论变电站站用变压器保护用电流互感器的配置

论变电站站用变压器保护用电流互感器的配置
论变电站站用变压器保护用电流互感器的配置

论变电站站用变压器保护用电流互感器的配置摘要:随着电力系统短路容量的不断增加,出现单台主设备容量远小于系统短路容量的情况越来越多,在220kV变电站内最常见的就是35kV站用变回路,其保护用电流互感器变比选择已经成为了一个突出的问题,为保证电流互感器能够可靠工作,变比不能选的太小,也不能太大。本文通过分析给出了合理选择电流互感器参数的一些建议。

关键词:铁芯饱和电流互感器变比光学电流互感器

一般的保护级电流互感器参数选择,是在故障时通过互感器的最大短路电流不应超过其准确限值电流,在该电流下互感器的复合误差不超过规定值。随着系统容量不断扩大,变电站低压侧系统短路电流越来越大,某些特殊负荷(如35kV站用变)正常工作电流较小,在这些设备出口短路时(短路位置如图1所示),短路电流可能达到正常工作电流的数千倍,电流互感器额定一次电流通常按负荷电流选择,以便于测量和保护整定。这样确定的互感器在短路时需要承受数千倍的短路电流,铁芯可能严重饱和而影响其传变特性。若电流互感器按在短路故障时不饱和条件选择,则电流互感器额定一次电流将远大于负荷电流且需具有较高准确限值系数,这将造成电流互感器投资增加以及保护整定计算困难、测量精度难以保证,这在正常负荷电流较小的回路的电流互感器的选择始终是一对矛盾。致使设备选择面临两难的局面。

1 站用变保护设计中遇到的问题

《变电站及主变压器保护设计》

第五章主变压器保护 第一节概述 电力变压器是一种静止的电气设备,是用来将某一数值的交流电压(电流)变成频率相同的另一种或几种数值不同的电压(电流)的设备。当一次绕组通以交流电时,就产生交变的磁通,交变的磁通通过铁芯导磁作用,就在二次绕组中感应出交流电动势。二次感应电动势的高低与一二次绕组匝数的多少有关,即电压大小与匝数成正比。主要作用是传输电能,因此,额定容量是它的主要参数。额定容量是一个表现功率的惯用值,它是表征传输电能的大小,以kVA或MVA表示,当对变压器施加额定电压时,根据它来确定在规定条件下不超过温升限值的额定电流。现在较为节能的电力变压器是非晶合金铁心配电变压器,其最大优点是,空载损耗值特低。最终能否确保空载损耗值,是整个设计过程中所要考虑的核心问题。当在产品结构布置时,除要考虑非晶合金铁心本身不受外力的作用外,同时在计算时还须精确合理选取非晶合金的特性参数。 电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。因此,必须根据变压器的容量和重要程度考虑装设性能良好,工作可靠的继电保护装置。 电力变压器是电力系统当中十分重要的供电元件,它的故障将对供电系统的可靠性和系统的正常运行带来严重的影响。同时大容量的电力变压器也是十分贵重的电力元器件,因此,必须根据变压器的容量和重要程度考虑其装设性能良好和工作可靠的继电保护装置布置。 变压器的内部故障可以分为油箱内和油箱外的故障两种。油箱内的故障,包括绕组的相间短路、接地短路、匝间短路以及铁心的烧损等,对变压器来讲这些故障是十分危险的,因为油箱内故障时产生的电弧,将引起绝缘质的剧烈气化,从而可引起爆炸,因此,这些故障应尽快加以切除。油箱外的故障,主要是套管和引出线上发生相间短路和接地短路。上述接地短路均系对中性点直接接地电力网的一侧而言。 变压器的不正常运行状态主要有:由于变压器外部相间短路引起的过电流和外部接地短路引起的过电流和中性点过电压;由于负荷超过额定容量引起的过负荷以及由于漏油等原因而引起的油面降低。 此外,对于大容量变压器,由于其额定工作时的磁通密度相当接近于铁心的饱和磁通密度,因此,在过电压和低频率等异常运行方式下,还会发生变压器的过励磁故障。电力变压器继电保护装置的配置原则一般为: 应装设反映内部短路和油面降低的瓦斯保护; 应装设反映变压器绕组和引出线的多相短路及绕组匝间短路的纵差联动保护和电流速断保护; 应装设作为变压器外部相间短路和内部短路的后备保护的过电流保护(者带有负荷电压启动的过电流保护或抚恤电流保护);

变压器的保护配置

电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变压器处于不正常运行状态时,继电保护应根据其严重程度,发出告警信号,使运行人员及时发现并采取相应的措施,以确保变压器

电流互感器和电压互感器

1.电流互感器 1.1 5A还是1A? 电流互感器的作用是将一次设备的大电流转换成二次设备使用的小电流,其工作原理相当于一个阻抗很小的变压器。其一次绕组与一次主电路串联,二次绕组接负荷。电流互感器的变比一般为X:5A(X不小于该设备可能出现的最大长期负荷电流),如此即可保证电流互感器二次侧电流不大于5A。 在超高压电厂和变电站中,如果高压配电装置远离控制室,为了增加电流互感器的二次允许负荷,减小连接电缆的导线界面及提高精确等级,多选用二次额定电流为1A的电流互感器。相应的,微机保护装置也应选用交流电流输入为1A的产品。 根据目前新建110kV变电站的规模及布局,绝大多数都是选用二次侧电流为5A的电流互感器。 1.2 10P10、0.5还是0.2S?在变电站中,电流互感器用于三种回路:微机保护、测量和计量,而这三种回路对电流互感器的准确级要求是不同的。根据准确级的不同可将电流互感器的绕组划分为10P10(保护)、0.5(测量)和0.2S(计量)。用于测量和计量的绕组着重于精度,用于保护的绕组着重于容量,以避免铁芯饱和影响实际变比。 1.3 星形还是三角形? 电流互感器二次绕组的接线常用的有三种,完全星形接线、不完全星形接线和三角形接线,如图2-1所示。 图2-1 完全星形接线:可以反映单相接地故障、相间短路及三相短路故障。目前,110kV线路、变压器、10kV电容器等设备配置的电流互感器均采用此接线方式。 不完全星形接线:反映相间短路及A、C相接地故障。目前,35kV及10kV架空线路在不考虑“小电流接地选线”功能(以后简称“选线”)的情况下多采用此接线方式,以节省一组电流互感器;否则,必须配置三组电流互感器,以获得零序电流实现“选线”功能。电缆出线时,配置了专用的零序电流互感器实现“选线”功能,也按此方式配置。 三角形接线:以往,这种接线用于采用Y,d11接线的变压器的差动保护,使变压器星形侧二次电流超前一次电流30°,从而和变压器三角形侧(电流互感器接成完全星形)二次电流相位相同。目前,主变微机差动保护本身可以实现因主变组别造成的相位角差的校正,主变星形侧和三角形侧电流互感器均采用完全星形接线。

10kV配电变压器保护配置方式的合理选择.doc

10 kV配电变压器保护配置方式的合理选择 - 摘要:10 kV配电变压器的保护配置主要有断路器、负荷开关或负荷开关加熔断器等。负荷开关投资省,但不能开断短路电流,很少采用;断路器技术性能好,但设备投资较高,使用复杂,广泛应用不现实;负荷开关加熔断器组合的保护配置方式,既可避免采用操作复杂、价格昂贵的断路器,弥补负荷开关不能开断短路电流的缺点,又可满足实际运行的需要,该配置可作为配电变压器的保护方式,值得大力推广,为此,对10 kV环网供电单元和终端用户10 kV配电变压器采用断路器、负荷开关加熔断器组合的保护配置方式进行技术-经济比较,供配电网的设计和运行管理部门参考。 关键词:10 kV配电变压器;断路器;负荷开关;熔断器;保护配置 无论是在环网供电单元、箱式变电站或是终端用户的高压室结线方式中, 如配电变压器发生短路故障时,保护配置能快速可靠地切除故障,对保护10 kV高压开关设备和变压器都非常重要。保护方式的配置一般有两种:一种利用断路器;另一种则利用负荷开关加高遮断容量的后备式限流熔断器组合。这两种配置方式在技术和经济上各有优缺点,以下对这两种方式进行综合比

较分析。 1环网供电单元接线形式 1.1环网供电单元的组成 环缆馈线与变压器馈线间隔均采用负荷开关, 通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。实际运行证明,这是一种简单、可靠而又经济的配电方式。 1.3环网供电单元保护配置的特点 负荷开关用于分合额定负荷电流, 具有结构简单、价格便宜等特点, 但不能开断短路电流,高遮断容量后备式限流熔断器为保护元件, 可开断短路电流,如将两者有机地结合起来,可满足配电系统各种正常和故障运行方式下操作保护的要求。断路器参数的确定和结构的设计制造均严格按标准要求进行,兼具操作和保护两种功能,所以其结构复杂,造价昂贵,大量使用不现实。环网柜中大量使用负荷开关加高遮断容量后备式熔断器组合装置,把对电器不尽相同的操作与保护功能分别由两种简单、便宜的元件来实现,即用负荷开关来完成大量发生的负荷合分操作,而采用高遮断容量后备式限流熔断器对极少发生短路的设备起保护作用,很好地解决问题,既可避免使用操作复杂、价格昂贵

线路保护的配置原则

110kV 线路保护配置一般装设反应相间故障的距离保护和反应接地故障的零序方向电流保护(或接地距离保护) ,采用远后备方式。当距离、零序电流保护灵敏度不满足要求或110kV 线路涉及系统稳定运行问题或对发电厂、重要负荷影响很大时,考虑装设全线路快速动作的纵联保护作为主保护,距离、零序电流(或接地距离)保护作为后备保护。必须指出,目前110kV 数字式线路保护装置一般同时具有接地距离保护与零序电流保护功能,在零序电流保护整定特别是Ⅱ段整定出现灵敏度不满足要求的情况下,可考虑通过降低电流定值,延长保护动作时间等方法进行整定,由于接地距离保护一般灵敏度都能满足要求,因此保护对于接地短路的速动性不会受到影响。 1距离保护 距离保护是以反映从故障点到保护安装处之间阻抗大小(距离大小)的阻抗继电器为主要元件(测量元件) ,动作时间具有阶梯特性的相间保护装置。当故障点至保护安装处之间的实际阻抗大于预定值时,表示故障点在保护范围之外,保护不动作;当上述阻抗小于预定值时,表示故障点在保护范围之内,保护动作。当再配以方向元件(方向特性)及时间元件,即组成了具有阶梯特性的距离保护装置。 距离保护可以应用在任何结构复杂、运行方式多变的电力系统中,能有选择地、较快地切除相同短路故障。在电网结构复杂,运行方式多变,采用一般的电流、电压保护不能满足运行要求时,则应考虑采用距离保护装置。距离保护的基本原则如下: (1)距离保护具有阶梯式特性时,其相邻上、下级保护段之间应在动作时间及保护范围上相互配合。同时,距离保护也应与上、下相邻的其他保护装置的动作时间及保护范围上相配合。例如:当相邻为发电机变压器组时,应与其过电流保护相配合;当相邻为变压器或线路时,若装设电流、电压保护,则应与电流、电压保护之动作时间及保护范围相配合。 (2)在某些特殊情况下,为了提高保护某段的灵敏度,采用所谓“非选择性动作,再由重合闸加以纠正”的措施。例如:当某一较长线路的中间接有分支变压器时,线路距离保护装置第Ⅰ段可允许按伸入至分支变压器内部整定,即可仍按所保护线路总阻抗的80%~85%计算,但应躲开分支变压器低压母线故障;当变压器内部发生故障时,线路距离保护第Ⅰ段可能与变压器差动保护同时动作(因变压器差动保护设有出口跳闸自保护回路) ,而由线路自动重合闸加以纠正,使供电线路恢复正常供电。 (3)采用重合闸后加速方式,达到保护配合的目的。采用重合闸后加速方式,除了加速故障切除,以减小对电力设备的破坏程度外,还可借以保证保护动作的选择性。这可在下述情况下实现:当线路发生永久性故障时,故障线路由距离保护断开,线路重合闸动作,进行重合。此时,线路上、下相邻各距离保护的Ⅰ、Ⅱ段可能均由其震荡闭锁装置所闭锁,而未经震荡闭锁装置闭锁的第Ⅲ段,在有些情况下往往在时限上不能互相配合(因有时距离保护Ⅲ段与相邻保护的第Ⅱ段配合) ,故重合闸后将会造成越级动作。其解决办法是采用重合闸后加速距离保护Ⅲ段,一般只要重合闸后加速距离保护Ⅲ段在 1.5~2s,即可躲过系统震荡周期,故只要线路距离保护Ⅲ段的动作时间大于2~2.5s,即可满足在重合闸后仍

变压器和母线保护配置重点讲义资料

1.1.10.4MVA及以上车间内油浸式变压器和0.8MVA及以上油浸式变压器,均应装设瓦斯保护。当壳内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当壳内故障产生大量瓦斯时,应瞬时动作于断开变压器各侧断路器。 瓦斯保护应采取措施,防止因瓦斯继电器的引线故障、震动等引起瓦斯保护误动作。 1.1.2对变压器的内部、套管及引出线的短路故障,按其容量及重要性的不同,应装设下列保护作为主保护,并瞬时动作于断开变压器的各侧断路器: 1.1. 2.1电压在10kV及以下、容量在10MVA及以下的变压器,采用电流速断保护。 1.1. 2.2电压在10kV以上、容量在10MVA及以上的变压器,采用纵差保护。对于电压为10kV的重要变压器,当电流速断保护灵敏度不符合要求时也可采用纵差保护。 1.1. 2.3电压为220kV及以上的变压器装设数字式保护时,除非电量保护外,应采用双重化保护配置。当断路器具有两组跳闸线圈时,两套保护宜分别动作于断路器的一组跳闸线圈。 1.1.3纵联差动保护应满足下列要求: a.应能躲过励磁涌流和外部短路产生的不平衡电流;

b.在变压器过励磁时不应误动作; c.在电流回路断线时应发出断线信号,电流回路断线允许差动保护动作跳闸; d.在正常情况下,纵联差动保护的保护范围应包括变压器套管和引出线,如不能包括引出线时,应采取快速切除故障的辅助措施。在设备检修等特殊情况下,允许差动保护短时利用变压器套管电流互感器,此时套管和引线故障由后备保护动作切除;如电网安全稳定运行有要求时,应将纵联差动保护切至旁路断路器的电流互感器。 1.1.4对外部相间短路引起的变压器过电流,变压器应装设相间短路后备保护。保护带延时跳开相应的断路器。相间短路后备保护宜选用过电流保护、复合电压(负序电压和线间电压)启动的过电流保护或复合电流保护(负序电流和单相式电压启动的过电流保护)。 1.1.4.135kV~66kV及以下中小容量的降压变压器,宜采用过电流保护。保护的整定值要考虑变压器可能出现的过负荷。 1.1.4.2110kV~500kV降压变压器、升压变压器和系统联络变压器,相间短路后备保护用过电流保护不能满足灵敏性要求时,宜采用复合电压起动的过电流保护或复合电流保护。 1.1.5对降压变压器,升压变压器和系统联络变压器,根据各侧接线、连接的系统和电源情况的不同,应配置不同的相间

主变压器保护配置

主变压器保护配置 1、主变差动保护 (1) 采用了二次谐波制动的比率差动保护,变压器正常运行时励磁电流不超过额定电流的2—10%,外部短路时更小。但变压器空载合闸或断开外部故障后,系统电压恢复时出现的励磁电流,大小可达额定电流的6—8倍,称励磁涌流。励磁涌流只流经变压器的电源侧,因而流入差动回路成为不平衡电流,励磁涌流高次谐波分量中以二次谐波分量最显著,根据这一特点采用励磁涌流中二次谐波分量进行制动,以防止保护误动作。(2)作为主变绕组内部、出线套管及引出线短路故障的主保护,其保护范围为发电机出口至主变高压侧及高厂变高压侧各CT 安装处范围内。(3)主变差动出口逻辑: (4)差动保护瞬时动作全停,启动快切、启动失灵。 (5)TA 断线闭锁功能,当差电流大于一定值时(一倍额定电流)TA 断线闭锁功能自动退出,开放保护动作出口。TA 断线0.5S 发信号。 2、发变组差动保护 与主变差动保护构成原理相同,但其保护范围是发变组及其引出线范围内的短路故障,即发电机中性点及主变高压侧,高厂变高压侧各CT 安装处范围以内的短路故障。发变组差动保护瞬时动作于发-变组全停,启动快切、启动失灵。 3、阻抗保护 (1)作为发变组相间短路的后备保护,同时作为220KV 系统发变组相邻元件如线路故障后备保护。 (2)作为近后备保护,按与相邻线路距离相配合的条件进行整定,正向阻抗Z dz 1:按与之配合的高压侧引出线路距离保护Ⅰ段配合,反向阻抗Z dz 2:按正向阻抗 的10%整定。 (3)时限t 1与线路距离Ⅲ段相配合,时限45.05.31′′=′′+′′=t 发信号,该时限较 长,能可靠躲过振荡。时限t 2与t 1配合5.45.042′′=′′+′′=t 解列灭磁、启动快切、 启动失灵。 (4)该保护测量元件是主变220KV 侧CT 及220KV 母线PT 。即阻抗保护装于

变压器保护总配置原则(定稿版)2005-3-10

广东电网变压器保护配置及组屏原则(试行) 1、总则 1.1本原则为广东电网变压器继电保护装置的配置、组屏应遵循的标准及要求,适用于额 定电压为220kV~500kV的新建、扩建及改造工程的降压变压器保护。 1.2变压器保护选用微机型保护,按双重化原则配置(非电量保护除外)。即配置两套分设 在不同保护屏柜内且交、直流回路互相独立的保护装置,每套保护装置应配置完整的主、后备保护。 1.3非电量保护的电源回路和出口跳闸回路应独立设置,与电气量保护完全分开,安装位 置也相对独立;非电量保护应同时作用于220kV及以上电压等级的断路器的两个跳闸线圈,两套完整、独立的电气量保护的跳闸回路可分别作用于220kV及以上电压等级的断路器的两个跳闸线圈。 1.4保护装置原则上不配置非全相保护,非全相工况由开关本体保护切除。 1.5非电量保护的配置、整定,根据变压器生产厂家的要求,由变压器运行所在单位的生 技部门负责管理。 1.6非电量及非全相保护不启动失灵保护。 1.7变压器保护装置生产厂家应具有相应资质,保护装置应通过部级授权核准的检测中心 进行的动模试验及通过部级的鉴定。优先采用已取得成熟运行经验和具有良好售后服务的保护产品,并积极、慎重的支持国产新型保护的试运行工作。凡第一次在广东220KV及以上电网使用的保护装置,必须通过广电集团公司继电保护部门组织的入网动模试验考核。 1.8本原则中未含括的技术规范,应遵照现行《继电保护和安全自动装置技术规程》及有 关的反事故措施要求执行。 1.9本原则由广电集团公司负责解释。 2、保护配置及组屏

2.1500kV主变压器保护配置及组屏接线 2.1.1 500kV自耦变压器保护配置 (1)主保护配置 a)配置两套不同躲励磁涌流原理(其中一套应采用二次谐波制动原理)的纵联差动 保护,动作后跳开变压器各侧断路器。 b)配置两套差电流速断保护,保护不经TA断线闭锁,动作后跳开变压器各侧断路器。 c)配置两套零序(或分相)差动保护,动作后跳开变压器各侧断路器。 d)当220KV侧有旁路开关时,在旁路代路运行状态下,应将两套保护均切换至旁路 运行。 (2)500kV侧后备保护配置 a)配置两套相间及接地方向阻抗保护,阻抗保护带3%—5%的偏移特性, 正方向指向 变压器。每套保护按二段式设置,且每段保护可独立投退。 I段: 带一个短时限跳开变压器各侧断路器; II段: 带一个长时限跳开变压器各侧断路器。 b)配置两套定时限零序电流保护,每套保护按一段一时限设置。带方向指向变压器, 带一时限跳开变压器各侧断路器。(方向元件可投、退) c)配置两套不带方向的反时限零序电流保护,保护动作后延时跳开变压器各侧断路 器。保护动作特性应满足以下要求: ●保护动作时间大(等)于1秒时,采用IEC一般反时限特性; ●保护动作时间小于1秒时,采用时限为1秒的定时限特性。 d)配置两套过激磁保护,保护为反时限特性, 过激磁保护低定值报警, 高定值延时 跳开变压器各侧断路器。 e)配置两套三相式相过流保护,保护不经TA断线闭锁,带一个长时限跳开变压器各 侧断路器。 f)配置两套单相式过负荷保护,延时动作于信号。 (3)公共绕组侧保护配置

变压器保护的整定计算

电力变压器的保护配置与整定计算 重点:掌握变压器保护的配置原则和差动保护的整定计算,理解三绕组变压器后备保护及过负荷保护配置 难点:变压器差动保护的整定计算 能力培养要求:基本能对变压器的保护进行整定计算方法。 学时:6学时 2.1 电力变压器保护配置的原则 一、变压器的故障类型与特征 变压器的故障可分为油箱内故障和油箱外故障两类,油箱内故障主要包括绕组的相间短路、匝间短路、接地短路,以及铁芯烧毁等。变压器油箱内的故障十分危险,由于油箱内充满了变压器油,故障后强大的短路电流使变压器油急剧的分解气化,可能产生大量的可燃性瓦斯气体,很容易引起油箱爆炸。油箱外故障主要是套管和引出线上发生的相间短路和接地短路。 电力变压器不正常的运行状态主要有外部相间短路、接地短路引起的相间过电流和零序过电流,负荷超过其额定容量引起的过负荷、油箱漏油引起的油面降低,以及过电压、过励磁等。 二、变压器保护配置的基本原则 1、瓦斯保护: 800KVA及以上的油浸式变压器和400KVA以上的车间内油浸式变压器,均应装设瓦斯保护。瓦斯保护用来反应变压器油箱内部的短路故障以及油面降低,其中重瓦斯保护动作于跳开变压器各电源侧断路器,轻瓦斯保护动作于发出信号。 2、纵差保护或电流速断保护: 6300KVA及以上并列运行的变压器,10000KVA及以上单独运行的变压器,发电厂厂用或工业企业中自用6300KVA及以上重要的变压器,应装设纵差保护。其他电力变压器,应装设电流速断保护,其过电流保护的动作时限应大于0.5S。对于2000KVA以上的变压器,当电流速断保护灵敏度不能满足要求时,也应装设纵差保护。纵差保护用于反应电力变压器绕组、套管及引出线发生的短路故障,其保护动作于跳开变压器各电源侧断路器并发相应信号。 3、相间短路的后备保护:

变压器的保护配置

变压器的保护配置 Revised by Jack on December 14,2020

电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变

变压器的保护配置

变压器的保护配置 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变

110-220KV变电所电流互感器通用配置原则

附件一、福建省网110-220KV变电所电流互感器通用配置原则 一、总则 1、全网220千伏变电站的CT变比要整齐统一,并适应未来十年的短路电流发展水平。 2、充分发挥线路的输电能力和变压器的各侧容量。 3、CT抽头的选择要满足计量专业的精度要求,在设关口表的220KV线路上,计量用0.2S 级次。 4、继电保护用CT的配置原则 A、电网设备的两套主保护的CT不公用,经负荷校核后备保护、故障录波器、失灵启 动、安控装置的电流可与主保护串用同一组CT。 B、220千伏和110千伏侧主变旁代按旁路开关旁代一套差动保护方式。 C、母差保护用CT的型式要相同。 D、线路保护两侧CT的一次电流差小于4倍,主变高中低压侧的额定二次电流在4 倍以内。 E、保护均要选用P级(5P或10P),其CT的额定准确限值一次电流按大于30倍额 定电流确定,容量要30VA以上。 二、各电压等级的CT配置原则 1、220KV电压等级: ①线路型号2*LGJ(F)-300 P 2*750/5A 线路保护1、故障录波 P 2*750/5A 线路保护2 P 2*750/5A :母差失灵保护1 P 2*750/5A :母差失灵保护2 0.5 2*750/5A 抽头2*300/5A:仪表 0.2S 2*750/5A 抽头2*300/5A:计量

②线路型号2*LGJ(F)-400 2*LGJ(F)-500 P 2*1000/5A :线路保护1、故障录波P 2*1000/5A :线路保护2 P 2*1000/5A :母差失灵保护1 P 2*1000/5A :母差失灵保护2 0.5 2*1000/5A 抽头2*600/5A:仪表0.2S 2*1000/5A 抽头2*600/5A:计量 ③母联开关间隔CT P 2*1000/5A :母差失灵保护1 P 2*1000/5A :母差失灵保护2 P 2*1000/5A :母联过流保护 P 2*1000/5A :故障录波 0.5 2*1000/5A :抽头2*600/5A:仪表 ④主变间隔(120-180-240MVA)开关CT P 2*600/5A :主变保护1、故障录波P 2*600/5A :主变保护2 P 2*600/5A :母差失灵保护1 P 2*600/5A :母差失灵保护2 P 2*600/5A :备用 0.2 2*600/5A 抽头2*300/5A:计量 ⑤分段开关间隔CT P 2*1000/5A :Ⅰ/Ⅲ母差失灵保护1 P 2*1000/5A :Ⅰ/Ⅲ母差失灵保护2 P 2*1000/5A :Ⅱ/Ⅳ母差失灵保护1 P 2*1000/5A :Ⅱ/Ⅳ母差失灵保护2 P 2*1000/5A :过流保护、故障录波0.5 2*1000/5A:仪表

电力系统继电保护配置原则

电力系统继电保护配置 原则 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电力系统继电保护配置原则 一、概述 电力系统是指由发电、送电、变电、配电和用电等各个环节(一次设备)所构成的有机整体,也包括相应的通信、继电保护(含安全自动装置)、调度自动化等设施(二次设备)。 电力系统安全运行是指运行中所有电力设备必须在不超过它们所允许的电流、电压、频率及时间限额内运行(强调充裕性)。不安全的后果可能导致电力设备的损坏,大面积停电。 2003年8月14日下午,美国纽约、底特律和克利夫兰以及加拿大多伦多、渥太华等城市均发生停电事故。事故原因俄亥俄州阿克伦城的第一能源公司的两根高压电线其中一根因树枝生长碰至线路后跳闸,另外一条线路因安全自动装置误动,导致第二条线路跳闸,最终导致各个子电网潮流不能平衡,最终系统解列。 可见,要保证电力的安全稳定运行,必须配置安全可靠的继电保护装置和安全自动装置。继电保护顾名思义在系统发生故障时及时隔离故障点保护一次设备,同时能够让电力系统继续安全稳定运行。 二、基本要求 继电保护配置方式要满足电力网结构和厂站的主接线的要求,并考虑电力网和厂站的运行方式的灵活性。所配置的继电保护装置应能满足可靠性、选择性、灵敏性和速动性的要求。 1)要根据保护对象的故障特征来配置。

继电保护装置是通过提取保护对象表征其运行状况的故障量,来判断保护对象是否存在故障或异常工况并采取相应的措施的自动装置。用于继电保护状态判别的故障量,随被保护对象而异,也随电力系统周围条件而异。使用最普遍的工频电气量,而最基本的是通过电力元件的电流和所在母线的电压以及由这些量演绎出来的其它量,如功率、序相量、阻抗、频率等,从而构成电流保护、电压保护、方向保护、阻抗保护、差动保护等。 2)根据保护对象的电压等级和重要性。 不同电压等级的电网的保护配置要求不同。在高压电网中由于系统稳定对故障切除时间要求比较高,往往强调主保护,淡化后备保护。220kV及以上设备要配置双重化的两套主保护。所谓主保护即设备发生故障时可以无延时跳闸,此外还要考虑断路器失灵保护。对电压等级低的系统则可以采用远后备的方式,在故障设备本身的保护装置无法正确动作时相邻设备的保护装置延时跳闸。 3)在满足安全可靠性的前提下要尽量简化二次回路。 继电保护系统是继电保护装置和二次回路构成的有机整体,缺一不可。二次回路虽然不是主体,但它在保证电力生产的安全,保证继电保护装置正确工作发挥重要的作用。但复杂的二次回路可能导致保护装置不能正确感受系统的实际工作状态而不正确动作。因此在选择保护装置是,在可能条件下尽量简化接线。 4)要注意相邻设备保护装置的死区问题

变电站主变压器与所用变的选择

目录 1 绪论 (2) 2 变电站主变压器及所用变的选择 (4) 2.1 主变压器的选择 (4) 2.1.1 主变压器台数的选择 (4) 2.1.2 主变压器容量的选择 (5) 2.1.3主变相数及接线组别的选择 (5) 2.1.4结论 (6) 3 电气主接线的设计 (6) 3.1主接线的设计原则和要求 (6) 3.2本所主接线的设计 (7) 3.2.1 设计步骤 (7) 3.2.2 初步方案设计 (7) 3.2.3.本变电所主接线方案的确定 (8) 3.2.4选择结果 (9) 4 短路电流的计算 (10) 4.1短路电流 (10) 4.1.1短路电流计算的目的 (10) 4.1.2短路电流计算的一般规定 (10) 5 母线的选择与校验 (15) 5.1母线的选择 (15) 5.2母线热稳定校验 (16) 5.3母线动稳定性 (16)

6 断路器的选择与校验 (17) 6.1初选断路器型号 (17) 6.2确定短路计算点及相应短路电流 (18) 6.3校验开断能力 (18) 6.4校验动稳定 (18) 6.5校验热稳定 (18) 7 隔离开关的选择 (19) 8 绝缘子的选择与校验 (19) 结束语 (20) 参考文献 (21) 附录 (21) 1绪论 变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。现在,我国电力工业已经进入了大机组、大电厂、大电网、超高压、自动化、信息化发展的新时期。随着我国经济的蓬勃发展,电网的规模越来越大,电压越来越高,电网调度、安全可靠供电要求以及经济运行和管理水平都形成了一种新的格局。利用微机实施监控取代常规的控制保护方式,实现变电所的综合自动化,进而施行无人值班,已成为各级电力部门的共识。在我国城乡电

电力变压器的保护配置

技师专业论文 工种:配电工 题目:电力变压器的保护配置 作者:程红梅 身份证号:5 申报等级:配电工技师 单位:陕西龙门钢铁有限责任公司能源管控中心 日期:2013年9月1日 目录 第一章电力变压器的故障及不正常工作状态1 (一)变压器的故障1 (二)变压器的不正常运行状态2 第二章变压器的保护配置2

(一)瓦斯保护2 (二)纵差动保护和电流速断保护3 1纵差动保护4 (1)纵差动保护基本原理4 (2)变压器的纵差动保护5 2电流速断保护6 (三)外部相间短路和接地短路时的后备保护7 1变压器相间短路的后备保护7 (1)过电流保护7 (2)低电压启动的过电流保护8 2中性点接地变压器的接地保护9 (1)只有一台变压器的变电所9 (2)两台变压器并列运行的变电所10(四)过负荷保护10 (五)过励磁保护11 (六)其他非电量保护11 结论11 参考文献12

电力变压器的保护配置 作者:程红梅 论文摘要: 电力变压器是变电所中最关键的一次设备,其主要功能是将电力系统的电压升高或降低,以利于电能的合理输送、分配和使用。电力变压器是电力系统中的重要电器设备,而且其数量很多。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。再加上变压器的价格十分昂贵,所以,必须根据变压器的容量和重要程度装设性能良好、工作可靠且具有较好的经济性的保护装置。本文主要介绍了电力变压器的几种继电保护。 主题词:变压器,瓦斯保护,纵差动保护,过负荷保护 前言: 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态(一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、

计量用电流互感器该如何选择

计量用电流互感器该如何选择 电能计量装置主要由电能表、计量用电压互感器、电流互感器及二次回路等部分组成,电流互感器是能计量装置的重要组成部分,现介绍计量用电流互感器的选择原则和使用注意事项。 1 选择的原则 1.1额定电压的确定 电流互感器的额定电压UN应与被测线路的电压UL相适应,即UN≥UL。 1.2额定变比的确定 通常根据电流互感器所接一次负荷来确定额定一次电流I1,即: I1=P1/UNcosψ 式中UN——电流互感器的额定电压,kV; P1——电流互感器所接的一次电力负荷,kVA; cosψ——平均功率因数,一般按cosψ=0.8计算。 为保证计量的准确度,选择时应保证正常运行时的一次电流为其额定值的60%左右,至少不得低于30%。电流互感器的额定变比则由额定一次电流与额定二次电流的比值决定。 1.3额定二次负荷的确定 互感器若接入的二次负荷超过额定二次负荷时,其准确度等级将下降。为保证计量的准确性,一般要求电流互感器的二次负荷S2必须在额定二次负荷S2N的25%~100%范围内,即: 0.25S2N≤S2≤S2N 1.4额定功率因数的确定 计量用电流互感器额定二次负荷的功率因数应为0.8~1.0。 1.5准确度等级的确定 根据电能计量装置技术管理规程(DL/T448-2000)规定,运行中的电能计量装置按其所计量电能量的多少和计量对象的重要程度,分为I、II、III、IV、V五类,不同类别的电能计量装置对电流互感器准确度等级的要求也不同 电流互感器的配置 1.6互感器的接线方式

计量用电流互感器接线方式的选择,与电网中性点的接地方式有关,当为非有效接地系统时,应采用两相电流互感器,当为有效接地系统时,应采用三相电流互感器,一般地,作为计费用的电能计量装置的电流互感器应接成分相接线(即采用二相四线或三相六线的接线方式),作为非计费用的电能计量装置的电流互感器可采用二相三线或三相线的接线方式,各种接线方式如下图所示: 1.7互感器二次回路导线的确定 由于电流互感器二次回路导线的阻抗是二次负荷阻抗的一部分,直接影响着电流互感器的误差,因而哪二次回路连接导线的长度一定时,其截面积需要进行计算确定。 一般计量用互感器要求一次电流要经常运行在20%-100%之间.这样它的二次电流一般不会超过5A,请教各位老师如果测得它的二次电流为6A的话,那它的计量还准吗?如果不准的话那是多计量了还是少计量了呢? 计量用电流互感器一般要求准确级在0.2s级以上。 电流互感器检测的标准: 五个点:1%;%5;20%;100%;120%。 所以,可以肯定的说,6A的点是准确的。计量用电流互感器一般要求准确级在0.2s级以上。 应该是445KVA吧?也就是千伏安,代表主变容量,PT就是电压互感器,10KV/100V 就是指互感器的一次侧即高压侧额定电压为10KV,二次侧即低压侧(接入仪表侧)额定电压为100V,100V是通用的标准电压。CT是电流互感器,30/5A 是指一次侧额定电流三十安时二次侧电流是5安,5安是通用的标准电流。电力部门给你们装表时都要经过基本计算,不会瞎装的,有一公式:主变容量(445KVA)等于根号3倍的高压侧额定电压(10KV)和额定电流的乘机。反算过来,电流约25.7安,躲过主变励磁涌流,选30安是正确合适的,如果选用CT-50/5A 的互感器,你想想看,是不是对于你发电方就不合适了?再选大点儿,你就白白的发吧,电表可能就不转了。所以作为计量,发电方互感器越小越好.

变压器保护的配置原则

关于变压器保护的重要原则,必看! 变压器是电力系统普遍使用的重要电气设备。它的安全运行直接关系到电力系统供电和稳定运行,特别是大容量变压器,一旦因故障而损坏造成的损失就更大。因此必须针对变压器的故障和异常工作情况,根据其容量和重要程度,装设动作可靠,性能良好的继电保护装置,一般包括: (1)反映内部短路和油面降低的非电量(气体)保护,又称瓦斯保护; (2)反映变压器绕组和引出线的多相短路及绕组匝间短路的纵联差动保护,或电流速断保护; (3)作为变压器外部相间短路和内部短路的后备保护的过电流保护(或带有复合电压起动的过电流保护或负序电流保护或阻抗保护) ; (4)反映中性点直接接地系统中外部接地短路的变压器零序电流保护; (5)反映大型变压器过励磁的变压器过励磁保护及电压保护; (6)反映变压器过负荷的变压器过负荷保护;

(7)反应变压器非全相运行的非全相保护等。 变压器保护配置原则 电力变压器运行的可靠性很高。由于变压器发生故障时造成的影响很大,因此应加强其继电保护装置的功能,以提高电力系统安全运行,按技术规程的规定电力变压器继电保护装置的配置原则一般为: (1)针对变压器内部的各种短路及油面下降应装设瓦斯保护,其中轻瓦斯瞬时动作于信号,重瓦斯瞬时动作于断开各侧断路器; (2)应装设反应变压器绕组和引出线的多相短路及绕组匝间短路的纵联差动保护或电流速断保护作为主保护,瞬时动作于断开各侧断路器; (3)对由外部相间短路引起的变压器过电流,根据变压器容量和运行情况的不同以及对变压器灵敏度的要求不同,可采用过电流保护、复合电压起动的过电流保护、负序电流和单相式低电压起动的过电流保护或阻抗保护作为后备保护,带时限动作于跳闸; (4)对 110kV 及以上中性点直接接地的电力网,应根据变压器中性点接地运行的具体情况和变压器的绝缘情况装设零序电流保护和零序电压保护,带时限动作于跳闸;

变电站主变压器的事故及其处理

变电站主变压器的事故及其处理.txt 引语:在国家良好的的经济发展态势下,用电需求不断上升,新的变电站随之不断涌现。主变压器在变电站内就象人的心脏,它的安全运行、日常维护、事故处理关系到变电站的正常供电,乃至整个电力系统的安全运行。作为变电站值班运行人员应掌握保证主变压器的安全运行规程、日常维护项目、事故处理正确方法,在这里本人仅对主变压器的事故及其处理进行阐述。 一、变压器的事故情况 当主变压器发生异常情况时,如漏油、油位降低、油色变化、声音比较大、声音异常、瓷套管有裂纹、渗油以及塞垫向外凸出时,应设法消除,并报告调度及上级部门。在某些严重情况下,可不经向调度汇报即应将主变压器立即切除(若有备用变压器的,则可先将其投入运行),然后报告调度。如: (1)变压器内部有强烈而不均匀的噪音,有爆裂的火花放电声音。 (2)油枕或防爆筒喷油。 (3)漏油现象严重,致使油面降至油位指示计的最低限度,且一时无法堵住时。 (4)套管有严重的破损及放电炸裂现象,以不能持续运行时。 二、主变压器的事故处理 1、主变压器油温过高时 当变压器的油温升高到超过许可限度(强迫油循环风冷的变压器不得超过85度,自然循环的变压器不宜经常超过85度,最高不得超过95度)时,应做如下检查: (1)检查变压器的负荷及油温,并与以往同样负荷及冷却条件相比较。 (2)检查温度计本身是否失灵。 (3)检查散热器是否打开,冷却装置是否正常。 若以上均正常,油温比以往同样条件下高出10度,且还在继续上升时,则可判断变压器内部有故障如铁芯发火或匝间短路等。铁芯发火可能是涡流所致,或夹紧用的穿芯螺丝与铁芯接触,或矽钢片间的绝缘破坏。此时,差动保护和瓦斯保护不动作。铁芯发火渐发展引起油色逐渐变暗,并由于发火部分温度很快的上升致使油的温度渐升高,并达到发火点温度,这是很危险的,若不及时切除变压器,就有可能发生火灾或爆炸事故。因此,应立即报告上级,将变压器停下,并进行检修。

变压器的保护配置

变压器的保护配置 电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状 态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压

器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变压器处于不正常运行状态时,继电保护应根

相关文档
最新文档