农杆菌转化拟南芥

农杆菌转化拟南芥
农杆菌转化拟南芥

农杆菌转化拟南芥

1.农杆菌感受态制备

①从YEB平板培养基上挑取农杆菌单克隆,接种于5 mL YEB (含50

μg/mL 利福平)液体培养基中,28oC,200 rpm,过夜培养;

②取2 mL过夜培养液接种于50 mL上述含有利福平的YEB液体培养基中,

28oC,200 rpm,摇床培养至OD达到0.5;

③菌液冰浴30 min,转至预冷的50 mL离心管中,4oC,5000 rpm,离心

10 min,收集菌体;

④ 2 mL预冷的50 mM 无菌CaCl2溶液(含15%甘油)悬浮菌体,即为感

受态细胞;以100 μl/管分装,液氮速冻后,保存于-70oC冰箱,备用。2.质粒转化农杆菌感受态

①吸取构建好的表达载体质粒5 μl,加入到100 μl感受态细胞中,混匀;

②冰浴30 min,液氮冷冻5 min,37oC热击5 min;

③加入800 μl YEB液体培养基,28oC,200 rpm,摇床培养5 h;

④离心,留200 μl上清重悬沉淀,将菌液涂于YEB固体培养基(含质粒对

应的抗生素),28oC培养2 d,挑取单克隆,检测筛选阳性克隆,摇菌后

-70oC保存,用于下一步植物转化。

3.农杆菌侵染拟南芥花序

①将筛选的阳性农杆菌在YEB(抗生素)固体培养基划板培养,至长出单

克隆后挑3-5个单克隆,于5 mL YEB(抗生素)液体培养基中,28oC,200 rpm培养16 h,(以培养基变得很浑浊为准),保菌之后全部接到

250-500 mL的培养基中,培养16 h以上;

②5000 rpm离心20分钟,然后用转化液(1/2MS(只用大量和微量元素),

添加50 g/L的蔗糖,调pH为5.8左右,然后加200 ul/L的Silwet L-77

混合),剧烈悬浮沉淀至完全悬起;

③在拟南芥盛花期,将悬浮液直接浸泡地上部分约1分钟,然后用保鲜膜

完全包裹以保湿,放回培养室12小时以上打开保鲜膜;

④待种子成熟后(半个月左右),收取种子用于下一步筛选工作。

4.拟南芥转基因苗筛选

①种子消毒:用75%的酒精添加0.1%的Triton X-100在1.5 mL的离心管中

摇晃15 min,然后在超净台中用95%的酒精洗两次,最后一次直接把种

子连同酒精倒在灭菌过的滤纸上,滤纸直接放在超净台上,吹干种子(30

min以上),然后把滤纸对折,左手捏着一角,右手拿一把镊子轻轻敲击

滤纸把种子均匀撒到筛选培养基上;

②抗性苗筛选:MS培养基中加25 mg/L的氨苄青霉素,抑制细菌的生长;

根据质粒抗性,在培养基中还得加20 mg/L Basta或25 mg/L潮霉素。筛选培养15 d左右,把阳性苗转移到土中,用透明的薄膜盖3 d左右以保湿;

③PCR鉴定:提取抗性苗DNA,外源基因特异引物检测基因整合情况;

④荧光定量PCR分析:提取抗性苗RNA,外源基因特异引物检测基因表

达情况。

农杆菌侵染拟南芥花序的转化方法

农杆菌侵染拟南芥花序的转化方法 制备转化用的农杆菌菌液 准备: 1.灭菌试管 400毫升细长烧杯2瓶,离心瓶4-6个(250ml)。 2.试剂:YEP 1200ml(每瓶300ml 共4瓶)+Kan 1;1000,Rif1:500。 1/2MS+2%蔗糖(灭菌115度20分钟),Silwet在-20℃贮存。 3.步骤: 共转化农杆菌:于中午12点接菌于有YEP培养液的试管中10ul:10ml接种。28℃,3000rpm摇过夜,约30小时,次日下午6点将已摇活的菌按(1:400)及750ul菌液转至汉300毫升YEP+K50+Rif中培养28℃,300rpm约14小时,次日上午8点测OD值,用YEP+Rif作为空白对照,当菌液达到OD600为1.5~3.0之内时,可收集菌体于250ml离心瓶(灭菌),4℃,4000g 离心10min 。用10%蔗糖(含0.02%silwet)稀释至OD600 约为0.8-- 1.0左右即,用10%蔗糖作对照。转化时将花在溶液中浸泡50s左右,于弱光下生长。 4.浇水:转化前一天将需要做转化的野生型拟南芥苗子浇水浇透。 (注意:选取上述配好的溶液2ml,充分打碎管底部的菌体,在将混匀的菌体溶入600ml溶液中,混匀后再加入Silwet(100%)120ul终浓度为0.02%)。 2.先将浇透水用于转化的苗子的夹全部剪掉,再用宽胶带把花盆的土封好。3.转化的准备工作:2个400细长烧杯,宽胶带,记号笔,表等。 4.转化过程略,视苗的长势弱 0.8 Pa 3`,长势好的0.8 Pa 5`。 5.标记好,将转化好的苗平放于盒子内,上盖封口膜封好,避光培养24hrs 2天后,将植株立起正常培养,浇水,3天1次。 花序浸泡(flower-dipping)法转化拟南芥

水稻农杆菌转化方法

方法1 NB基本培养基(右边的为N6,大量相同,加glycine甘氨酸2 mg/L) KNO3 2830 mg/L (NH4)2SO4 463 mg/L KH2PO4 400 mg/L MgSO4.7H2O 185 mg/L CaCl2.2H2O166 mg/L FeSO4.7H2O 27.8mg/L 5.6 Na2EDTA 37. 5 mg/L 7.5 MnSO4.4H2O 10 mg/L 27.8 H3BO3 3 mg/L 1.6 ZnSO4.7H2O 2 mg/L 1.5 Na2MoO4.2H2O 0.25 mg/L 0.25 CuSO4.5H2O 0.025 mg/L 0.025 CoCl2.6H2O 0.025 mg/L 0.025 KI 0.75 mg/L 0.8 盐酸硫胺素thiamine CHL VB1 10 mg/L 0.1 盐酸吡哆醇pyridoxine-CHL VB6 1 mg/L 0.5 烟酸nicotinic acid 1 mg/L 0.5 肌醇myo-inositol 100 mg/L 100 水解酪蛋白300 mg/L 谷氨酰胺500 mg/L 脯氨酸500 mg/L 蔗糖30,000 mg/L PHytagel 2.6 mg/L pH 5.8 Basic培养基 B N6(大量)50ml (20倍) A Ms-Fe盐10-20ml(100倍)CH 0.3g/L S B5 macro 10ml (100倍)phytogel 4g/L或agar 8g/L I B5 vita 10ml (100倍)sucrose 30g/L C proline 0.5g/L glutamine 0.5g/L N6 (大量梗稻种子) 终浓度母液(20倍) 终浓度母液(20倍)培KNO32830mg/L56.6g/L Mg SO4.7H2O185 mg/L 3.7 g/L 养(NH4)2SO4463 mg/L9.26 g/L CaCl2.2H2O 166 mg/L 3.32 g/L 基KH2PO4400 mg/L8.00 g/L 制备1 KNO3, (NH4)2SO4, KH2PO4同时倒入烧杯,加水搅拌, 使之完全溶解.

农杆菌转化法原理

农杆菌转化法原理 This manuscript was revised on November 28, 2020

农杆菌转化法原理: 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位(受伤处的细胞会分泌大量酚类化合物,从而使农杆菌移向这些细胞),并诱导产生冠瘿瘤或发状根。 根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减速分裂稳定的遗传给后代,这一特性成为农杆菌介导法植物转基因的理论基础。 人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。 农杆菌转化植物细胞涉及一系列复杂的反应,主要包括:①受伤的植物细胞为修复创伤部位,释放一些糖类、酚类等信号分子。②在信号分子的诱导下,农杆菌向受伤组织集中,并吸附在细胞表面。③转移DNA上的毒粒基因被激活并表达,同时形成转移DNA的中间体。④转移DNA进入植物细胞,并整合到植物细胞基因组中。 方法:(根据不同受体环境基因要求而不同) 1.农杆菌准备 2.外植体的准备(愈伤组织、悬浮细胞系、幼嫩茎段或叶片); 3.用 MS-AS液体培养基稀释原菌液15倍(1.5ml / 20ml)或离心后稀释3倍; 4.外植体与菌液共培养20 分钟; 5.放置在带滤纸的培养皿上(注意充分吸干多余的菌液); 6.将外植体接种到MS-AS固体诱导培养基,培养2-3天 ; 7.移至含卡那霉素(Kan)300mg/L和羧苄青霉素(Cb 300mg/L)的固体筛选培养基上进行Kan抗性愈伤组织的筛选; 8.隔20天,进行第二次筛选; 9.抗性愈伤组织在固体筛选培养基上分化成苗; 10 在生根培养基上生根,获得完整的再分化植株。

农杆菌介导转基因的原理

农杆菌介导转基因的原理? 转基因技术的飞速发展为生物定向改良和分子育种提供了一种较佳的方法,并使其成为基因工程和育种的最有效途径,目前应用较广泛的转基因技术有农杆菌介导法、花粉通道法、显微注射法、基因枪法、离子束介导法等等,其中农杆菌介导法以其费用低、拷贝数低、重复性好、基因沉默现象少、转育周期短及能转化较大片段等独特优点而备受科学工作者的青睐。农杆菌介导法主要以植物的分生组织和生殖器官作为外源基因导入的受体,通过真空渗透法、浸蘸法及注射法等方法使农杆菌与受体材料接触,以完成可遗传细胞的转化,然后利用组织培养的方法培育出转基因植株,并通过抗生素筛选和分子检测鉴定转基因植株后代。 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。因此,农杆菌是一种天然的植物遗传转化体系。人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。 农杆菌转化的详细机理已有大量综述, 并介绍新进展. 野生型根癌农杆菌能够将自身的一段DNA转入植物细胞. 因为转入的这一段DNA含有一些激素合成基因, 因而导致转化细胞自身激素的不平衡从而产生冠瘿瘤. 这些致瘤菌株都含有一个约200 kb的环状质粒, 被称为Ti(tumor inducing)质粒, 包括毒性区(Vir 区)、接合转移区(Con区)、复制起始区(Ori区)和T-DNA区4部分. 其中与冠瘿瘤生成有关的是Vir区和T-DNA区. 前者大小为30 kb, 分virA~J等至少10个操纵子, 决定了T-DNA的加工和转移过程. T-DNA可以将携带的任何基因整合到植物基因组中, 但这些基因本身与T-DNA的转移与整合无关, 仅左右两端各25 bp的同向重复序列为其加工所必需, 其中14 bp是完全保守的, 分10和4 bp不连续的两组. 两边界中以右边界更为重要. VirA作为受体蛋白接受损伤植物细胞分泌物的诱导, 自身磷酸化后进一步磷酸化激活VirG蛋白; 后者是一种DNA 转录活化因子, 被激活后可以特异性结合到其他vir基因启动子区上游的一个叫vir框(vir box)的序列, 启动这些基因的转录. 其中, virD基因产物对T-DNA进行剪切, 产生T-DNA单链. 然后以类似于细菌接合转移过程的方式将T-DNA与VirD2组成的复合物转入植物细胞], 在那里与许多VirE2蛋白分子(为DNA单链结合蛋白)相结合, 形成T链复合物(T-complex). 在此过程中VirE1作为VirE2的一个特殊的分子伴侣具有协助VirE2转运和阻止它与T-DNA链结合的功能. 实验表明, 转基因植物产生的VirE2蛋白分子也能在植物细胞内与VirD2-T-DNA形成T链复合物. 之后, 这一复合物在VirD2和VirE2核定位信号(NLS)引导下以VirD2为先导被转运进入细胞核. 转入细胞核的T-DNA以单或多拷贝的形式随机整合到植物染色体上. 研究表明T-DNA优先整合到转录活跃区, 而且在T-DNA的同源区与DNA的高度重复区T-DNA的整合频率也比较高. 整合进植物基因组的T-DNA也有一定程度的缺失、重复、填充和超界等现象发生, 例如在用真空渗透法转化的拟南芥中有66%出现超界现象, 甚至有整个Ti质粒整合进植物基因组的报道, T-DNA超界转移现象的机理尚不完全清楚, 可能与其左边界周边序列有关. 现在, 对农杆菌感染过程中其本身因子的转录与调控已研究得相当深入, 但

农杆菌介导转化和再生的杨树

农杆菌介导法转基因杨树 摘要: 杨树品种已发展为一种植物转化和再生系统。叶植,从稳定发芽培养的一个杨树杂交NC - 5339(银白杨标本),被共培养用于农杆菌遗传转化关于一个烟草的看护培养。致瘤的和无防备的农杆菌株隐藏包含一个双元载体,其中包含两个新霉素磷酸转移酶II(NPT II')和细菌5莽草酸3-磷酸合酶(EPSP)(AROA)嵌合基因融合。没有开发芽,叶外植体时,双元缴械拉力的根癌农杆菌菌株共培养。然而,转化的植物,没有野生型的T-DNA获得使用农杆菌株原癌基因的二进制。NPT II '酶的活性检测,Southern印迹法分析和免疫学检测证实了遗传转化成功细菌EPSP合酶Western印迹。这是首次报道成功收回转化植株森林树,也是第一个记录的插入和重要农艺性状的外源基因的表达成木本植物物种。 关键词:白杨;转化;农杆菌 前言 基因工程树种的能力将是特别有用的遗传改良,如大型成熟的植物并长期有性世代倍(Nelson and Haissig 1984; Sederoff and Ledig 1985)。森林树种的应用重组DNA技术的一个先决条件是发展的基因转移系统。方法,例如显微注射(Crossway et al.1986)和直接DNA摄入(Paszkowski et al. 1985; Fromm et al. 1986) 已被用于外源基因引入到草本作物物种,但是,最有效的基因转移的方法,利用自然感染冠瘿病的机制造成的有机体,农杆菌(Bevan et al. 1983 ; Fraley et al. 1983 ; Herrera-Estralla, 1983). 。根癌农杆菌的自然感染周期期间,细菌的T-DNA 整合到宿主植物的染色体,从而导致肿瘤对植物的生产(奇尔顿等人,1980)。可以删除和替换而不影响根癌农杆菌的T-DNA转移到植物(DeGreve等,1982)的能力,由异源基因的肿瘤诱导基因。这些修改后的根癌农杆菌菌株的原生质体,悬浮细胞,外植体组织的共培养,可导致转化植物缺乏致癌基因性状的隔离。因此,我们着手开发一个混合型杨树无性系,银白杨x grandidentata的(NC - 5339 )作为载体的农杆菌转化体系。 有许多特征能使杨树NC-5339得到理想的转化研究首先,杨树是一个重要的全球森林树种。这是一个快速增长的落叶阔叶树,栽培主要用于纸浆生产。对

(完整word版)农杆菌介导植物转化的机制及影响转化效率的因素

二、农杆菌介导植物转化的机制及影响转化效率的因素 转化机制: 与植物基因转化有关的农杆菌有两种类型:根癌农杆菌(Agrobacterium tumefaciens)和发根农杆菌(Agrobacterium rhizogenes)。根癌农杆菌含有Ti 质粒。发根农杆菌含有Ri 质粒。根癌农杆菌的Ti 质粒和发根农杆菌Ri 质粒都具有一段转移DNA (transfer DNA,又称T-DNA),在农杆菌侵染植物时,T-DNA 可以插入到植物基因组中,使其携带的基因在植物中得以表达。由于T-DNA 能够进行高频率的转移,而且Ti 质粒和Ri 质粒上可插入大到甚至150kb 的外源基因,因此,Ti 质粒和Ri 质粒成为植物基因转化中的理想载体系统。 1 与农杆菌转化相关的基因 与转化相关的基因主要包括农杆菌染色体上的基因和Ti 质粒上T-DNA 以外Vir 区的基因。染色体基因包括chvA、chvB、att、pscA、chvD 以及chvB。它们大多编码一些膜相关蛋白,负责细菌向植物受伤细胞趋化移动和帮助细菌附着于植物受伤细胞上。ChvD 蛋白可能在低pH 和磷酸饥饿情况下提高VirG 蛋白的合成水平。ChvE 与VirA 蛋白共同对virG 起激活作用。 原始的Ti质粒根据其功能的不同,可分为4个区: (1)T-DNA区:是在农杆菌侵染细胞时,从Ti质粒上切割下来转移到植物基因组中的一段DNA,其携带的基因与肿瘤的形成有关,但与T-DNA本身的转移与整合无关。T-DNA 上最重要的是两端的2个边界(LB和RB),它们是T-DNA转移所必需的。只要其存在,T-DNA可以将携带的任何基因转移并整合到植物基因组中, T-DNA的右边界在T-DNA的整合中对于靶DNA位点的识别具有重要作用,因此,尤以右边界更为重要. (2)毒性区:位于T-DNA以外的1个30~40 kb的区域内,该区段编码的基因但对T-DNA 的转移和整合非常重要.这些基因也称为Ti质粒编码毒性基因(vir)。 (3)接合转移区:该区段存在有与细菌间接合转移有关的基因(tra),调控Ti质粒在农杆菌间转移。 (4)复制起始区:该区段调控Ti质粒的自我复制。在遗传转化过程中除了Ti质粒上的基因参与外,还有农杆菌染色体基因。染色体基因包chvA、chvB、att、pscA、chvD 以及chvB。它们大多编码一些膜相关蛋白,负责细菌向植物受伤细胞趋化移动和帮助细菌附着于植物受伤细胞上。延伸因子P对于农杆菌的生长非常重要,但非必需.高水平的糖结合蛋白一ChvE可以扩大VirA蛋白对酚类物质的识别范围。结合ATP盒式转运体类似物蛋白ChvD,参与Vir区基因的表达调控,chvD基因座中插入无启动子的lacZ,农杆菌侵染力以及Vir区基因表达量大大下降,ChvD突变体中virG组成型表达侵染力则得以恢复,这一现象说明ChvD通过影响virG表达控制毒性。 2 Vir 基因的诱导表达机制 在植物受到创伤后,创伤组织的细胞释放出创伤信号——酚类化合物,如乙酰丁香酮。

农杆菌介导的基因瞬时表达技术及其应用

龙源期刊网 https://www.360docs.net/doc/e414938672.html, 农杆菌介导的基因瞬时表达技术及其应用 作者:宋建刘仲齐 来源:《天津农业科学》2008年第01期 摘要:主要介绍了农杆菌介导的基因瞬时表达方法的原理、技术、影响因素及其在外源基因表达分析、启动子分析、基因沉默及防卫反应等方面的应用。 关键词:农杆菌;植物;基因瞬时表达 中图分类号:Q789文献标识码:A文章编号:1006—6500(2008)01—0020—03 把外源基因导入受体植物内,是研究基因功能和获得遗传修饰有机体的主要手段。农杆菌介导法是目前最常用的遗传转化方法,当农杆菌感染植物受伤组织后,质粒上的目标基因可以进入植物细胞内并整合到植物染色体中,这种转化细胞经过诱导分化,再生成为转基因植株。通常大多数植物的遗传转化和再生效率低下,费时且费用昂贵。即使对于转化程序大大简化的植物,例如拟南芥,仍然需要花费数月的时间来产生适合分析的转基因植株。农杆菌介导的瞬时表达提供了一种快速分析基因型功能的方法,该方法是Rossi等在1993年创建的。他们将带有重组质粒的农杆菌,经诱导后通过抽真空渗透入植物叶片进而渗透入植物细胞,通过目的基因瞬时表达来检测植物中农杆菌介导的T-DNA转移的效率。随后人们又采用针管注射活体植株叶片,来进行农杆菌介导的基因瞬时表达检测。近几年该项技术不断完善、发展,已被广泛用于外源基因表达分析、无毒基因与抗性基因的相互作用、基因沉默、启动子分析等许多植物分子生物学领域。 1主要原理 农杆菌介导的瞬时表达是将目的基因插入共整合载体或双元载体,转化根癌农杆菌,后者经酚类化合物诱导处理后,通过真空渗透或针管注射入植物叶片组织中,农杆菌在叶片内与植物细胞紧密接触。诱导处理在转录水平激活Vir区基因,真空渗透或注射使得农杆菌与植株叶片细胞接触,从而实现了T-DNA转移进入植物细胞核。大部分T-DNA并未整合入植物基因组而是暂时存在于核内并在植物细胞转录、翻译成分的协助下瞬时表达T-DNA基因,通常在数小时后即可检测到外源基因的表达,并在1~2d内达到最高值。而少量整合进植物染色体的 T-DNA在瞬时表达中不起作用或极为微弱。

农杆菌转化法原理

农杆菌转化法原理: 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位(受伤处的细胞会分泌大量酚类化合物,从而使农杆菌移向这些细胞),并诱导产生冠瘿瘤或发状根。 根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减速分裂稳定的遗传给后代,这一特性成为农杆菌介导法植物转基因的理论基础。 人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。 农杆菌转化植物细胞涉及一系列复杂的反应,主要包括:①受伤的植物细胞为修复创伤部位,释放一些糖类、酚类等信号分子。②在信号分子的诱导下,农杆菌向受伤组织集中,并吸附在细胞表面。③转移DNA上的毒粒基因被激活并表达,同时形成转移DNA的中间体。④转移DNA进入植物细胞,并整合到植物细胞基因组中。 方法:(根据不同受体环境基因要求而不同) 1.农杆菌准备 2.外植体的准备(愈伤组织、悬浮细胞系、幼嫩茎段或叶片); 3.用MS-AS液体培养基稀释原菌液15倍(1.5ml / 20ml)或离心后稀释3倍; 4.外植体与菌液共培养20 分钟; 5.放置在带滤纸的培养皿上(注意充分吸干多余的菌液); 6.将外植体接种到MS-AS固体诱导培养基,培养2-3天; 7.移至含卡那霉素(Kan)300mg/L和羧苄青霉素(Cb 300mg/L)的固体筛选培养基上进行Kan抗性愈伤组织的筛选; 8.隔20天,进行第二次筛选; 9.抗性愈伤组织在固体筛选培养基上分化成苗; 10 在生根培养基上生根,获得完整的再分化植株。

农杆菌感受态细胞的制备方法

实验一农杆菌感受态细胞的制备 [目的及要求] 了解和掌握农杆菌感受态细胞制备的原理和方法。 [实验原理] 在利用根癌农杆菌介导的基因转化中,首先要获得含有目的基因的农杆菌工程菌株。 在基因工程操作中,感受态细胞的制备和质粒的转化是一项基本技术。感受态是细菌细胞具有的能够接受外源DNA的一种特殊生理状态。农杆菌的感受态可 用CaCl 2处理而诱导产生。将正在生长的农杆菌细胞加入到低渗的CaCl 2 溶液中, 0℃下处理便会使细菌细胞膜的透性发生改变,此时的细胞呈现出感受态。制备好的农杆菌感受态细胞迅速冷冻于-70℃可保存相当一段时间而不会对其转化效率有太大的影响。 [实验仪器、材料和试剂] 一、仪器:超净工作台,恒温摇床,冷冻高速离心机,高压灭菌锅,冰箱, -70℃超低温冰柜,分光光度计,接种针,10ml试管,50ml离心管,1.5ml 离心管,冰浴,微量进样器及吸头。 以上玻璃仪器和离心管需在用前灭菌,灭菌条件:120℃,15分钟。 二、材料:土壤农杆菌LBA4404菌株或其它农杆菌菌株 三、试剂:YEB液体培养基(1L):酵母提取物1g,牛肉膏5g,蛋白胨5g, 蔗糖5g,MgSO 4·7H 2 O 0.5g,pH7.0,高压灭菌。 利福平(Rif)储液:50mg/ml 20mM CaCl 2 ,高压灭菌。 [实验步骤] 1、挑取根癌农杆菌LBA4404单菌落于3ml的YEB液体培养基(含Rif 50mg/l)中,28℃振荡培养过夜; 2、取过夜培养菌液1ml接种于50mlYEB(Rif 50mg/l)液体培养基中, 28℃振荡培养至OD 600 为0.5;

3、取2ml菌液,13000rpm,离心30sec, 弃上清; ,使农杆菌细胞充分悬浮,冰浴30min; 4、加入1000μl 20mM CaCl 2 5、13000rpm,离心30sec,弃上清,置于冰上,加入500μl预冷的20mM CaCl ,充分悬浮细胞,冰浴中保存,24hr内使用,或液氮中速冻1min,置-70℃ 2 保存备用。 实验二质粒DNA直接导入农杆菌 [目的及要求] 了解和掌握质粒DNA转化农杆菌细胞的原理和方法,获得能用于植物转化的工程菌。 [实验原理] 在低温下,外源DNA(质粒)可吸附到感受态细胞表面,诱导细胞吸收DNA。(加入热激原理)转化了质粒DNA的农杆菌随后28℃恢复培养,可使质粒上携带的编码抗生素的抗性基因得到表达,因此,转化了质粒的农杆菌细胞可在含有相应抗生素的培养基上生长,而没有转化的细胞则无法生长。

农杆菌介导转基因植物T-DNA的整合方式

HEREDITAS (Beijing) 2011年12月, 33(12): 1327―1334 ISSN 0253-9772 https://www.360docs.net/doc/e414938672.html, 综 述 收稿日期: 2011?03?30; 修回日期: 2011?07?25 基金项目:国家科技重大专项(编号:2009CB118400)和国家自然科学基金项目(编号:30971795, 31071433)资助 作者简介:杨琳, 硕士研究生, 专业方向:生化与分子生物学。E-mail: myyanglin1986@https://www.360docs.net/doc/e414938672.html, 通讯作者:李晚忱, 博士, 教授, 研究方向:玉米遗传育种与生物技术。E-mail: aumdyms@https://www.360docs.net/doc/e414938672.html, 网络出版时间: 2011-10-18 8:50:47 URL: https://www.360docs.net/doc/e414938672.html,/kcms/detail/11.1913.R.20111018.0850.002.html DOI: 10.3724/SP.J.1005.2011.01327 农杆菌介导转基因植物T-DNA 的整合方式 杨琳, 付凤玲, 李晚忱 四川农业大学玉米所, 成都 611130 摘要: 农杆菌介导的遗传转化已被广泛应用于植物转基因研究。作为外源基因的载体, 农杆菌T-DNA 片段在 植物基因组中的整合方式, 不仅影响外源基因的整合效率及稳定性, 还会影响外源基因的表达特性。文章就农杆菌介导的T-DNA 整合的两种主要模式、规律及相关研究手段进行综述, 为农杆菌介导的转基因及T-DNA 插入突变等相关研究提供借鉴。 关键词: 农杆菌; T-DNA; 侧翼序列; 整合; 转基因 T-DNA integration patterns in transgenic plants mediated by Agrobacterium tumefaciens YANG Lin, FU Feng-Ling, LI Wan-Chen Maize Research Institute , Sichuan Agricultural University , Chengdu 611130, China Abstract: The genetic transformation mediated by Agrobacterium tumefaciens has been widely applied to research of transgenic plants. As the vector of the exotic genes, the integration patterns of T-DNA fragments affects not only transfor-mation efficiency and stability, but also expression properties of the transgenes. This review summaries the two major pat-terns and the rules of T-DNA integration in Agrobacterim -mediated transformation, rules of T-DNA mediated by Agrobac-terium tumefaciens , as well as research tools for flanking sequence amplification. It is attempted to provide references for researches on transformation and T-DNA integration mutation mediated by Agrobacterium tumefaciens . Keywords: Agrobacterium tumefaciens ; transfer DNA; flanking sequence; integration; transgene 目前有关植物转基因的方法主要分为两大类, 一类是无转化载体引导的DNA 的直接转化, 另一类是农杆菌介导的转化, 其中后者由于操作简单、转化效率高、插入片段稳定性好、转基因拷贝数低而成为转基因策略中的首选方法[1,2]。农杆菌细胞中含 有基因组DNA 和质粒DNA, 依农杆菌的不同, 质粒分别有Ti 质粒和Ri 质粒, 其上都有一段T-DNA 。农杆菌细胞侵染植物伤口后, 可将T-D N A 插入到植 物基因组中, 从而实现外源基因向植物细胞的转移与整合, 最后通过植物细胞和植物组织培养可

花序浸染法转化拟南芥

花序浸染法转化拟南芥 1 种植或者移栽拟南芥之前都需要提前一天泡土,泡土过程中要加足量的水。营养土和蛭石1:1比例混合。 2 可以采取两种方法种植野生型拟南芥:一种是直接在大钵子里种八、九颗,小钵子里种四、五颗,等它稍微长大以后去掉长势不好的或者不能成活的,大钵子保留四颗,小钵子保留两颗,这种方法不用移栽;另一种是现在大钵子里种上几十颗(小钵子里相应的减少),等它们长成小苗后移栽(千万不要等它们长大了再移栽,因为这时它们的根会缠绕在一起,很不好移栽,而且还容易伤根),这种方法移栽比较麻烦,但是在移栽过程中能保证你要移栽的每一颗都是长势良好的拟南芥。不管你采取哪种方法,在种下拟南芥后都需要浇水并盖膜,盖膜的目的是为了保持水分。注意:移栽拟南芥后还需要盖3到4天的膜,因为刚移栽的苗子比较小。总之盖膜时间自己灵活掌握。 3 转拟南芥一般用GV3101这个农杆菌,在你电转农杆菌,挑取阳性克隆检测后,先用2ml离心管少量摇菌,每管装1ml的LB,分装2管,摇8—10小时(时间灵活掌握,有时候需要摇更长的时间才能浑浊)待浑浊后再转移到500ml三角瓶(按1:100的比例装有200ml的LB)中大量摇菌8—10小时直到浑浊为止(有时候需要摇更长的时间才能浑浊)。浑浊的标准是OD值为0.8,但是现在基本都不测OD值。(在摇菌过程中所用的离心管和LB要灭菌,另外还要注意添加抗生素利福平,最好选用利福平和另外一种到两种抗生素以达到双抗或者三抗的效果,实际上双抗就可以了,理论上可以添加三种抗生素,一种是利福平,GV3101农杆菌本身就是抗利福平的;另一种是农杆菌自身所携带的协助Ti质粒载体上的基因所抗的抗生素;还有一种就是T-DNA区内基因所对应的抗生素),接下来就是离心富集农杆菌(用离心瓶或者是50ml的大离心管,这个时候离心瓶或者50ml大离心管可以灭菌也可以不灭菌),然后用100ml的5﹪的蔗糖悬浮,蔗糖溶液中加入20微升表明活性剂,也就是浓度0.02%(此时的蔗糖溶液就不用灭菌了,因为以后的侵染也不在超净工作台操作)。要转的每个基因的每个载体都是先2ml少量摇菌,然后按1:100的比例200ml大量摇菌。 4 在拟南芥初次开花时将花蕾剪掉,可以促进侧枝更多的花枝的增生。适合转化植株的花卉并没有成熟,也没有产生已受精的角果。在用花序侵染法转拟南芥之前,先用剪刀剪去已经长成的角果(因为这些角果将来结的种子肯定是非转基因的,如果不剪掉的话会降低阳性率,本身阳性率已经很低了,再降低就更不爽了),把100ml的5﹪的蔗糖悬浮的菌液倒入大皿内,然后把拟南芥的花序浸入进去侵

农杆菌电击感受态的制备_转化及验证

农杆菌电击感受态的制备_转化及验证 农杆菌电击感受态的制备,转化及验证 1. 制备农杆菌电转感受态 (1)挑取根癌农杆菌EHA 105单菌落,接种于5mlLB〔含利福平(Rif) 50mg/L,;链霉素100mg/L)液体培养基中,28'C, 220rpm震荡培养过夜。 (2)将2m1过夜培养的菌液加到50ml含同样抗生素的LB 培养基中,28'C, 220rpm震荡3-4小时,至OD600=左右。 (3) 5000rpm离心5分钟,去上清。 (4) 加入40m1 10%甘油悬浮菌体,冰浴30min. (5) 4'C, 5000rpm离心5分钟,去上清。 (6 加入30mL10%甘油重悬浮菌体, 4'C, 5000rpm离心5分钟。 (7)重复步骤6一次,去上清,加入2ml10%甘油悬浮,分装于的离心管中(200 p 1/管)备用。 2 农杆菌感受态的电转化 〔I)取2 ul质粒加到200 u I EHA 105感受态细胞中,轻轻混匀,冰浴 30分钟。 (2)把质粒和感受态混合液吸入电极杯,电击转化。 (3)马上加入lml新鲜的LB液体培养基,28'C, 150rpm 轻摇4-6小时。

(4)收集菌体涂布于含有链霉素100mg/L),利福平(50mg/L)及质粒所含的抗性的LB固体培养基平板上。 28℃培养2-3天。其实和大肠杆菌电转化差不多,只不过培养温度是28度,摇的时间长一些,还有就是链霉素和利福平两种抗生素要加上,目的是防止根癌脓杆菌自带质粒的丢失,不过具体要加哪些抗生素还得看你是那种根癌脓杆菌非常感谢我用的不是电转化是把茎和叶浸在农杆菌液里30秒..想知道为什么不是把菌液直接滴在土里可以采用注射法导入农杆菌还有就是把植株取出放入侵染液中用真空渗透法导入 感受态制备及转化方案二 1、农杆菌选择:LBA4404、EHA105、GV3101 2、农杆菌活化:将保存的农杆菌在固体LB培养基上画线,抗生素浓度为:50μg/ml。28℃培养。 3、农杆菌感受态细胞的制备: 1)挑取单菌落接种于3ml LB液体培养基中,220rpm 28℃振荡培养至OD600 =。 2)吸取菌液于离心管中,冰浴10min;3)5000rpm离心30s,弃去上清液; 4)沉淀用 ml NaCl 悬浮,冰浴20min; 5)5000rpm离心30s,弃去上清液; 6)每管用100μl 20mMCaCl2悬浮,用于转化; 制备好的感受态细胞可马上使用,也可按每管200ul分装于无菌离心管中,于4℃保存48小时内使用,长期贮存时

拟南芥转化

1农杆菌感受态细胞的制备 挑取根癌农杆菌GV3101单菌落于 5 ml含100 μg/ml利福平(Rifampicin),50 μg/ml卡那霉素(Kanmycin)和50 μg/ml庆大霉素(Genmycin)的LB液体培养基中,28℃振荡培养过夜;取过夜培养菌液500 μl接种于50 ml LB(含相应抗生素)液体培养基中,28℃振荡培养4-8小时(OD600为0.5-0.8);冰浴30分钟,4,000 rpm,4℃离心10分钟,加入10 ml预冷的20 mM CaCI2悬浮农杆菌细胞,4000 rpm,4℃离心10分钟;加入2 ml预冷的20 mM CaCl2悬浮细胞,冰浴,分装成每管100 μl,液氮中速冻后,置-80℃保存备用。 2.质粒转化农杆菌GV3101 将构建的带有目的基因的质粒pCAMBIA-1304-plc转化(冻融法) 根癌农杆菌GV3101,步骤如下: 1) 从-80℃冰箱中取出GV3101 感受态细胞(100 μl),置于冰上解冻; 2) 加入5 μl 含目的基因的质粒,轻轻混匀;冰水浴5 min; 3) 液氮冷冻8 min; 4) 37℃水浴热激5 min; 5) 加入900 μl LB/ (Gen + Kan + Rif) 液体培养基后于28℃,160 r/min 振荡培养3-5 h 复苏; 6) 复苏结束后于4000 r/min 室温离心5 min; 7) 吸去800 μL 上清,然后重悬菌体,将菌体涂布于LB/ (Gen + Kan + Rif) 固体平板上;

8) 28℃倒置培养2 d 直至长出阳性菌落; 9) 挑取单克隆菌落,经LB/ (Gen + Kan + Rif) 液体培养,通过菌落(液) PCR验证,以确认是否成功转化。经验证转化成功的农杆菌经即可用于后期拟南芥转化用。 (3拟南芥的转化 在拟南芥抽苔4-5厘米时剪去主枝顶端,促进侧枝生长,约4-5天后进行转化,转化前要使土壤充分湿透,拟南芥苗要打药杀虫。 转化时将拟南芥的花序倒扣在盛有菌悬液的容器中,浸泡10-30秒,转化完毕后,将小花盆侧放于托盘中,盖上黑色塑料布,12-24小时后揭开塑料布,直立放置花盆,按照正常的方法培育植株至结实,收获成熟种子 将已经转化的Tl代成熟种子收取后,37℃烘干后准备阳性植株的筛选。由于表达载体带有除草剂抗性标记基因,所以用Basta(l:1(XX〕)进行阳性植株的筛选。将Tl代种子在消毒之后均匀撒播在培养土的表面,罩上盖子,当种子出苗后3天,打开盖子,在幼苗生长到2礴片真叶后,喷洒Basta筛选阳性植株。) 3拟南芥培养和转化 3.1 拟南芥培养 首先是拟南芥种子消毒,将待播拟南芥种子(每管100 μL) 分装于1.5 mLEppendorf 离心管中,每管加入1 mL 70%乙醇,振荡器上充分混匀,放置2 min,微型离心机上离心后,用 1 mL 枪头吸去乙醇,然后加入1 mL 10%NaClO,振荡器上充分混匀,放置15 min,

农杆菌介导法

农杆菌介导的高效水稻遗传转化体系的研究A Highly Efficient Agrobacterium - mediated Rice Transformation Method 水稻是基因组研究的模式植物 ,近年来水稻基因组研究取得了很大进展 ,构建了遗传图谱和物理图 谱 ,完成了籼稻和粳稻的全基因组草图测2 - 3序 ,以及第 1 号和第 4 号染色体的精细测4 - 5序 ,并对第 10 号染色体的结构进行了详细分析。在此基础上 ,各实验室大规模地 ,系统地进行水稻功能基因研究 ,普遍采用的研究手段是基因标签技术。基因标签技术包括 T - DNA 和转座子标签 ,创建大量的基因标签体是功能基因研究的材料平台。而根癌农杆菌介导的水稻遗传转化是水稻基因标签技术中的重要步骤之一。本研究完善了根癌农杆菌介导的水稻转化方法 ,以期为水稻功能基因研究提供丰富材料 , 为水稻重要农艺性状的改良开辟途径。 1材料 以水稻品种日本晴(Oryza sativa L. ssp.japonica)为试验材料。菌株类型为 EHA105 超毒力菌株 ,载体为增强子捕获载体 pFX- E24. 2 - 15R(见图 1) ,载体上带有 GUS报告基因、35 S的 CaMV 启动子序列和潮霉素选择标记基因(HYG) 。农杆菌菌株为EHA105。 2方法 2.1水稻愈伤组织的诱导诱导方法参照 HIEI7等。将日本晴水稻种子去壳 ,用 75 %乙醇灭菌 5min ,再用2. 5 %的次氯酸钠灭菌处理不同时间(40min ,37 min ,30 min 和 25 min) ,以确定最佳灭菌时间 ,灭菌后用无菌水冲洗 6~8 次 ,于 MS 固体培养基上28 ℃避光培养 ,30 d 后 ,将愈伤组织进行继代培 养 ,得到胚性愈伤组织。 2.2农杆菌转化愈伤组织用 AB 固体培养基+氯霉素 25 mg/L + 利福平 20 mg/L + AS 20 mg/L培养农杆菌 ,在20 ℃下培养5~6 d。用无菌勺子轻轻刮下培养的农杆菌 ,放入 AAM液体培养基中(加有2 mg/L 2 ,4

农杆菌侵染拟南芥花序的转化方法

农杆菌侵染拟南芥花序的转化方法 准备: 1.灭菌试管400毫升细长烧杯2瓶,离心瓶4-6个(250ml)。 2.试剂:YEP1200ml(每瓶300ml共4瓶)+Kan1;1000,Rif1:500。 1/2MS+2%蔗糖(灭菌115度20分钟),Silwet在-20℃贮存。 步骤: 共转化农杆菌:于中午12点接菌于有YEP培养液的试管中10ul:10ml接种。28℃,3000rpm摇过夜,约30小时,次日下午6点将已摇活的菌按(1:400)及750ul菌液转至汉300毫升YEP+K50+Rif中培养28℃,300rpm约14小时,次日上午8点测OD值,用YEP+Rif作为空白对照,当菌液达到OD600为1.5~3.0之内时,可收集菌体于250ml离心瓶(灭菌),4℃,4000g离心10min。用10%蔗糖(含0.02%silwet)稀释至OD600约为0.8--1.0左右即,用10%蔗糖作对照。转化时将花在溶液中浸泡50s左右,于弱光下生长。转化前一天将需要做转化的野生型拟南芥苗子浇水浇透。 注意:

1.选取上述配好的溶液2ml,充分打碎管底部的菌体,在将混匀的菌体溶入600ml溶液中,混匀后再加入 Silwet(100%)120ul终浓度为0.02%。 2.先将浇透水用于转化的苗子的夹全部剪掉,再用宽胶带把花盆的土封好。 3.转化的准备工作:2个400细长烧杯,宽胶带,记号笔,表等。 4.转化过程略,视苗的长势弱0.8Pa3`,长势好的0.8Pa5`。 5.标记好,将转化好的苗平放于盒子内,上盖封口膜封好,避光培养24hrs2天后,将植株立起正常培养,浇水,3天1次。

农杆菌介导转化法的概述

农杆菌介导转化法的概述 自从1983年转基因植物诞生以来,植物基因工程成为发展最快、应用潜力最大的生物技术领域之一。植物转基因技术是指把从动物、植物或微生物中分离到的目的基因,通过各种方法转移到植物的基因组中,使之稳定遗传并赋予植物新的农艺性状,如抗虫、抗病、抗逆、高产、优质等。[1] 目前,应用于植物转基因较多的方法有基因枪轰击法和农杆菌介导法。由于基因枪轰击的随机性,容易出现突变、丢失和引起基因沉默等不利于外源基因在宿主植物的稳定表达的缺点,而农杆菌介导法是一种天然的植物遗传转化系统,外源基因在转基因植物中的拷贝数低、遗传稳定,是最常用的转基因技术[2]。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化法在一些单子叶植物(尤其是水稻)中也得到了广泛应用。本文对农杆菌介导转化法进行综述。 1 关于农杆菌 农杆菌[3-5]是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性的感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。与植物基因转化有关的有根瘤农杆菌和发根农杆菌这两种类型。 1.1根癌农杆菌 根癌农杆菌(Agrobacterium tumefaciens)含有Ti质粒,能诱导被侵染的植物细胞形成肿瘤,即诱发冠瘿瘤;Ti质粒是农杆菌染色体外的遗传物质,为双链共价闭合环状DNA分子,大小约200-250kb。 依据Ti质粒诱导的植物细胞产生的冠瘿碱的种类不同,根癌农杆菌可分为4种类型:章鱼碱型(Octopine)、胭脂碱型(Nopaline)、农杆碱型(Agropine)和琥珀碱型(Succinamopine)。 原始的Ti质粒根据其功能的不同可分为4个区: 1.1.1T-DNA区(Transfer—DNA region):不同来源的菌株,T-DNA的长度在12~24 kb,它是在农杆菌侵染细胞时,从Ti质粒上切割下来转移到植物基因组中的一段DNA,其携带的基因与肿瘤的形成有关,但与T-DNA本身的转移与整合无关.T-DNA上最重要的是T-DNA区两端的边界各为25 bp的重复序列.其中14 bp 是完全保守的,分10 bp(CAGGAATATAT)和4 bp(GTAA)不连续的2组.左右2个

农杆菌介导DR1372基因转化拟南芥的

第32卷第2期2013年2月绵阳师范学院学报Journal of Mianyang Normal University Vol.32No.2Feb.,2013 收稿日期:2012- 12-30基金项目:转基因生物新品种培育重大专项(2009ZX08009-091B ),国家自然科学基金(30871555),教育部新世纪优秀人才支持计划(NCET -08-0940),四川省教育厅(09ZA034)、西南科技大学博士研究基金(11zx7104)和农业部公益性行业科研专项(201103007)作者简介:张思维,硕士研究生,主要从事植物遗传与抗逆研究 *通讯作者:代其林,博士,副教授,研究方向为植物遗传与抗逆研究.E -mail :daiqilinmj@.sina.com 农杆菌介导DR 1372基因转化拟南芥的研究 张思维,周文波,张新,陈翠娜,代其林* (西南科技大学生命科学与工程学院,四川绵阳621000) 摘要:耐辐射奇球菌(D.radiodurans ,DR )在极端胁迫条件下能够继续生存,其耐辐射奇球菌基因组中(DR R1)拥有一个独特的极端环境抗性基因组而被广泛研究.DR 1372基因就是在DR R1中克隆得到的一个基因,其蛋白序列存在一个Why 功能域,此功能域可能参与了植物的抗旱过程.我们利用基因工程手段首先构建了植物DR1372-GV3103表达载体,然后利用花序浸染法成功将目的基因DR 1372转入拟南芥中,最后对阳性植株进行盐胁迫,证实了DR 1372基因在拟南芥中的表达明显改善了转基因植株的耐盐性.初步建立了农杆菌介导DR 1372基因转化拟南芥体系,为后续DR 1372基因的功能研究工作提供了理论基础. 关键词:DR 1372;载体构建;盐胁迫;拟南芥 中图分类号:O175.12文献标识码:A 文章编号:1672- 612x (2013)02-0057-080引言 目前,越来越多的抗旱相关基因已经被克隆,并用来提高植物的抗旱性.按照抗旱基因的功能,可以把植物抗旱相关基因分为两大类:第一类是编码在植物抗性中直接起保护作用的蛋白质基因,属于功能基 因;第二类是编码在信号传导和逆激基因表达过程中起调节作用的转录因子基因,属于调节基因[1].Pibn - Smits 等将otsA 和otsB 导入烟草,在干旱胁迫下,转基因植株中海藻糖含量比对照高,叶面积增大,光合活 性提高[2].Kishor 等将从乌头叶豇豆中克隆的P5CS 基因与CaMV35S 启动子连接转入烟草中,发现转基因烟草的脯氨酸含量比对照高10-18倍;干旱胁迫下,转基因烟草落叶少而迟,根比对照长40%,生物量增 加2倍[3].Capell 等发现Adc 在水稻中的超表达缓解了干旱条件下转基因水稻叶绿素的损失, 并提高了水稻的抗旱性[4].由于转录因子能在转录水平上调控一系列基因的表达,所以转化调节基因能有效地提高植 物的耐旱性, 与抗旱相关的转录因子有DREB 、MYC /MYB 、bZIP 、WRKY 和NAC 类等,其中MYB /MYC 是植物中最大的转录因子家族.Chen 等发现了小麦中23个MYB 转录因子,其中有4个与抗旱相关[5]. 耐辐射奇球菌(D.radiodurans , DR )是Anderson 等科学家在1956年从经过灭菌处理的肉类中发现的一种红色非致病性球菌, 目前被认为是"世界上抗性最强的细菌",因其对电离辐射、干燥、紫外线及一些DNA 损伤试剂显示超强的抗性,一直倍受生物医学界的关注[6].White 等在1999年公布了DR R1的完全 基因组序列,包括两条染色体,共携带有3195个可预测基因,并对部分基因进行了评注[7].DR R1基因组 可以在一个细胞中完成DNA 修复,DNA 损伤信号输出,干旱和饥饿胁迫的应答,以及基因组的修复等功 能.Battista 等推测,在耐辐射球菌R1中的抗旱性研究将用于引导较高生物体的抗旱性研究[8].DR1372基 因是耐辐射奇球菌体内1号染色体上的一个基因,把这个基因转入大肠杆菌后进行培养,经初步定性分析发现,在大肠杆菌中有稳定细胞膜,调节细胞内外渗透压的作用,初步推测为与调节水分胁迫应答有关的基因.对DR1372蛋白序列进行分析发现,其内部存在一个WHy 功能域非特异性结合位点,与HIN1蛋白中 的WHy 功能域结构非常相似[9].WHy 结构域存在于几大类蛋白质家族中,大约由100个氨基酸组成,这 些氨基酸由亲水性和疏水性氨基酸交替排列,并且在N 末端都存在一个非蛋白氮(NPN )结构.同时,研究者还在胚胎发育晚期蛋白中也发现了WHy 功能域的存在,最终推测WHy 结构域是参与植物水分胁迫应 答以及超敏应答的一类功能域[9].脱水素是一类亲水性蛋白质,其蛋白结构中也含有一个WHy 功能域,它 们在胚胎发生后期阶段产生,对低温、外源ABA 、干旱、盐渍以及脱水胁迫反应迅速,进而在植株中积

相关文档
最新文档