算法稳定性

算法稳定性
算法稳定性

前面有讲到了9种排序算法:

1.简单选择排序

2.堆排序(1和2是属于选择排序)

3.直接插入排序

4.希尔排序(3和4属于插入排序,有时把改进后的直接插入排序叫做二分插入)

5.冒泡排序

6.快速排序 (5和6属于交换排序.交换排序顾名思义是不停的交换数据位置.但实际上选择排序也在不停的交换元素,但次数较少,只有找到最大值才一次交换.侧重点还是在通过遍历或堆来选择出最值.而冒泡排序就是通过不停交换相邻元素得出最大值,快速排序也在不停交换元素使序列一步步接近有序.侧重在交换)

7.基数排序8.桶排序(7和8属于分配排序)

9.归并排序

面对这以多排序算法你可能郁闷着要自己排序时用哪种算法好呢? 每种算法适用哪些场景?

为了对比上面各种不同算法,可以从如下几个方面来考虑.

1.排序算法的稳定性

2.排序算法时间复杂度

3.排序算法空间复杂度

4.各种算法适用的最佳场景.

排序算法稳定性

所谓稳定性是指待排序的序列中有两元素相等,排序之后它们的先后顺序不变.假如为A1,A2.它们的索引分别为1,2.则排序之后A1,A2的索引仍然是1和2.

稳定也可以理解为一切皆在掌握中,元素的位置处在你在控制中.而不稳定算法有时就有点碰运气,随机的成分.当两元素相等时它们的位置在排序后可能仍然相同.但也可能不同.是未可知的.

另外要注意的是:算法思想的本身是独立于编程语言的,所以你写代码去实现算法的时候很多细节可以做不同的处理.采用不稳定算法不管你具体实现时怎么写代码,最终相同元素位置总是不确定的(可能位置没变也可能变了).而稳定排序算法是你在具体实现时如果细节方面处理的好就会是稳定的,但有些细节没处理得到的结果仍然是不稳定的.

比如冒泡排序,直接插入排序,归并排序虽然是稳定排序算法,但如果你实现时细节没处理好得出的结果也是不稳定的.

稳定性的用处

我们平时自己在使用排序算法时用的测试数据就是简单的一些数值本身.没有任何关联信息.这在实际应用中一般没太多用处.实际应该中肯定是排序的数值关联到了其他信息,比如数据库中一个表的主键排序,主键是有关联到其他信息.另外比如对英语字母排序,英语字母的数值关联到了字母这个有意义的信息.

可能大部分时候我们不用考虑算法的稳定性.两个元素相等位置是前是后不重要.但有些时候稳定性确实有用处.它体现了程序的健壮性.比如你网站上针对最热门的文章或啥音乐电影之类的进行排名.由于这里排名不会像我们成绩排名会有并列第几名之说.所以出现了元素相等时也会有先后之分.如果添加进新的元素之后又要重新排名了.之前并列名次的最好是依然保持先后顺序才比较好.

哪些算法是稳定的呢

稳定性算法:基数排序 , 直接插入排序, 冒泡排序, 归并排序

不稳定性算法: 桶排序, 二分插入排序,希尔排序, 快速排序, 简单选择排序,堆排序

种算法稳定性详解

(1)基数排序(稳定)与桶排序(不稳定)

这两种算法都是属于分配排序算法.(利用元素值本身的信息直接映射到一个辅助序列中变成有序的.而不是通过与其他元素比较确定顺序位置)

基数排序因为在是把低位按顺序映射到一个临时序列中去,是依次序映射,没有涉及到数据位置的变动.然后再按高位顺序映射.所以相同元素也是按次序映射过去.所以是稳定的

如果数据元素没有重复的则采用简单桶排序,此时没有重复元素,所以自然不存在稳不稳定这一说.如果有重复元素得用改进的桶排序.此时辅助的临时数组只是通过索引来识别待排序元素的键值.丢失了其他信息(这是所有采用辅助的临时序列的算法中唯一一个会丢失信息的算法).假如待排序元素是一个map类型,按它的键值来排序.其他算法采用辅助序列时是把map类型做为元素去考虑的.而只有改进的桶排序不会把map类型当元素,只是利用到了键值信息. 这样一来就无法区分键值相同的信息,因此自然是不稳定的算法了啊.

(2)归并排序(稳定)

归并排序使得了递归的思想,把序列递归的分割成小序列,然后合并排好序的子序列.当有序列的左右两子序列合并的时候一般是先遍历左序列,所在左右序列如果有相等元素,则处在左边的仍然在前,这就稳定了.但是如果你非得先遍历右边序列则算法变成不稳定的了.虽然这样排出来的序也是对的,但变成了不稳定的,所以是不太好的实现.

3)简单选择排序(不稳定)与堆排序(不稳定)

这两种算法都属于选择排序.(从待排序的元素中挑选出最大或最小值.下面的例子以最小值为例)

简单选择排序由于选出最小值后需要交换位置,位置一变就会变得不稳定.例如8 3 8 1.当从左往右遍历找最小值时,找到了1,这就需要把8跟1交换.这样两个相等元素8的位置就变了.

堆排序的话,也会存在跟上面一样的交换最大值的位置会导致不稳定.例如有大堆8 8 6 5 2.先选出第一个最大值8,放最末尾.此时就不稳定了.因为第二个8就跑它前面去了.

(4)冒泡排序(稳定)与快速排序(不稳定)

这两种算法都属于交换排序.

冒泡是通过不停的遍历,以升序为例,如果相邻元素中左边的大于右边的则交换.碰到相等的时就不交换保持原位.所以是稳定的.当然如果你非得吃饱了撑着了,在碰到相等的时也交换下,那肯定变成不稳定的算法了.

快速排序是不稳定的.举例8 5 6 6 .以8为基准,第一趟交换后最后一个6跑到第一位,8到最后.第二趟交换.这个6跑到5的位置.变成有序的了.两个6位置变了,所以是不稳定的. (5)直接插入(稳定),二分插入排序(不稳定)与希尔排序(不稳定)

直接插入时是先在已排序好的的子序列中找到合适的位置再插入.假设左边是已排序的,右边是没排序的.通过从后向前遍历已排序序列,然后插入,此时相等元素依然可以保持原有位置.但是如果你从前向后遍历已排序序列就会是不稳定排序了.

二分插入排序是不稳定的,因为通过二分查找时得到的位置不稳定.例如3 4 4 5 4.但把最后一个4插入时肯定会跑到第二个4前面去了.所以是不稳定的.

通过上面的分析我们可以得出这样一个经验之谈.

1.只要不涉及到两个元素之间位置的交换就肯定是稳定的排序算法.比如归并排序,基数排序.(桶排序不稳定是个特例,因为它丢失了附带信息,不然的话可以弄成稳定排序的)

2.在涉及到不同位置元素交换的算法中除了冒泡和直接插入排序是稳定的,其他都是不稳定的.

你可以这样想,之所以出现相同元素位置变了就是其中一个交换位置时从另一个头顶跳过去了,而冒泡算法是相邻位置互换,跳不过去的,碰到相等元素的时候就停住不交换了.

而直接插入排序是往已排好序的序列中插入.所以你通过由后往前遍历碰到相等的时就停住,

这样也能保持稳定.但记住一定得从后往前遍历,不然也会不稳定.(所以说直接插入是半稳吧,而冒泡是非常的稳啊,除非你闲得蛋痛非得把两相等的元素两两交换)

时间复杂度

O(n)这样的标志叫做渐近时间复杂度,是个近似值.各种渐近时间复杂度由小到大的顺序如下O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

一般时间复杂度到了2^n(指数阶)及更大的时间复杂度,这样的算法我们基本上不会用了,太不实用了.比如递归实现的汉诺塔问题算法就是O(2^n).

平方阶(n^2)的算法是勉强能用,而nlogn及更小的时间复杂度算法那就是非常高效的算法了啊.

空间复杂度

冒泡排序,简单选择排序,堆排序,直接插入排序,希尔排序的空间复杂度为O(1),因为需要一个临时变量来交换元素位置,(另外遍历序列时自然少不了用一个变量来做索引)

快速排序空间复杂度为logn(因为递归调用了) ,归并排序空间复杂是O(n),需要一个大小为n 的临时数组.

基数排序的空间复杂是O(n),桶排序的空间复杂度不确定

最快的排序算法是桶排序

所有排序算法中最快的应该是桶排序(很多人误以为是快速排序,实际上不是.不过实际应用中快速排序用的多)但桶排序一般用的不多,因为有几个比较大的缺陷.

1.待排序的元素不能是负数,小数.

2.空间复杂度不确定,要看待排序元素中最大值是多少.

所需要的辅助数组大小即为最大元素的值.

数据结构课程设计报告 各种排序算法性能比较

课程设计报告 课程设计题目:各种排序算法性能比较 学生姓名: 学号: 专业:信息管理与信息系统 班级: 指导教师: 2012年06 月23 日

目录 CONT E NT S 一、课程设计目的 (2) 二、课程设计题目概述 (2) 三、数据定义 (2) 四、各种排序的基本原理及时间复杂度分析 (3) 五、程序流程图 (6) 六、程序源代码 (6) 七、程序运行与测试 (15) 八、实验体会………………………………………………………… 九、参考文献…………………………………………………………

一、课程设计目的 课程设计为学生提供了一个既动手又动脑,独立实践的机会,将课本上的理论知识和实际有机的结合起来,锻炼学生的分析解决实际问题的能力。提高学生适应实际,实践编程的能力。 二、课程设计题目概述 排序的方法很多,但是就其全面性能而言,很难提出一种被认为是最好的方法,每一种方法都有各自的优缺点,适合在不同的环境下使用。如果排序中依据的不同原则对内部排序方法进行分类,则大致可分为直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序等六类排序算法。 本实验是对直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序这几种内部排序算法进行比较,用不同的测试数据做测试比较。比较的指标为关键字的比较次数和关键字的移动次数。最后用图表数据汇总,以便对这些内部排序算法进行性能分析。 三、数据定义 输入数据: 由于大多数排序算法的时间开销主要是关键字之间的比较和记录的移动,算法的执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。所以对于输入数据,我们采用由用户输入记录的个数(以关键字的数目分别为20,100,500为例),测试数据由随机数产生器生成。 输出数据: 产生的随机数分别用直接插入排序;直接选择排序;起泡排序;Shell排序;快速排序;堆排序这些排序方法进行排序,输出关键字的比较次数和移动次数。

稳定排序和不稳定排序

稳定排序和不稳定排序 这几天笔试了好几次了,连续碰到一个关于常见排序算法稳定性判别的问题,往往还是多选,对于我以及和我一样拿不准的同学可不是一个能轻易下结论的题目,当然如果你笔试之前已经记住了数据结构书上哪些是稳定的,哪些不是稳定的,做起来应该可以轻松搞定。本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。 首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。 其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。 回到主题,现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。 (1)冒泡排序 冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。 (2)选择排序 选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。 (3)插入排序 插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。 (4)快速排序 快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1 算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0) (n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 1 1n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1 ( 0a a In I += 3. 方案二 用递推公式 )1 (11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()()11111+<<++n a I n a n 当1 n a +≥n 或 ()()n 1 111≤<++n I n a 当1 n n a 0+< ≤ 取递推初值为 ()()()() 11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥ N N 或

()()]1111[21N N a I N +++= 当1 a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数 形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %-------------------------------------------- % % [方案I] 用递推公式 %I(k) = - a*I(k-1) + 1/k % I0 =log((a+1)/a); % 初值 I = zeros(N,1); % 创建 N x 1 矩阵(即列向量),元素全为零 I(1) =-a*I0+1; for k = 2:N I(k) =-a*I(k-1)+1/k; end % %--------------------------------------------

边坡稳定性计算方法.doc

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图9 -1 为一砂性边坡示意图,坡高H ,坡角β,土的容重为γ,抗剪 度指标为 c 、φ。如果倾角α的平面AC 面为土坡破坏时的滑动面,则可分析该滑 动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图 已知滑体ABC重W ,滑面的倾角为α,显然,滑面AC 上由滑体的重量W= γ(ΔABC)产生的下滑力T 和由土的抗剪强度产生的 抗滑力Tˊ分别为: T=W ·sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数 F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系 数表达式则变为 从上式可以看出,当α=β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当F s =1 时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于0.1 时,可以把它当作一个无限边坡进行分析。 图9-2 表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条进 行分析,作用在滑动面上的剪应力为, 在极限平衡状态时,破坏面上的剪应 力等于土的抗剪强度,即 得 式中N s = c/ γH称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无 粘性土。α=φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强 度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘 这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动 法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森(K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O 为圆心,R 为半径。 假定边坡破坏时,滑体ABC 在自重W 作用下,沿AC 绕O 点整体转动。滑动面AC 上的力系有:促使边坡滑动的滑动力矩M s =W ·d ;抵抗边坡滑动的抗滑力矩,它应该 包括由粘聚力产生的抗滑力矩M r =c ·AC ·R ,此外还应有由摩擦力所产生的抗滑力矩, 这里假定φ=0 。边坡沿AC 的安全系数F s 用作用在AC 面上的抗滑力矩和下滑力 矩之比表示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ=0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

常用排序算法比较与分析报告

常用排序算法比较与分析 一、常用排序算法简述 下面主要从排序算法的基本概念、原理出发,分别从算法的时间复杂度、空间复杂度、算法的稳定性和速度等方面进行分析比较。依据待排序的问题大小(记录数量 n)的不同,排序过程中需要的存储器空间也不同,由此将排序算法分为两大类:【排序】、【外排序】。 排序:指排序时数据元素全部存放在计算机的随机存储器RAM中。 外排序:待排序记录的数量很大,以致存一次不能容纳全部记录,在排序过程中还需要对外存进行访问的排序过程。 先了解一下常见排序算法的分类关系(见图1-1) 图1-1 常见排序算法 二、排序相关算法 2.1 插入排序 核心思想:将一个待排序的数据元素插入到前面已经排好序的数列中的适当位置,使数据元素依然有序,直到待排序数据元素全部插入完为止。 2.1.1 直接插入排序 核心思想:将欲插入的第i个数据元素的关键码与前面已经排序好的i-1、i-2 、i-3、… 数据元素的值进行顺序比较,通过这种线性搜索的方法找到第i个数据元素的插入位置,并且原来位置的数据元素顺序后移,直到全部排好顺序。 直接插入排序中,关键词相同的数据元素将保持原有位置不变,所以该算法是稳定的,时间复杂度的最坏值为平方阶O(n2),空间复杂度为常数阶O(l)。

Python源代码: 1.#-------------------------直接插入排序-------------------------------- 2.def insert_sort(data_list): 3.#遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始 4.for x in range(1, len(data_list)): 5.#将该元素与已排序好的前序数组依次比较,如果该元素小,则交换 6.#range(x-1,-1,-1):从x-1倒序循环到0 7.for i in range(x-1, -1, -1): 8.#判断:如果符合条件则交换 9.if data_list[i] > data_list[i+1]: 10.temp= data_list[i+1] 11.data_list[i+1] = data_list[i] 12.data_list[i] = temp 2.1.2 希尔排序 核心思想:是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。 希尔排序时间复杂度会比O(n2)好一些,然而,多次插入排序中,第一次插入排序是稳定的,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,所以希尔排序是不稳定的。 Python源代码: 1.#-------------------------希尔排序------------------------------- 2.def insert_shell(data_list): 3.#初始化step值,此处利用序列长度的一半为其赋值 4.group= int(len(data_list)/2) 5.#第一层循环:依次改变group值对列表进行分组 6.while group> 0: 7.#下面:利用直接插入排序的思想对分组数据进行排序 8.#range(group,len(data_list)):从group开始 9.for i in range(group, len(data_list)): 10.#range(x-group,-1,-group):从x-group开始与选定元素开始倒序比较,每个比较元素之间间隔group 11.for j in range(i-group, -1, -group): 12.#如果该组当中两个元素满足交换条件,则进行交换 13.if data_list[j] > data_list[j+group]: 14.temp= data_list[j+group] 15.data_list[j+group] = data_list[j] 16.data_list[j] = temp 17.#while循环条件折半 18.group= int(group/ 2) 2.2 选择排序

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

各种排序法比较

各种排序法的比较 按平均时间将排序分为四类: (1)平方阶(O(n2))排序 一般称为简单排序,例如直接插入、直接选择和冒泡排序; (2)线性对数阶(O(nlgn))排序 如快速、堆和归并排序; (3)O(n1+£)阶排序 £是介于0和1之间的常数,即0<£<1,如希尔排序; (4)线性阶(O(n))排序 如桶、箱和基数排序。 各种排序方法比较: 简单排序中直接插入最好,快速排序最快,当文件为正序时,直接插入和冒泡均最佳。 影响排序效果的因素: 因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法 应综合考虑下列因素: ①待排序的记录数目n; ②记录的大小(规模); ③关键字的结构及其初始状态; ④对稳定性的要求; ⑤语言工具的条件; ⑥存储结构; ⑦时间和辅助空间复杂度等。 不同条件下,排序方法的选择 (1)若n较小(如n≤50),可采用直接插入或直接选择排序。 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。 (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜; (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。 快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。 若要求排序稳定,则可选用归并排序。从单个记录起进行两两归并,排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。

几种排序算法的分析与比较--C语言

一、设计思想 插入排序:首先,我们定义我们需要排序的数组,得到数组的长度。如果数组只有一个数字,那么我们直接认为它已经是排好序的,就不需要再进行调整,直接就得到了我们的结果。否则,我们从数组中的第二个元素开始遍历。然后,启动主索引,我们用curr当做我们遍历的主索引,每次主索引的开始,我们都使得要插入的位置(insertIndex)等于-1,即我们认为主索引之前的元素没有比主索引指向的元素值大的元素,那么自然主索引位置的元素不需要挪动位置。然后,开始副索引,副索引遍历所有主索引之前的排好的元素,当发现主索引之前的某个元素比主索引指向的元素的值大时,我们就将要插入的位置(insertIndex)记为第一个比主索引指向元素的位置,跳出副索引;否则,等待副索引自然完成。副索引遍历结束后,我们判断当前要插入的位置(insertIndex)是否等于-1,如果等于-1,说明主索引之前元素的值没有一个比主索引指向的元素的值大,那么主索引位置的元素不要挪动位置,回到主索引,主索引向后走一位,进行下一次主索引的遍历;否则,说明主索引之前insertIndex位置元素的值比主索引指向的元素的值大,那么,我们记录当前主索引指向的元素的值,然后将主索引之前从insertIndex位置开始的所有元素依次向后挪一位,这里注意,要从后向前一位一位挪,否则,会使得数组成为一串相同的数字。最后,将记录下的当前索引指向的元素的值放在要插入的位置(insertIndex)处,进行下一次主索引的遍历。继续上面的工作,最终我们就可以得到我们的排序结果。插入排序的特点在于,我们每次遍历,主索引之前的元素都是已经排好序的,我们找到比主索引指向元素的值大的第一个元素的位置,然后将主索引指向位置的元素插入到该位置,将该位置之后一直到主索引位置的元素依次向后挪动。这样的方法,使得挪动的次数相对较多,如果对于排序数据量较大,挪动成本较高的情况时,这种排序算法显然成本较高,时间复杂度相对较差,是初等通用排序算法中的一种。 选择排序:选择排序相对插入排序,是插入排序的一个优化,优化的前提是我们认为数据是比较大的,挪动数据的代价比数据比较的代价大很多,所以我们选择排序是追求少挪动,以比较次数换取挪动次数。首先,我们定义我们需要排序的数组,得到数组的长度,定义一个结果数组,用来存放排好序的数组,定义一个最小值,定义一个最小值的位置。然后,进入我们的遍历,每次进入遍历的时候我们都使得当前的最小值为9999,即认为每次最小值都是最大的数,用来进行和其他元素比较得到最小值,每次认为最小值的位置都是0,用来重新记录最小值的位置。然后,进入第二层循环,进行数值的比较,如果数组中的某个元素的值比最小值小,那么将当前的最小值设为元素的值,然后记录下来元素的位置,这样,当跳出循环体的时候,我们会得到要排序数组中的最小值,然后将最小值位置的数值设置为9999,即我们得到了最小值之后,就让数组中的这个数成为最大值,然后将结果数组result[]第主索引值位置上的元素赋值为最小值,进行下一次外层循环重复上面的工作。最终我们就得到了排好序的结果数组result[]。选择排序的优势在于,我们挪动元素的次数很少,只是每次对要排序的数组进行整体遍历,找到其中的最小的元素,然后将改元素的值放到一个新的结果数组中去,这样大大减少了挪动的次序,即我们要排序的数组有多少元素,我们就挪动多少次,而因为每次都要对数组的所有元素进行遍历,那么比较的次数就比较多,达到了n2次,所以,我们使用选择排序的前提是,认为挪动元素要比比较元素的成本高出很多的时候。他相对与插入排序,他的比较次数大于插入排序的次数,而挪动次数就很少,元素有多少个,挪动次数就是多少个。 希尔排序:首先,我们定义一个要排序的数组,然后定义一个步长的数组,该步长数组是由一组特定的数字组成的,步长数组具体得到过程我们不去考虑,是由科学家经过很长时间计算得到的,已经根据时间复杂度的要求,得到了最适合希尔排序的一组步长值以及计算

稳定性验算

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

排序算法比较实验报告

信息学部算法分析 上机报告 学号0901******** 姓名陈龙 指导老师秦明 时间2011.11.1~11.23

一.上机实验题目 实验1 比较归并排序和快速排序的区别。 实验2 利用贪心算法对背包问题进行求解。 二.算法设计思路 归并排序: 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列,设定两个指针,最初位置分别为两个已经排序序列的起始位置,比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置,重复步骤直到某一指针达到序列尾,将另一序列剩下的所 有元素直接复制到合并序列尾。 快速排序: 设置两个变量I、J,排序开始的时候:I=0,J=N-1;以第一个数组元素作为关键数据,赋值给key,即key=A[0];从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于key的值A[J],并与key交换;从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于key的A[I],与key交换;重复第3、4、5步,直到I=J;(3,4步是在程序中没找到时候j=j-1,i=i+1,直至找到为止。找到并交换的时候i,j指针位置不变。另外当i=j这过程一定正好是i+或j-完成的最后另循环结束。) 背包问题: 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 。可以压缩空间,f[v]=max{f[v],f[v-c[i]]+w[i]}

三. 源程序 归并排序 #include #include # define N 50 int b[N],a[N]; int n,i; void Merge (int low, int mid,int high) //合并 { int i; int l=low,h=mid+1,k=l; while ((l<=mid) && (h<=high)) //部分合并 { if (a[l]<=a[h]) b[k++]=a[l++]; else b[k++]=a[h++]; } if(l>mid) while (h<=high) b[k++]=a[h++]; //转储剩余部分 else while(l<=mid) b[k++]=a[l++]; for (i=0;i<=high;i++) //将b数组转储到a a[i]=b[i]; } int Merge2 (int l,int h) //分类 { for (i=0;i

数据结构-各类排序算法总结

数据结构-各类排序算法总结 原文转自: https://www.360docs.net/doc/e513897015.html,/zjf280441589/article/details/38387103各类排序算法总结 一. 排序的基本概念 排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素 某个项值有序的序列。 有n 个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n。通过排序,要求找出当前下标序列1,2,…,n 的一种排列p1,p2,…,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{Rp1,Rp2,…,Rpn}。 作为排序依据的数据项称为“排序码”,也即数据元素的关键码。若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可

能不唯一。实现排序的基本操作有两个: (1)“比较”序列中两个关键字的大小; (2)“移动”记录。 若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。 二.插入类排序 1.直接插入排序直接插入排序是最简单的插入类排序。仅有一个记录的表总是有序的,因此,对n 个记录的表,可从第二个记录开始直到第n 个记录,逐个向有序表中进行插入操作,从而得到n个记录按关键码有序的表。它是利用顺序查找实现“在R[1..i-1]中查找R[i]的插入位置”的插入排序。

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

相关文档
最新文档