GDYZ-313_氧化锌避雷器带电测试仪

GDYZ-313_氧化锌避雷器带电测试仪
GDYZ-313_氧化锌避雷器带电测试仪

GDYZ-313氧化锌避雷器带电测试仪

一、概述

用于检测氧化锌避雷器(MOA)的各相电气性能。该仪器适用于各个电压等级的氧化锌避雷器的现场带电检测以及停电状态下试验室做的出厂和验收试验。通过测量全电流及阻性电流等参数,可以及时发现氧化锌避雷器内部绝缘受潮和阀片老化等危险缺陷。

二、仪器功能及特点

2.1 采用带有DSP浮点处理单元的高性能、低功耗ARM处理器,运算速度更快、运算精度更高、处理数据量更大;从而可以保证测试数据计算的准确性和稳定性。

2.2 高精度采样滤波电路及数字滤波技术,可滤除现场干扰信号。

2.3 采用浮点快速傅里叶算法,从而实现对基波、谐波电压、电流信号的高精度分析。

2.4 采用工业级5.7寸320×240点阵单色液晶屏,显示清晰,人机界面友好;对于一些重要的操作及参数设置,显示其提示信息和帮助说明;屏幕顶部状态栏可显示各个外设工作状态及测试状态信息。

2.5 可同时测量三相氧化锌避雷器的电气参数,并可自动补偿相间干扰;也可单相测量,支持B相接地的PT二次电压作为参考电压;当被测相与参考电压相别不同时,可自动计算补偿角度。

2.6 提供有线、无线测试方式,无线测试方式操作更加简便、灵活;

可大大降低现场测试人员工作强度。

2.7 电压采集器集成本地显示(128×64点阵OLED液晶屏)及相序检测功能,可显示三相全电压、电压基波、3次、5次、7次谐波有效值、系统频率值及三相电压相位差;便于现场测试人员快速检查电压采集器与PT二次电压输出端子连接情况及三相电压各项参数。

2.8 电压采集器采用双重全数字隔离技术,更加安全可靠。

2.9 交直流两用:内置锂电池供电或者220V交流充电器供电自适应。

2.10 仪器主机和电压采集器内置大容量可充电锂电池,一次充电完成,可持续工作8小时。

2.11 智能电量管理:剩余电量显示、低电量报警、长时间闲置提示、背光自动调节。

2.12 内置实时时钟,可实时显示当前时间和日期;自动记录测试日期及时间。

2.13 测试数据存储方式分为本机存储和优盘存储,本机存储可存储测试数据100条,并且本机存储可转存至优盘;优盘存储可保存测试数据及波形图片,测试数据为TXT格式,波形图片为BMP格式,可直接在电脑上编辑打印。

2.14 内置热敏打印机,可打印测试数据及已保存测试记录;打印内容可选择,从而可以节省打印纸的用量。

三、技术性能参数

3.1 参考电压测量

3.1.1 参考电压输入范围:25V~250V有效值,50Hz/60Hz

3.1.2 参考电压测量准确度:±(读数×5%+0.5V)

3.1.3 电压谐波测量准确度:±(读数×10%)

3.1.4 参考电压通道输入电阻:≥1500kΩ

3.2 电流测量

3.2.1 全电流测量范围:0~10mA有效值,50Hz/60Hz

3.2.2 准确度:±(读数×5%+5uA)

3.2.3 阻性电流基波测量准确度:±(读数×5%+5uA)

3.2.4 电流谐波测量准确度:±(读数×10%+10uA)

3.2.5 电流通道输入电阻:≤2Ω

3.3 使用条件及外形

3.3.1 工作电源:内置锂电池或外置充电器,充电器输入

100-240VAC,50Hz/60Hz

3.3.2 充电时间:约4小时

3.3.3电池工作时间:主机8小时,电压采集器8小时

3.3.4 主机尺寸:320mm(长)×270mm(宽)×150mm(高)

3.3.5 主机重量: 3.2kg(不含线缆)

3.3.6 电压采集器尺寸:115mm(长)×120mm(宽)×65mm(高)

3.3.7 电压采集器重量:0.6kg (不含线缆)

3.3.8 使用温度:-10℃~50℃

3.3.9 相对湿度:<90%,不结露

四、测量及补偿原理

4.1 测量原理

本仪器采用如图1所示的投影法计算基波及

各次谐波的阻性电流。

图中:U1 基波参考电压

Ix1p 基波全电流峰值

Ir1p 基波阻性电流峰值

Ic1p 基波容性电流峰值

Φ基波全电流超前基波参考电压的角度

计算公式:Ir1p = Ix1p·CosΦ

Ic1p = Ix1p·SinΦ

氧化锌避雷器全电流既含有氧化锌避雷器非线性产生的高次谐波,也含有母线电压谐波产生的高次谐波。与Irp相比Ir1p更加稳定真实;因此建议用Ir1p作为阻性电流指标,Φ和Ir1p均能直观衡量氧化锌避雷器的性能。

4.2 相间干扰及自动补偿原理

在现场三相同时测试一字排列的氧化锌避雷器时,如图2所示,由于杂散电容的存在,A、C相电流相位都要向B相偏移,一般偏移角度为2°~4°左右;这将使A相φ减小,阻性电流增大,C相φ增大,阻性电流减小甚至为负,这种现象称相间干扰。

解决这一问题的方法是采用自动补偿算法,即仪器内置的“自动边补”功能。假设Ia、Ic无干扰时相位相差为120°,假设B相对A、C相干扰是相同的;测量出Ic超前Ia的角度Φca,A相补偿Φ0a=(Φca-120°)/2,C相补偿Φ0c= -(Φca -120°)/2。这种方法实际上对A、C相阻性电流进行了平均,极有可能掩盖存在的问题。因此建议考核没有进行自动补偿的原始数据(即补偿角度为0°),并考核其变化趋势。

五、面板及各部件功能介绍

5.1 主机面板

主机面板布置图如图3所示。

5.1.1 电流输入:分为A相(黄色)、B相(绿色)、C相(红色)三个

输入通道,单相测量时,无论测试A相、B相或者C相电流,都从A相通道输入。

5.1.2 参考信号输入:有线测试方式时,使用专用通讯电缆,用于连接电压采集器。

5.1.3 液晶屏:工业级320×240点阵单色液晶屏,带LED背光,显示操作菜单、测试数据、波形等。

5.1.4 按键:操作仪器用。“↑↓”为“上下”键,选择移动或修改数据;“←→”为“左右”键,选择移动或修改数据;“确认”键,确认当前操作;“取消”键,放弃当前操作。

图3 主机面板

5.1.5 天线:在使用无线测试方式时,请将配套天线安装在天线座上,以便于良好的接收无线信号,不安装天线将大大缩短无线通讯距离。

5.1.6 优盘接口:外接优盘用,用来存储测试数据,请使用FAT或FAT32

格式的U盘。在存储过程中,严禁拨出优盘。

5.1.7 打印机:打印测试结果,打印内容可选择,不关心的数据无需打印,从而节约打印用纸。

5.1.8 接地柱:在测试过程中,仪器必须可靠接地。在连接其它测试线之前应先连接接地线;在测试结束后,最后拆除接地线,以保证人身安全。

5.1.9 充电口:仪器充电器接口,请使用仪器配套专用充电器。

5.1.10 开关:仪器电源开关,在不使用仪器时,请及时关闭仪器电源,以节省电池电量。

5.2 电压采集器前后面板

电压采集器前后面板如图4、5所示。

图4 电压采集器前面板图5 电压采集器后面板

5.2.1 通讯接口:有线测试方式时,使用专用通讯电缆,用于连接仪器主机参考信号输入。

5.2.2 天线:在使用无线测试方式时,请将配套天线安装在天线座上,以便于电压采集器有效的发射无线信号;不安装天线将大大缩短无线通讯距离,时间过长有可能烧毁内部无线模块。

5.2.3 按键:操作仪器用。“↑↓”为“上下”键,选择移动或修改数据;“→”为“右”键,选择移动或确认操作;长按“→”键,进入设置菜单界面。

5.2.4 液晶屏:工业级128×64点阵OLED液晶屏,显示操作菜单、测试数据。

5.2.5 发送指示灯:电压采集器通过无线方式或者有线方式,每发送一次数据指示灯闪烁一次。

5.2.6 充电口:仪器充电器接口,请使用仪器配套专用充电器。

5.2.7 开关:电压采集器电源开关,在不使用时,请及时关闭电源,以节省电池电量。

5.2.8 电压输入:参考电压输入,分为A相(黄色线)、B相(绿色线)、C相(红色线)、中性点或地线(黑色线);选择参考相别为单相,且无论是A相、B相、C相、AB相、CB相都从A相(黄色线)和黑色线输入。

注意:如果PT二次侧是B相接地的,A相(黄色线)接PT二次侧A相,黑色线接地,仪器主机参考相别选择“A-B”;或者A相(黄色线)接PT二次侧C相,黑色线接地,仪器主机参考相别选择“C-B”。输入线中串接了120mA自恢复保险。

5.2.9 接地柱:在测试过程中,仪器必须可靠接地。在连接其它测试线之前应先连接接地线;在测试结束后,最后拆除接地线,以保证人身安全。

六、操作使用说明

在进行测试前,仪器主机及电压采集器外壳应可靠接地,根据不同的测试方式进行正确的接线,各种测试方式下的接线说明请参照“7 测试接线”。当使用无线测试方式时,电压采集器尽量放置在比较高的位置(例

如:PT端子箱上面),可增加无线通讯距离。

6.1 智能电量管理

仪器在长时间未操作时,将自动关闭液晶背光,以节省电量,并显示提示窗口及发出提示音提示用户关闭仪器电源;仪器带低电量提示功能;仪器电量低时可插充电器进行充电,并可在充电过程中对仪器进行正常操作使用。

6.2 打印机使用说明

打印机按键和打印机指示灯是一体式。打印机上电后,正常时指示灯为常亮,缺纸时指示灯闪烁。按一次按键,打印机走纸。当打印出的打印纸带有粉红边时,表示打印纸即将用完,请及时更换打印纸。

打印机自检:在仪器电源关闭的情况下按住按键不放,同时给仪器上电,即打印出自检条。

打印机换纸:扣出旋转扳手,打开纸仓盖;把打印纸装入,并拉出一截(超出一点撕纸牙齿),注意把纸放整齐,纸的方向为有药液一面(光滑面)向上;合上纸仓盖,打印头走纸轴压齐打印纸后稍用力把打印头走纸轴压回打印头,并把旋转扳手推入复位。

6.3 主机操作说明

图6 开机屏幕图7 主菜单打开仪器主机电源开关,仪器初始化后进入开机屏幕(见图6),显示仪器型号、软件版本号、硬件版本号和仪器编号;随后自动进入“主菜单”。

6.3.1 主菜单

“主菜单”屏幕见图7所示。顶部状态栏显示当前日期、时间、优盘插入状态、测试方式(及相应附加信息)和仪器主机电池电量;底部显示软件版本号、硬件版本号和装置编号;中间为仪器型号名称以及可选的功能菜单。

按上下键选择相应的功能菜单,按“确认”键进入所选功能菜单;“系统参数设置”菜单为厂内调试用,不对用户开放。

●无线测试方式,显示电压采集器电池电量及接收到的无线信号强度;电池电量低时,电池符号闪烁;接收不到无线信号时,无线信号强度显示“?”号,并发出“滴‥滴‥滴‥”报警音。

●有线测试方式,显示电压采集器电池电量及有线连接状态;电池电量低时,电池符号闪烁;连接成功显示上下箭头标志,连接失败显示“?”号,并发出“滴‥滴‥滴‥”报警音。

●显示此图标表示优盘已插入且初始化成功。

6.3.2 测试参数设置

在“主菜单”屏幕中选择“开始带电测试”按“确认”进入“测试参数设置”屏幕,见图8。

按上下键选择设置项目,按“确认”或右键进入具体数值设置;当光标在具体数值位置时,按上下键调整数值,按“确认”键或左键返回项目选择。

右侧的提示窗口显示相应设置项的操作说明及重要提示。

图8 测试参数设置

●试验编号:设置当前的试验编号。

●设备名称:即被测设备的编号,可以不设置。

●测试方式:测试方式可选择有线、无线两种种测试方式;当选择无线

测试方式时,“无线”二字右边的数字表示当前无线模块使

用的频道数值。

●参考相别:可设置为ABC、A、B、C、A-B、C-B。

ABC表示同时使用三相电压作为参考电压。

A、B、C表示使用单相电压作为参考电压。

A-B、C-B表示针对PT的B相接地的情况,使用A对B

或C对B作为参考电压。

除ABC方式外,其它方式下参考电压都由电压采集器A

相(黄线)通道输入。

●被测相别:可设置为ABC、A、B、C

ABC表示三相同时测量,在ABC(黄、绿、红)三相电

流通道同时输入三相电流。

A、B、C表示单相测量,都是用A相(黄)电流通道输入

电流。

●补偿方式:可设置为“禁用补偿”、“手动补偿”、“自动边补”三

种模式。

“禁用补偿”:即补偿角度为0°。当参考相为单相,且

被测相别与参考相不同时,仪器自动设置理论补偿角度,

如下表所示。

“手动补偿”:手动设置A、B、C三相的补偿角度,设置

范围在±360.00°之间。注意:设置的补偿角

度一定要有依据,不可随意设置!

“自动边补”:根据“4.2相间干扰及自动补偿原理”所

述原理,自动进行补偿。

注:补偿的角度总是被加到电流与电压的相位差中;例如:电流电压相位差80°,补偿角度1°,则经补偿后最终电流电压夹角为81°。

●补偿角度:在此处可以查看或者设置A、B、C三相的补偿角度;单相

测量时,只显示被测相别的补偿角度。

●P T 变比:在有线、无线测试方式下设置PT电压变比值。

PT变比有两种设置模式,分为“自定义值”和“预置变比”;

“自定义值”模式可随意设置变比值;“预置变比”模式通过

选择PT一次额定电压和PT二次额定电压来自动计算PT变

比值。

●开始测试:参数设置完毕后,光标移动至此,按“确认”键将启动测

试过程并进入测试数据显示屏幕;另外,仪器将自动保存此

次参数设置,以便于下次使用。

6.3.3 测试数据显示屏幕

图9 主要测试数据屏幕图10 详细测试数据屏幕

图11 谐波测试数据屏幕图12 波形测试数据屏幕

测试数据显示屏幕分为:主要测试数据、详细测试数据、谐波测试数据、波形测试数据和参数设置查看五个屏幕,光标移动到“显示”按“确定”键进行切换;单相测量时,没有单独的波形测试数据显示屏幕,波形测试数据将显示在所有测试数据屏幕中。

这里的参数设置查看屏幕,主要是用于查看进行此次测试时的参数设置情况,不可进行修改,如需修改参数设置请返回“测试参数设置”屏幕进行修改。

主要测试数据屏幕见图9所示;详细测试数据屏幕见图10所示;谐波测试数据屏幕见图11所示;波形测试数据屏幕见图12所示;参数设置查看屏幕见图13所示。

●测试过程中显示此符号,且闪烁。

●暂停测试时显示此符号,且闪烁。

点击“测试”按钮进入测试状态;点击“暂停”进入暂停状态;测试状态只能切换显示屏幕不能进行数据保存、打印、上传等操作;暂停状态下,将显示“保存”、“打印”、“上传”按钮,可以进行保存、打印、上传等操作。

图13 参数设置查看屏幕

6.3.4 测试数据说明

●系统频率:屏幕右上角显示仪器采集到的系统频率值。

●三相电压夹角:三相同时测量时,显示三相电压夹角Φa-b、Φb-c、

Φc-a;单相测量时,不显示。

●Ux:参考电压有效值,仅包含基波和3、5、7次谐波,计算公式为:

●U1:基波电压有效值。

●U3、U5、U7:3、5、7次谐波电压有效值及其占基波电压的相对含量。

●Ix:全电流有效值,仅包含基波和3、5、7次谐波。

●Ixp:全电流峰值,即Ix的峰值。

●Ir:阻性电流有效值,仅包含基波和3、5、7次谐波阻性电流。

●Irp:阻性电流峰值,即Ir的峰值。

●Ir1p:基波阻性电流峰值。

●Ic1p:基波容性电流峰值。

●Ir3p、Ir5p、Ir7p:3、5、7次谐波阻性电流峰值。

注意:基波电流超前基波电压的角度Φ超过90°时,Ir1p为负值;超过180°时,Ic1p也为负值。如果Ix波形是平顶的,Ic1p可大于Ixp。

●P1:基波功耗,即基波阻性电流有效值与基波电压有效值的乘积。

●Cx:氧化锌避雷器电容量,计算公式为:

式中:Ic1 基波容性电流有效值

f 系统频率

U1 基波电压有效值

●Φ:基波电流超前基波电压的角度,其中已经包含了补偿角度。仪器

根据Φ给出结论的判断依据如下表:

注:本仪器具有波形自动放大功能,因此波形幅度并不能代表相应数据值的大小。

6.3.5 测试记录查询

图14 测试记录查询图15 实时时钟设置

测试记录查询屏幕见图14所示。此屏幕可以查看保存在本机的所有测试记录,及所有测试数据、波形及其相应的参数设置;并可对已保存的测试记录进行转存至优盘、打印等操作。“001/003”前面的数字表示当前查看的测试记录的保存编号,后面的数字表示已保存的测试记录数量,本仪器最多可以保存100条测试记录;按“←→”键切换要查看的测试记录。

6.3.6 实时时钟设置

实时时钟设置屏幕见图15所示。用于设置仪器自带的时钟;按“↑↓”键调整数值,按“←→”键移动光标,按“确认”键保存设置,按“取消”放弃设置。

6.4 电压采集器操作说明

打开电压采集器电源开关,电压采集器初始化后进入开机屏幕(见图16),显示电压采集器软件版本号、硬件版本号和仪器编号;随后自动进入“测试数据”屏幕。

图16 开机屏幕图17 测试数据屏幕

6.4.1 测试数据显示屏幕

测试数据显示屏幕见图17所示。在此屏幕中显示:

●电压采集器电池电量。

●通过A相测量的系统频率。

●电压采集器发送模式:为无线发送模式(符号上面显示的数值为无线通讯频道),为有线发送模式;按“→”键进行模式切换。

●三相参考电压有效值,基波、3次、5次、7次谐波电压有效值。

●三相基波电压相位差。

按“↑↓”键可切换显示内容;电压采集器具备相序错误报警功能,在参考电压为三相(同时采集三相电压)时,如果三相相序不是正相序,则会显示报警信息并发出报警音。

如果电压采集器开机后没有进行电压测量(电压小于1V),在一段时间后,电压采集器会发出提示音和提示信息,提示用户关机;如果进行测量,则不会发出提示音和提示信息。

6.4.2 主菜单及无线频道设置

在测试数据显示屏幕下,长按“→”键进入“主菜单”屏幕,“主菜单”屏幕包含“1.无线频道设置”和“2.系统参数设置”两个选项,通过“↑↓”键选择,按“→”键确认;“2.系统参数设置”为厂内调试用,

不对用户开放。

选择“1.无线频道设置”选项并确认后,会进入“密码输入”屏幕,按“→”键移动光标;光标在密码位置时,按“↑↓”键修改密码值;光标在“确定”或“取消”位置时,按“↑↓”键相当于“确认键”。无线频道设置菜单密码为“888888”。

无线频道数值不能随意修改,频道值必须与仪器主机相同。当遇到同频干扰需要修改无线通讯频道时,设置好电压采集器无线频道后,在测试数据显示屏幕下,按“→”键将电压采集器发送模式改为有线模式;用有线通讯电缆连接电压采集器和仪器主机,仪器主机设置为有线测试方式,当通讯成功后,仪器主机的无线通讯频道会自动设置为与电压采集器一致的频道值。之后便可改为无线测试方式进行测试操作。

七、测试接线

7.1 注意事项

7.1.1 仪器主机及电压采集器在测试前必须可靠接地。

7.1.2 电流采样,单相测试时,从仪器主机A相(黄色)通道输入;三相测试时,从A、B、C相(黄色、绿色、红色)通道分别输入;且仪器只能用于低压小电流信号采样,所以测试线应远离高压。

提示:从氧化锌避雷器计数器取电流,当测试夹连接良好时,计数器电流表指针归零;电流表指针不归零,表示测试夹没有接好,此时用测试夹在连接部位摩擦几下使电流表指针归零即可。

7.1.3 参考电压采样,单相测试时,从电压采集器A相(黄色)通道

输入;三相测试时,从A、B、C相(黄色、绿色、红色)通道分别输入;电压测试线上串联有120mA自恢复保险,以防止测试线短路造成PT二次侧短路。

7.1.4 无线测试方式,电压采集器应尽量放置在相对较高的位置(例如:PT端子箱上面),这样可以增加无线发射、接收距离;当无线信号较弱时,可适当调整天线方向,以增强无线信号强度;特殊情况下可使用带延长线的吸盘天线来改善无线信号质量。

图18 有线测试方式接线示意图(三相同时测量)

ZMOA-Ⅲ氧化锌避雷器直流参数测试仪使用手册

ZMOA-Ⅲ 氧化锌避雷器直流参数测试仪 使 用 手 册 武汉智能星电气有限公司 2012-2-20

目录 一、概述 (3) 二、产品技术参数 (3) 三、性能特点 (4) 四、面板功能介绍 (5) 五、使用方法 (6) 六、注意事项 (11) 七、运输、贮存 (11) 八、售后服务 (12) ZMOA-Ⅲ氧化锌避雷器现场测试仪

一、概述 ZMOA-Ⅲ氧化锌避雷器现场测试仪是专门用于检测10kV及以下电力系统用无间隙氧化锌避雷器MOA阀电间接触不良的内部缺陷,根据《电力设备预防性试验规程》DL/T596-1996中14.2的规定,发电厂、变电所在每年雷雨季前和必要时应该对金属氧化物避雷器做直流1mA电压 (U1mA)和0.75 U1mA下泄漏电流的检测。 本公司根据实地测量需求对仪器进行了改进,将直流高压电源、测量和控制系统有机结合,缩小仪器体积,减轻重量。操作设置人性化,通过遥控器实现远程遥控测量,并根据测量规程要求增加了自动测量环境温度功能,带有大容量存储器,可存储50组测试数据,掉电不丢失。配备高速热敏打印机大大提高了测试结果打印速度。是电力系统以及氧化锌避雷器生产厂现场检验必不可少的设备。 二、产品技术参数 1.测量范围:电压:0~30kV 电流:0~1000μA 纹波系数:≤1.5% 2.分辨率:电流:0.5μA 电压:0.1 kV 3.内置电源充电时间:2-3小时 4.内置电源使用时间:≥4小时 5.遥控有效距离:100M 6.环境温度:-10℃~50℃

7.相对湿度:25℃时≤85% 8.海拔高度:<1000M 9.充电电压:AC100V-240V 10.电源频率:50±1H Z 三、性能特点 1.温度测量:自动感应环境温度并记入测试结果。 2.遥控测试:通过遥控器实现远程遥控测试,让测试更加安全、方便、快捷。 3.内部电源:可使用AC220V交流电,也可由内置充电电池供电使用。 4.使用方便:中文菜单操作,测量数据显示直观,内置前换纸打印机换纸方便,打印速度快。 5.测量准确:全数字化处理,内建精密数学模型,测量精度高,测试结果重复性好。 6.可存储50组测试数据,掉电不丢失,并能随时查看打印。 7.携带方便:高度、体积、重量仅为同类产品的3 0 %~7 0 % ,携带方便。8、功能齐全:测量、显示、时钟、温度、结果打印一步 到位。

电网氧化锌避雷器在线监测和带电测试技术规定

电网氧化锌避雷器在线监测 和带电测试技术规定 一、总则 1.电网35~110kV变电站过电压保护采用氧化锌避雷器。为了做好氧化锌避雷器的在线监测和带电测试这项工作,保证避雷器与电网设备的安全运行,特制定本规定。 2.本规定适用于35kV及以上氧化锌避雷器的在线监测;110kV氧化锌避雷器带电测试。公司所属各部门、基建安装单位均应按此规定执行。 二、在线监测 (一)在线监测装臵的技术要求 1.带有避雷器动作次数计数器的在线监测装臵应符合JB2440-91《避雷器用放电记数》标准的规定,其表面清晰、直观、密封可靠,上下端与接地线应能可靠连接。 2.在线监测装臵准确测量的量程应能满足下表要求,超过准确测量量程后应具有限幅功能,在最大量程内,限幅的电流应满足下表要求:

(二)在线监测装臵的安装 1.在线监测装臵应安装在易于观察处,在保证安全要求的前提下,高度宜低些。 2.在线监测装臵上部引线与避雷器底部的引下线宜采用软连接过渡,或带有伸缩结构的硬连接。为排除由于MOA 底座用4个小瓷瓶支撑,螺栓孔易积水分流所致在线监测仪数值明显降低,底座选用单个大瓷柱支撑。 3.避雷器的底座无论气候状况如何变化应保持绝缘良好,否则应采用防雨等措施。 4.在避雷器爬距留有裕度的条件下,在线监测装臵宜采用屏蔽安装。 (三)运行监测 1.安装在线监测装臵后,应每天抄表一次(无人值守站至少每周抄表一次),除记录泄漏电流外,还应记录时间、运行电压、环境温度、气候状况等参数。在雷电季到来之前,各站应对避雷器进行全面检查,登记避雷器放电次数,同时检修部应及时消缺,保证避雷器保持可投状态。 2.变电部在避雷器投运后,应确定所安装避雷器在晴天时运行电流正常值的变化范围(可以以两周记录的电流值变化范围来确定)。若在正常运行状态下,晴天或采用屏蔽安装的避雷器的运行电流增加到正常值上限的1.1倍;雨天或湿度大于85%时,避雷器的运行电流增加到正常值上限的

避雷器试验方案

避雷器试验方案 1 试验目的 按试验周期安排,对避雷器按有关标准规定进行试验,为能否再正常投入运行提供试验依据。 2 标准依据 2.1 XX省电力有限公司电力设备交接及预防性试验规程 2.2 DL/T596-2005《电力设备预防性试验规程》 2.3 GB50150-2006《电气装置安装工程电气设备交接试验标准》 2.4 避雷器生产厂家技术规范 3 试验项目 3.1 测量本体绝缘电阻 3.2 测量氧化锌避雷器直流1mA参考电压及测量0.75倍直流参考电压下漏电流 3.3带电测量运行电压下的持续电流(全电流及阻性电流) 3.4测量避雷器基座的绝缘电阻 3.5检查放电记录器或在线检测仪的动作情况和电流指示 4 试验条件 该试验需3~5人参加;工作负责人至少具有高压电气试验中级工以上水平,其余人员至少需具备初级工水平。 对于安装户外的试品,该试验应在晴天且湿度不大于85%的环境状况下进行;对于安装户内的试品,该试验应湿度不大于85%的环境状况下进行。 5 仪器设备

6 试验步骤 6.1 测量本体绝缘电阻 将避雷器外部擦拭干净,分单节进行;采用2500V兆欧表进行测量,与历次试验数据比较应无明显差别。 6.2测量氧化锌避雷器直流1mA参考电压及0.75倍直流参考电压下漏电流 现场试验接线如图1所示;试验步骤和注意事项为: ⑴对直流电压发生器进行空载升压约超过预加试验电压10-20%,待直流电压发生器正常后进行过电压保护值整定,其值一般按直流电压发生器额定值(电压、电流)整定; ⑵按图1接好试验接线:注意直流发生器至避雷器之间的高压引线连接应牢靠,经检查无误后,方可缓慢升压,当直流电流达到1mA时,读取直流电压即U1mA;其值与上次数值比较,变化应不大于5%时,合格; ⑶完成U1mA测量后,立即把电压降低至0.75 U1mA左右,将直流微安表的短路刀闸合上,把直流微安表量程换至小档位,然后电压调到0.75 U1mA数值时测量避雷器的漏电流;漏电流不大于50μA时为合格; ⑷完成0.75倍直流参考电压下漏电流测量后,立即调节直流发生器降低电压至零; ⑸断开交流电源,然后对直流发生器及避雷器进行充分放电,放电完毕,方可拆除高压引线。 6.3 运行电压下持续电流的测量 测量的接线图如图2所示。 试验要求:

ZMOAⅢ氧化锌避雷器直流参数测试仪产品技术规范书(参考Word)

Z M O A-Ⅲ氧化锌避雷器直流参数测试仪 技术规范书 一、概述: ZMOA-Ⅲ氧化锌避雷器直流参数测试仪是专门用于检测10kV及以下电力系统用无间隙氧化锌避雷器MOA阀电间接触不良的内部缺陷,根据《电力设备预防性试验规程》 DL/T596-1996中14.2的规定,发电厂、变电所在每年雷雨季前和必要时应该对金属氧化物 避雷器做直流1mA电压(U 1mA )和0.75 U 1mA 下泄漏电流的检测。 本公司根据实地测量需求对仪器进行了改进,将直流高压电源、测量和控制系统有机结合,缩小仪器体积,减轻重量。操作设置人性化,通过遥控器实现远程遥控测量,并根据测量规程要求增加了自动测量环境温度功能,带有大容量存储器,可存储50组测试数据,掉电不丢失。配备高速热敏打印机大大提高了测试结果打印速度。是电力系统以及氧化锌避雷器生产厂现场检验必不可少的设备。 二、产品关键字: 无间隙避雷器测试仪、避雷器直流参数测试仪、避雷器测试仪 三、采用标准:

DL/T 474.5-2006 《现场绝缘试验实施导则第5部分:避雷器试验》

DL/T 846-2004 《高电压测试设备通用技术条件系列标准》 DL/T 848-2004 《高压试验装置通用技术条件》 DL/T 596-2005 《电力设备预防性试验规程》 GB50150-2006 《电气装置安装工程电气设备交接试验标准》 GB1094.1-GB1094.6-96 《外壳防护等级》 GB2900 《电工名词术语》 GB/T16927.1~2-1997 《高电压试验技术》 GB4793-1984 《电子测量仪器安全要求》 GB191 《包装贮运标志》 GB/T.311-1997 《高压输变电设备的绝缘与配合》 四、仪器特点: 1.温度测量:自动感应环境温度并记入测试结果。 2.遥控测试:通过遥控器实现远程遥控测试,让测试更加安全、方便、快捷。 3.内部电源:可使用AC220V交流电,也可由内置充电电池供电使用。 4.使用方便:中文菜单,测量数据显示直观,内置前换纸打印机换纸方便,打印速度快。 5.测量准确:全数字化处理,内建精密数学模型,测量精度高,测试结果重复性好。 6.可存储50组测试数据,掉电不丢失,并能随时查看打印。 7.携带方便:高度、体积、重量仅为同类产品的3 0 %~7 0 % ,携带方便。 8、功能齐全:测量、显示、时钟、温度、结果打印一步到位。 五、主要技术参数: 1.测量范围:电压:0~30kV 纹波系数:≤1.5% 电流:0~1000μA 2.分辨率:电流:0.5μA 电压:0.1 kV

数据交换平台测试报告

数据交换平台测试总结报告 XX科技测试组

版本历史 1.概述 根据《关于XXXXXX系统数据联网的技术方案》的要求,本文档主要是解决如何从省运政系统相关数据表中导出数据到省厅前置机上,按交通部《XXXXXX信息系统联网试点前置数据交换服务器数据库结构及接口开发要求》文件中的相关要求建立的数据库(YZXT440000)中,根据《关于开展XXXXXX信息系统联网试点上传数据清理工作的通知》要求中数据库结构修改要求调整有关交换程序,并根据《通知》附件《附件1-XXXXXX信息系统联网试点数据交换指标调整及校验规则》对程序进行调整。 1.1项目概述 本次数据转换涉及到省运政系统的经营业户、营运车辆、客运线路、从业人员、稽查、道路运输管理机构(具体数据对应关系见附表),需将所涉及数据转换到前置机的YZXT440000数据库(根据部要求所建立,表结构按部文件要求)中。 程序可以在指定的时间段内自动从指定的数据库服务器上把相关数据转换到前置机上。根据部文件建议,考虑到对省运政系统

的影响,现暂定为一天转换一次数据,但亦可通过有关参数进行控制更新时间及次数。 前置机上YZXT440000的数据一经导入后,不允许删除原有数据,只能更新已存在数据,导入新增的数据。数据导入后,需统一更新主键表中对应的主键值。 程序(自动执行)简单主线为:主程序运行→程序初始化(从TrafficDataExchange.ini获取有关参数)→①时间控件(TIMER)激活以进行定时判断→②判断是否可以启动转换程序(是否更新时间,当天是否已更新完毕)→③停止TIMER控件触发,从运政系统获取数据并进行转换到前置机(根据对应关系)→④更新主键表→⑤重新激活TIMER→①(注,在程序过程中均通过日志文件进行记录,考虑文件大小原因,文件将分为一个月一个文件,文件名为YYYYMM.log,如200704.log) 程序(手工执行)简单主线为:主程序运行→程序初始化(从TrafficDataExchange.ini获取有关参数)→①手工启动‘立即数据交换’进行手工执行程序→②判断是否可以启动转换程序(是否在更新时间范围内),如非退出操作,返回主界面→③如果是在允许更新时间范围内,则进一步判断当前是否已执行更新,并提示最近执行更新时间,询问用户是否还继续手工更新,如非退出更新,如是执行手工转换;停止TIMER→④更新主键表→⑤重新激活TIMER→①。

氧化锌避雷器带电测试原理、方法和试验标准

氧化锌避雷器带电测试原理、方法和试验标准 (傅祺,成都铁路局供电处工程师 37883 张丕富,成都铁路局多元工程师) 摘要避雷器是保证牵引供电系统安全运行的重要设备之一,接触网线路上使用的避雷器均需在雷雨季节来临前进行一次预防性试验以证明避雷器的电气性能良好,可以正常运行,能保证供电系统安全运行。由于电气化铁路运行的特殊性,常规避雷器预防性试验受天窗时间和现场条件限制,很难开展,氧化锌避雷器带电测试的研制使用为解决这一难题提供了新的途径。 关键词:接触网;避雷器;预防性试验; 1引言 避雷器是保证电力系统安全运行的重要设备之一,主要用于限制由线路传来的雷电过电压或操作引起的内部过电压。为保证金属氧化物避雷器的安全运行,必须定期测试避雷器的电气性能。接触网线路的雷电过电压保护基本上采用避雷器来完成,检测避雷器的主要手段仍然是周期性停电预试项目,这样既耗费了人力、物力,还常因停电原因不能完成避雷器预试项目。据统计,各线每年均有避雷器因自身原因发生击穿而造成停电的事故发生。 可见,避雷器运行状态是否良好、能否得到较好的监控,与铁路供电质量的稳定可靠有密切关系。这就需要我们尽快找到一种能解决该问题的方案。 2现状 按照《电力设备预防性试验规程》要求:变电所和接触网线路上使用的避雷器均需在雷雨季节来临前进行一次预防性试验以证明避雷器的电气性能良好,可以正常运行,能保证供电系统安全运行。由于电气化铁路运行的特殊性,避雷器预防性试验目前存在很多问题:目前牵引供电系统氧化锌避雷器预防性试验的方法是直流耐压试验:即测试直流1mA 电压(U1mA)及(U1mA)下的泄漏电流。这种测试方法需要停电进行,测试结果受空气湿度和气温的影响较大。每台避雷器测试时间需要40分钟左右的天窗时间。 受馈线天窗影响,如天窗时间短、天窗时间多数为夜间、繁忙区段天窗时间无法保证等因素(特别是高铁区段,馈线天窗几乎不可能安排在天气晴朗的白天),造成变电所馈线避雷器及接触网线路避雷器每年的预防性试验无法正常进行,给供电设备运行带来了很大的安全隐患,近年来多次发生接触网避雷器炸裂导致供电中断的事故。 为解决以上问题,我们需要采取一种新的不需要停电,在运行情况下就可以进行避雷器检测的方法,确认避雷器状态是否良好。 3.测试原理 运行状态的氧化锌避雷器,在运行电压下的总泄漏电流包括阻性电流和容性电流。在正常情况下流过金属氧化物避雷器的主要为容性电流,阻性电流只占很小的一部分,约为

氧化锌避雷器测试仪使用操作规程(最新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 氧化锌避雷器测试仪使用操作规 程(最新版)

氧化锌避雷器测试仪使用操作规程(最新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1操作程序 1.1使用前准备 1.1.1试验器在使用前应检查其完好性,联接电缆不应有断路和短路,设备无破裂等损坏。 1.1.2在工作电源进入试验器前加装两个明显断开点,当更换试品和接线时应先将两个电源断开点明显断开。 1.1.3选定试验区域(半径2米范围内、非人员经常出入或活动区域),选定或增设牢固拉设安全警示线固定物,悬挂高压危险标示牌(凡人员易进入方均应悬挂),区域试验过程中任何人不准接近高压区,确保试验时的人身安全。 1.1.4在高压区域内新敷设或就近利用一接地电阻≤10Ω的接地体,将接地线接于该接地体上 1.1.5、ZV控制箱、ZV高压发生器放置到干燥、平整的合适位置,按下图分别联接好电源线、电缆线和接地线。保护接地线与工作接地

线以及放电棒的接地线均应单独接到试品的地线上(即一点接地)。严禁各接地线相互串联。为此,应使用ZV专用接地线。(见图1) 1.1.6电源开关放在关断位置并检查调压电位器应在零位。过电压保护整定拨盘开关设置在适当位置上,一般为1.15-1.20倍测试电压值。 1.2空载升压检查设备是否正常并调校实验设备。 1.2.1接通电源开关,此时绿灯亮,表示电源接通。 1.2.2按红色按钮,则红灯亮,表示高压接通。 1.3对试品进行泄漏及直流耐压试验 在进行1.1-1.2检查试验确认试验器无异常情况后即可开始进行试品的泄漏及直流耐压试验。将试品、地线等均联接好,人员撤除高压危险区域,设置安全警示线,检查无误后可打开电源。 1.3.110KV氧化锌避雷器试验 1.3.1.1顺时针方向平缓调节调压电位器,输出端即从零开始升压,升压速度以每秒3-5kV试验电压为宜。先升至所需电流的95%,再缓缓仔细升至所需的电流(1mA),然后从数显表上读出电压值(10KV 贯通线氧化锌避雷器大于25KV为正常)。 1.3.1.2对氧化锌避雷器进行0.75UDC-1mA测量,在Ⅰ的状态下按

项目测试报告

成都市广播电视台 新闻综合频道标清转高清第二批政府采购项目招标编号:SCZZ-2015-CDTV-02 C包:新闻制播和内容管理系统 检测报告 建设单位:成都市广播电视台 检测时间:2016年10月 成都市广播电视台技术中心 成都索贝数码科技股份有限公司

2016年10月,根据项目验收条件,对成都市广播电视台新闻制播和内容管理系统项目的相关技术指标进行了检测。 一、系统概况 成都市广播电视台高清平台建设项目,其能够支持高、标清并行电视台生产业务,实现节目高清化制播。本次以数字化为基础,万兆网络为核心,桌面客户端千兆以太网接入方式,最终建设成为一个数字化、网络化、自动化、高效率的电视台节目制、管、存兼高标清一体化的综合性网络平台系统。系统平台建设将具备高清素材上载,高清视音频精编、合成、配音、审片、高清演播室以及备播媒资等功能的全数字化网络系统。 本次项目主要达成了三大目标: 实现新闻类、专题类、广告类等电视台业务的高清制作生产; 实现全台总编室编辑节目单送播出,并调用备播系统对素材进行出库,实现备播系统与索贝高清新闻网、大洋东方高清制作网的数据的交互和继承。 成都市广播电视台高清平台建设项目由高清新闻网、高清演播室、备播系统、内容管理系统等子系统模块构成,实现全台系统定位于高清制作,数据交换、数据传输等实现高清化转换,实现全台各个子系统间高效无缝的互联互通,并最终将节目送至大播出。二、测试依据 《GY/T 152-2000 电视中心制作系统运行维护规程》 《GY/T 160-2000 数字分量演播室接口中的附属数据信号格

式》 《GB/T 17953-2000 4:2:2数字分量图像信号接口》 《GY/T 155-2000 高清晰度电视节目制作及交换用视频参数值》 《GB/T 21671-2008 基于以太网技术的局域网系统验收测评规范》 三、检测内容 1.系统功能检测 2.新介质上下载效率测试 3.制作存储性能测试 4.网络弱电线缆测试 5.非编支持格式测试 四、测试结论 新建的新闻制播系统以及内容管理系统无论是在功能性上还是系统设计上均满足招标要求,系统核心服务具备冗余机制,并在测试中逐一验证,应急处理机制具备简单、易用等特点。 综上,项目建设满足成都市广播电视台标清转高清招标需求。

氧化锌避雷器在线监测原理及缺陷分析

氧化锌避雷器在线监测原理及缺陷分析 本文介绍了氧化锌避雷器及其在线监测技术,介绍了氧化锌避雷器阀片的伏安特性曲线,并解释了避雷器泄漏电流产生的原因及监测其阻性电流能较灵敏的发现缺陷,详细阐述了避雷器在线监测的内部原理、测量方法,重点介绍了石家庄供电公司在实际应用中发现的两例典型缺陷,以及在线监测技术在今后生产中的发展趋势。 标签:避雷器在线监测阻性电流 1 概述 氧化锌避雷器(以下简称MOA)是一种新型保护器,它具有非常好的非线性伏安特性。在低电压(系统标称电压)作用下,流过避雷器的电流仅为微安级,所以MOA可以不用串联间隙,但由于取消了放电间隙,ZnO阀片将长期直接承受工频电压作用而产生劣化,引起避雷器伏安特性的变化和泄漏电流的增加。在多次释放雷电能量时会造成MOA的劣化和老化,如果不及时处理会引起避雷器爆炸。 我公司多年来一直致力于开展、探索避雷器的带电测试工作,在线监测技术是在运行电压下,采用专用仪器测试电力设备的绝缘参数,它能真实地反映电力设备在运行条件下的绝缘状况,因此有利于检测出内部绝缘缺陷。另一方面带电测试可以不受停电时间限制,随时可以进行测试,其测试结果便于相互比较,并且可以测得较多带电测试数据,从而对设备绝缘可靠地进行统计分析,有效地保证电力设备的安全运行。带电测试工作的数据为今后我公司全面开展实施状态检修工作奠定了坚实的基础。本文就重点介绍了用二次法测量MOA泄漏电流的原理、仪器使用及数据分析等工作。 2 10kV~220kV氧化锌避雷器在线监测原理及方法 MOA作为阀片(碳化硅)避雷器的更新换代产品,已广泛应用于各种电压等级电力網。 2.1 MOA泄漏电流的产生及阻性分量能发现的缺陷MOA在运行电压U作用下,通过电阻片的总电流包含容性电流及阻性电流两部分。容性电流的值取决于电阻片材料介电系数及几何尺寸,一般是不随运行时间而变化的。阻性电流的值取决于电阻片内颗粒表层非线性高阻层,是随运行时间而变化。当电阻片劣化或者受潮时,阻性分量增加。 当工频电压作用于MOA时,避雷器相当于一台有损耗的电容,其中容性电流Ic的大小仅对电压分布有意义,也不影响发热,而阻性电流Ir则是造成金属氧化物电阻片发热的原因。良好的MOA虽然在运行中长期承受工频运行电压,流过的持续电流通常远小于工频参考电流,引起的热效应极微小,不引起避雷器

氧化锌避雷器的特点和使用方法 (图文) 民熔

氧化锌避雷器的特点 民熔 HY5WS-17/50氧化锌避雷器 10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器 直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境:a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%;d.地震强度不超过8级;e.安装场所:无火灾、 易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用 ②电气试验: 1)绝缘电阻,用2500V兆欧表测量绝缘电阻,与同类避雷器试验值进行比较,绝缘电阻值应未有明显变化; 2)工频击穿电压试验,FS型避雷器工频放电电压标准:额定电压为3kV、6kV、10kV时;新装和大修后的避雷器为9~11kV、16~19kV、27~30kV;运行中的避雷器为8~12kV、15~21kV、23~33kV; 3)FZ型避雷器一般可不做工频放电试验,但要做避雷器

泄漏电流测量。民熔 HY5WZ-17/45高压氧化锌避雷器10KV电站型金属氧化锌避雷器 35KV高压避雷器HY5WZ-51/134户外电站型氧化锌避雷器复合型 七大特性:一、氧化锌避雷器的通流能力大这主要体现在避雷器具有吸收各种雷电过电压、工频暂态过电压、操作过电压的能力。川泰生产的氧化锌避雷器的通流能力完全符合甚至高于国家标

氧化锌避雷器特性测试仪说明书

HRYBJ 氧化锌避雷器特性测试仪 使用说明书 一、概述: HRYBJ 氧化锌避雷器特性测试仪是用于现场和实验室检测避雷器各项相关电气参数的专用仪器,广泛应用于氧化锌避雷器的现场在线监测(带电测试)和实验室(停电检修)的测试中。符合中华人民共和国电力行业标准《DL474.5—92现场绝缘试验实施导则—避雷器试验》的要术。本仪器采用微电脑进行采样、控制等先进技术,可测量氧化锌避雷器在工频电压下的全电流、三次谐波、阻性电流、阻性电流峰值、容性电流、有功功率等。在直流试验中,可测出氧化锌避雷器的全电流。并显示电压、电流的波形及打印输出。采用大屏幕液晶显示,汉字菜单提示操作,使人机交换功能更强,同时提供现场的接线显示。本仪器具有接线简单、测量精度高、可靠性强等特点。 二、仪器面板结构图: 输入 1 2. 电压信号输入端; 7.电源开关; 3. 安全接地端 8. 微型打印机;

4.液晶对比度调节;;9.菜单操作键。 5.电源插座; 三、主要技术指标: 1.测量参数及范围 试验电压:kV 三次谐波电压:kV 全电流(峰值):0~ 10 mA 三次谐波电流:0~ 10 mA 阻性电流(峰值):0~ 10 mA 阻性电流峰值:0~ 10 mA 容性电流(峰值):0~ 10 mA 避雷器功耗:0~ 4W(pt为1:1) 除显示上述各测量值外,还可显示电压及全电流的波形。 2.测量误差: 试验电压:±5% 全电流:±2% 阻性电流:±5% 容性电流:±5% 避雷器功耗:±5% 3.输入信号: 电压信号(PT的低压测):AC 5 ~ 200V 电流信号:AC 0 ~ 10mA 4.工作电源: AC 220V±10% 50Hz 四、使用方法: 1.将仪器的接地端可靠的接地并接通电源,打开电源开关显示屏显示为: 点击“确认”键屏幕进入显示接线方式

氧化锌避雷器交接试验项目及检验标准

一、金属氧化物避雷器的试验项目,应包括下列内容 1 测量金属氧化物避雷器及基座绝缘电阻; 2 测量金属氧化物避雷器的工频参考电压和持续电流; 3 测量金属氧化物避雷器直流参考电压和0.75 倍直流参考电压下的世漏电流; 4 检查放电计数器动作情况及监视电流表指示; 5 工频放电电压试验。 二、各类金属氧化物避雷器的交接试验项目,应符合下列规定 1 元间隙金属氧化物避雷器可按本标准第20.0.1 条第l~4 款规定进行试验,不带均压电容器的无间隙金属氧化物避雷器,第 2 款和第 3 款可选做一款试验,带均压电容器的元间隙金属氧化物避雷器,应做第2 款试验; 2 有间隙金属氧化物避雷器可按本标准第20.0.1 条第1 款和第5 款的规定进行试验。

三、测量金属氧化物避雷器及基座绝缘电阻,应符合下列规定 1 35kV 以上电压等级,应采用5000V 兆欧表,绝缘电阻不应小于2500MΩ; 2 35kV 及以下电压等级,应采用2500V 兆欧表,绝缘电阻不应小于1000MΩ; 3 lkV 以下电压等级,应采用500V 兆欧表,绝缘电阻不应小于2MΩ; 4 基座绝缘电阻不应低于 5 MΩ 。 四、测量金属氧化物避雷器的工频参考电压和持续电流,应符合下列规定 1 金属氧化物避雷器对应于工频参考电流下的工频参考电压,整支或分节进行的测试值,应符合现行国家标准《交流无间隙金属氧化物避雷器》GB 1103 2 或产品技术条件的规定; 2 测量金属氧化物避雷器在避雷器持续运行电压下的持续电流,其阻性电流和全电流值应符合产品技术条件的规定。 五、测量金属氧化物避雷器直流参考电压和0.75 倍直流参考电压下的泄漏电流,应符合下列规定 1 金属氧化物避雷器对应于直流参考电流下的直流参考电压,整支或分节进行的测试值,不应低于现行国家标准《交流无间隙金属氧化物避雷器》GB 1103 2 规定值,并应符合产品技术条件的规定。实测值与制造厂实测值比较,其允许偏差应为±5%; 2 0.75 倍直流参考电压下的世漏电流值不应大于50μA ,或符合产品技术条件的规定。750kV 电压等级的金属氧化物避雷器应测试1mA 和3mA 下的

氧化锌避雷器带电测试仪

目录 一、简介 (2) 二、性能及技术指标 (2) 三、仪器要解决的问题及测试原理 (3) 四、仪器面板介绍 (5) 五、接线方法 (6) 六、操作步骤介绍 (7) 七、测试说明 (11) 八、电压传感器箱介绍 (12) 九、注意事项 (14) 十、结果分析参考及波形说明 (14) 十一、装箱清单 (15) 附件:软件下载更新 (16)

一、简介 HTYB-V氧化锌避雷器带电测试仪是检测氧化锌避雷器运行中各项交流电气参数的专用仪器。 具有下列特点: 1.800×480彩色液晶图文显示。 2.配备嵌入式工业级控制系统。 3.触摸操作方式,支持外挂无线鼠标。 4.具有设备数据管理能力。 5.交、直流两用型,内带高能锂离子电池,特别适合无电源场合。 6.真正意义上的三相同时测量。 7.特性数据、波形同屏显示。 8.多种电压基准信号取样方式: ①有线方式:从PT端计量绕组取信号,V/I变换(隔离)后,数字信 号有线传输。 ②无线方式:从PT端计量绕组取信号,V/I变换(隔离)后,数字信 号无线传输,省去电缆长距离连接。 ③无电压方式:不需要从电压互感器二次端子取信号,采用软件计算的 方式找到电压基准。 9.安全可靠,电压通道采用隔离V/I变换,从而避免PT 二次侧短路, 减小信号失真。 10.体积小,重量轻,便于携带,现场使用不需要笔记本电脑支持(内带嵌 入式工业计算机),具备电脑同等效果。 11.带电、停电、试验室均可适用。 二、性能及技术指标 1.电源:220V、50Hz或内部直流电源。 2.参考电压输入范围(电压基准信号):50Hz、30~100V。 3.测量参数: 泄漏电流全电流波形、基波有效值、峰值。 泄漏电流阻性分量基波有效值及3、5、7、9次有效值。

氧化锌避雷器试验项目有哪些

氧化锌避雷器试验项目有哪些? 4.1型式试验 按照国标及行标执行。 4.1.1持续电流试验 4.1.2残压试验 4.1.2.1陡波冲击残压试验 4.1.2.2雷电冲击残压试验 4.1.2.3操作冲击残压试验 4.1.3长持续时间电流冲击耐受试验4.1.3.1线路放电试验 4.1.3.2方波冲击电流试验 4.1.4工频电压耐受试验 4.1.5工频参考电压试验 4.1.6动作负荷试验 4.1.6.1加速老化试验 4.1.6.2大电流冲击动作负载试验4.1.6.3操作冲击动作负荷试验 4.1.7密封试验 4.1.8外套的绝缘耐受试验 4.1.9压力释放试验 4.1.9.1大电流压力释放试验 4.1.9.2小电流压力释放试验

4.1.10机械负荷试验 4.1.11直流参考电压试验 4.1.12 0.75倍直流参考电压下漏电流试验 4.1.13局部放电和无线电干扰电压试验 4.1.14人工污秽试验 4.1.15脱离器试验 4.2出厂试验 按照国标及行标执行。 4.2.1持续电流试验 4.2.2标称放电电流残压试验 4.2.3工频参考电压试验 4.2.4直流参考电压试验 4.2.5 0.75倍直流参考电压下漏电流试验 4.2.6密封性能试验 4.2.7局部放电试验 4.3验收试验 4.3.1.1外观检查。 4.3.1.2持续运行电压下,测量通过避雷器(或元件)的全电流和阻性电流。 4.3.1.3对整只避雷器施加工频电压或直流电压,测量避雷器的工频参考电压或直流参考电压及0.75倍直流1mA参考电压下漏电流。 4.3.1.4残压试验

4.3.1.5局部放电试验 4.3.1.6密封试验 本试验需经供需双方协商,且在避雷器装配前进行。 4.4现场试验 执行国标GB-50150电气装置安装工程电气设备交接试验标准。

检测监管平台技术方案

检测监管平台技术方案 1、立项背景 随着建筑业的高速发展,特别是2005年建设部第141令《建设工程质量检测管理办法》实施以来,建设工程质量检测市场化,湖北省的检测机构数量也呈现快速增长的形式。 对于参差不齐的检测机构,如何有效地控制和确保对检测数据准确性、真实性和时效性的要求越来越高,如何确保实验室质量体系全面落实和有效执行,规范实验室工作人员行为、监管实验过程和检测报告,杜绝虚假数据和非法报告等,是工程质量监督机构和实验室管理人员面临的问题和挑战。为此,各级工程质量监督机构制定了一系列的标准和规范指导实验室建立、实施和维持与其活动范围相适应的质量体系以规范实验室行为。 在这一背景下,运用计算机技术实现对检测机构检测流程管理和资源管理,提高检测机构管理人员对实检测人员和检测数据的管理水平,强化工程质量监督机构对检测机构的监管能力就显得尤为迫切了。 2、行业现状 2.1检测数据获取难

一些检测机构违反国家相关管理办法和检测判定标准,所出具的检测报告中的关键检测数据弄虚作假,甚至出现不检验就出具检测报告的严重违法行为。政府监管部门很难及时获取工程质量检测数据的第一手资料,加上自身的监管资源有限,监管方法还停留在定期检查、突击抽查等简单手段上,很难跟上建筑行业的快速发展,及时发现建设工程的质量隐患。 2.2检测报告管理难 目前有些检测机构面对建筑市场激烈的竞争,采取了竞相压低价的手段来争取合同。压价竞争实际上是恶性竞争,价格越压越低,当压到低于成本以后,检测机构只能不顾检测质量,铤而走险,出虚假报告来牟利,完全无法保证工程质量。有些检测机构出具的检测报告不规范,报告缺少检测人员、设备、监督注册号等信息、报告结论不规范、报告签字不规范、报告编号不连续,使得报告的管理难上加难。 2.3原始记录规范难 存在签字不规范、修改不规范,存档不规范。原始记录内容不详细,不能反映检测数据的原始性;有的设备使用记录没有记录检测的具体内容及样品的唯一标识,导致信息量不全,无法与报告一一对应。 2.4检测机构自身管理落后 目前大部分检测机构都已经使用检测信息管理系统(BMT)和自动采集,但是一些检测机构流程化的管理还没有落到实处。如在样品

氧化锌避雷器阻性电流测试仪

氧化锌避雷器阻性电流测试仪 在开始给大家介绍氧化锌避雷器阻性电流测试仪之前,想先让大家了解一下下什么是氧化锌避雷器阻性电流测试仪?为什么我们会需要氧化锌避雷器阻性电流测试仪? RTYZ-306氧化锌避雷器阻性电流测试仪是用于检测氧化锌避雷器电气性能的专用仪器,该仪器适用于各种电压等级的氧化锌避雷器的带电或停电检测,从而及时发现设备内部绝缘受潮及阀片老化等危险缺陷。 仪器操作简单、使用方便,测量全过程由微机控制,可测量氧化锌避雷器的全电流、阻性电流及其谐波、工频参考电压及其谐波、有功功率和相位差,大屏幕可显示电压和电流的真实波形。仪器运用数字波形分析技术,采用谐波分析和数字滤波等软件抗干扰方法使测量结果准确、稳定,可准确分析出基波和3~7次谐波的含量,并能克服相间干扰影响,正确测量边相避雷器的阻性电流。 氧化锌避雷器阻性电流测试仪产品特点

●仪器标准配置不带高能锂离子电池,可选配内置。 ● 5.7寸320×240液晶显示器,高速热敏打印机;图文显示,界面直观,便于现场人员操 作和使用。 ●适用于避雷器带电、停电或试验室等场所使用。 ●电流、电压传感器完全隔离,安全可靠。真正做到三相电流、三相电压同时测试,提高 工作效率; ●仪器可连续测试,显示电压电流曲线,并可快速打印数据和曲线。 ●内部配置存储器,可掉电存储200组试验数据。 ●选配RS232通讯接口,可通过上位机进行试验,导出试验数据。 ●可进行抗干扰计算,补偿A、C两相电流受B相偏差。 ●高速的采样频率,先进的数字信号处理技术,抗干扰性能强,测量结果精度极高。 ●选配置内带高能锂离子电池,特别适合无电源场合。仪器内部只带弱电,电压不超过 12V,充电状态亦可工作。 ●采用防尘、防水、防腐工程塑料密封箱,体积小,重量轻,便于携带。 氧化锌避雷器阻性电流测试仪技术参数 1. 工作电源:AC220V/50Hz;若选配内带高能锂离子电池,内部电池供电,充电时间>3小时,连续工作时间>8小时。 2. 测量范围: 泄漏电流:0-10mA(可扩展); 电压:30-100V(可扩展)。 3. 测量准确度: 电流:全电流>100μA,±5%读数±1个字; 电压:基准电压信号>30V时,±2%读数±1个字; 4. 测量参数: 泄漏电流全电流波形、基波有效值、峰值。 泄漏电流阻性分量基波有效值及3、5、7次有效值。 泄漏电流阻性分量峰值:正峰值Ir+ 负峰值Ir-。 容性电流基波,全电压、全电流相角差。 电压有效值。

氧化锌避雷器在线监测技术初探

氧化锌避雷器在线监测技术初探 发表时间:2019-03-06T16:46:43.190Z 来源:《中国西部科技》2019年第1期作者:王莉莉张胜远范孟哲张禹 [导读] 氧化锌避雷器作为电力系统重要的过电压保护设备,不仅通流强而且非线性特性较为优异,能极大程度的保证电力系统的安全运行。本文通过对氧化锌避雷器在线监测方法及影响在线监测结果的因素等方面进行分析研究,并结合现场案例分析了氧化锌避雷器在线监测技术及应用效果,证明了设备在线监测工作的重要性和必要性。 国网辽宁丹东供电公司 1引言 氧化锌避雷器作为限制电力系统过电压的重要设备,其性能的优劣对电气设备安全运行起着重大的作用。近年由于其阀片老化、电气性能变坏而引发的爆炸事故时有发生,给电网安全运行带来了严重的威胁。因此对氧化锌避雷器性能的判断仅仅依赖停电试验是不够的,而如何监测它在运行中的性能更加重要。 2氧化锌避雷器的监测方法 2.1 全电流法 全泄漏电流法是早期氧化锌避雷器在线监测广泛使用的一种方法,该方法便携可靠,操作性很强,易于实现。当避雷器在运行中老化或受潮时,其全泄漏电流中阻性电流增加,从而引起全电流随之增加,可以根据这一特征来判断避雷器的运行状况。但是准确度较低,这对于发现氧化锌避雷器早期故障很不利。 2.2 阻性电流法 阻性电流法主要是测量流经氧化锌避雷器的总泄漏电流的有效值、阻性电流的峰值以及功率损耗的平均值,通过观察其变化来发现氧化锌避雷器的内部故障。阻性电流法在实际应用过程中具有自身独特的优势,但容易受到容性高次谐波电流的影响。 2.3 基波电流法 基波电流法也称投影法,该方法简单方便,不易受电网谐波干扰,具有较高的精确度,在一些情况下能够灵敏地反映氧化锌避雷器的状态。基波法是使全电流通过一个低通滤波器,去掉高次谐波,只保留基波部分,其总泄漏电流中只有阻性基波电流做功产生热量。因此它对阀片老化的判断不如测量出含有高次谐波成分的阻性电流峰值有效。 2.4 三次谐波法 三次谐波法也称零序电流法,通过检测氧化锌避雷器三相总泄漏电流中阻性电流三次谐波分量来判断其总阻性电流的变化。当电网电压含有谐波成份时,该测试方法无法排除容性三次谐波电流对测量结果的影响,因而测量误差较大。 2.5 温度监测法温度监测法是一种全新方法,简单实用,通过测量因避雷器功耗而产生的避雷器本体温度升高来反映避雷器的老化程度。此外它还能对避雷器表面污染影响泄漏电流的大小进行监测,然而它只能在在线监测的避雷器中应用,如果避雷器已投入运行就不能使用。 2.6 补偿法 常规补偿法是用取自于PT的电压信号来补偿基波容性电流分量而获得阻性电流,可靠性高、稳定性好,是目前普遍采用的方法。补偿法测量误差较小,所用仪器测量时需要引入补偿信号,此补偿信号经过相位、幅值处理,再和取自避雷器的泄漏电流相减后,方能得到阻性分量,其缺点是没有考虑对电网电压的谐波成分所带来容性电流谐波分量进行完全补偿这一因素。 3影响氧化锌避雷器在线监测结果的因素 3.1电压波动影响 当运行电压处于波动情况下,氧化锌避雷器运行电流也会随之出现变化,导致监测到的趋势曲线发生波动。对于这种情况可以利用各相避雷器同一时刻的监测值进行横向比较排除这种干扰,可以在做故障诊断时把这种变化作为一种系统干扰因素考虑,而不作为氧化锌避雷器故障看待。 3.2运行环境影响 氧化锌避雷器运行的环境条件每天都会有周期性的变化,这些将会导致泄漏电流也随之发生周期性的波动,即使在避雷器阀片正常条件下监测到的特征量也会发生周期性的波动。由于阀片存在负温度效应,在温度增加情况下,阻性电流也会随之小幅增长,所以在比较监测数据的过程中,一定要对环境温度和湿度的影响加以考虑。 3.3表面污秽影响 当氧化锌避雷器表面存在污秽时,无间隙氧化锌避雷器的等效电路可以看作是在非线性电阻旁并联了一个分流电阻,此时在避雷器的接地下引线上测得的泄漏电流将包含有避雷器表面因污层电阻产生的沿面泄漏电流,使得避雷器阀片的泄漏电流的测量受到影响。避雷器瓷瓶的污秽程度、检测仪器的精密度以及检测人员操作都会给检测结果造成一定的影响。 3.4谐波电压影响 当系统电压含有谐波分量时,会使其总电流的谐波电流中也会含有容性成分并且与阻性泄漏电流中的谐波成分混合,给从总电流中将阻性电流分离出来造成困难。当电网电压总谐波含量和谐波成分比例不同时,引起阻性电流的测量误差不同。因此不能由此判断氧化锌避雷器的保护特性变化。 3.5相间干扰影响 现场运行中,由于场地和布置方式的限制,每相避雷器都不可避免的受到其它两相的影响,当三相氧化锌避雷器按一字行排列同时带电运行时,相间杂散电容较大,通过相间杂散电容各项氧化锌避雷器之间就有了电气联系,各相避雷器的阀片除承受本相电压作用外还通过杂散电容受到相邻相电压的作用,他们之间的距离和电压等级决定了这种作用的大小。 4 氧化锌避雷器在线监测技术的应用 案例一底座绝缘损坏 在某变电站主变66kV侧氧化锌避雷器的带电测试中,发现C相固定底座的螺丝发生了脱落,同时计数器电流表不指示。为了确保分析的

氧化锌避雷器试验基础知识须知

https://www.360docs.net/doc/e514463665.html, 氧化锌避雷器试验基础知识须知避雷器是一种过电压保护设备。除了能限制雷击引起的过电压,还能限制一部分操作过电压。又能截断续流,不至于引起系统接地短路。一般并联与系统之中。 武汉汇卓电力专业生产氧化锌避雷器试验得设备有: HZYB-3H 氧化锌避雷器特性测试仪

https://www.360docs.net/doc/e514463665.html, ,HZYB-V 氧化锌避雷器带电测试仪,

https://www.360docs.net/doc/e514463665.html, HZFZ-HI 避雷器放电计数器校验仪,

https://www.360docs.net/doc/e514463665.html, FC-2G 防雷元件测试仪 避雷器的分类 1、保护间隙 2、管式避雷器 3、阀式避雷器 4、磁吹阀式避雷器 5、金属氧化物避雷器(用的最多) 我们见到最多的一般都是金属氧化物避雷器,其余的几种现在基本很少见到,如需要详细了解请度娘。本文将重点介绍金属氧化物避雷器(MOA)

https://www.360docs.net/doc/e514463665.html, 金属氧化物避雷器(MOA)其优点 1、基本无续流,耐重复动作能力强 2、通流容量大 3、MOA阀片可以并联使用,增大了通流和降低残压都容易实现 4、性能稳定,抗老化强 5、氧化锌阀片具有良好的非线性伏安特性。 其结构为;将氧化锌阀片叠装在绝缘筒内密封,基本可以分为瓷套式,复合外套式,GIS式。 氧化锌阀片伏安特性

https://www.360docs.net/doc/e514463665.html, 一个完好的避雷器在正常运行状态下处于小电流区域,可长时间运行;当发生过电压时,避雷器即处于工作区域,当过压被释放或者消失,避雷器会恢复到小电流运行状态;当长时间处于过载区,避雷器可能发生热奔溃,导致损坏或者爆炸。 下面来看一下金属氧化物铭牌(220kV)如下图: 铭牌说明: 额定电压:施加到避雷器端子最大工频电压有效值

相关文档
最新文档