的松弛变量在目标函数中的系数应为()。 A 0 B 1 C 2 D 3 3. 线性规划模型中增加一个约束条件,可行域的范围一般将()。 A增大 B缩小 C不变 D不定 4. 用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检

运筹学习题及答案

运筹学习题答案 第一章(39页) 1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。 (1)max 12z x x =+ 51x +102x ≤50 1x +2x ≥1 2x ≤4 1x ,2x ≥0 (2)min z=1x +1.52x 1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0 (3)max z=21x +22x 1x -2x ≥-1 -0.51x +2x ≤2 1x ,2x ≥0 (4)max z=1x +2x 1x -2x ≥0 31x -2x ≤-3 1x ,2x ≥0 解: (1)(图略)有唯一可行解,max z=14 (2)(图略)有唯一可行解,min z=9/4 (3)(图略)无界解 (4)(图略)无可行解 1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-2 1x +2x +33x -4x ≤14 -21x +32x -3x +24x ≥2 1x ,2x ,3x ≥0,4x 无约束 (2)max k k z s p = 11 n m k ik ik i k z a x ===∑∑ 1 1(1,...,)m ik k x i n =-=-=∑ ik x ≥0 (i=1…n; k=1,…,m) (1)解:设z=-z ',4x =5x -6x , 5x ,6x ≥0 标准型: Max z '=31x -42x +23x -5(5x -6x )+07x +08x -M 9x -M 10x s. t . -41x +2x -23x +5x -6x +10x =2 1x +2x +33x -5x +6x +7x =14 -21x +32x -3x +25x -26x -8x +9x =2 1x ,2x ,3x ,5x ,6x ,7x ,8x ,9x ,10x ≥0

相关文档
最新文档