温湿度传感器论文

温湿度传感器论文
温湿度传感器论文

1. 引言

1.1 温室控制系统设计背景

中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。现代化农业生产中的重要一环就是对农业生产环境的一些重要参数进行检测和控制。例如:空气的温度、湿度、二氧化碳含量、土壤的含水量等。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,控制环境条件,使作物达到优质、高产、高效的栽培目的。以蔬菜大棚为代表的现代农业设施在现代化农业生产中发挥着巨大的作用。大棚内的温度和湿度参数,直接关系到蔬菜和水果的生长。国外的温室设施己经发展到比较完备的程度,并形成了一定的标准,但是价格非常昂贵,缺乏与我国气候特点相适应的测控软件。而当今大多数对大棚温度、湿度的检测与控制都采用人工管理,这样不可避免的有测控精度低、劳动强度大及由于测控不及时等弊端,容易造成不可弥补的损失,结果不但大大增加了成本,浪费了人力资源,而且很难达到预期的效果。因此,为了实现高效农业生产的科学化并提高农业研究的准确性,推动我国农业的发展,必须大力发展农业设施与相应的农业工程,科学合理地调节大棚内温度、湿度,使大棚内形成有利于蔬菜,水果生长的环境,是大棚蔬菜和水果早熟、优质、高效益的重要环节[1]。

影响作物生长发育的环境条件主要包括:温度、湿度、光照、CO2浓度、土壤等。所有这些环境条件之间是相互作用、相互联系、相互耦合的,某个控制变量发生改变,会影响其它控制变量的变化。作物的生长发育是所有这些环境条件综合作用的结果。温度和湿度一直是人类关注的对象,这两种环境因素时刻影响着人们的生产和生活,下面主要就温度和湿度对作物的影响进行简略说明。

(1)温度温室内气温、地温对作物的光合作用、呼吸作用、根系的生长和水分、养分的吸收有着显著的影响,因此影响作物生长发育的环境条件中,以温度最为敏感,也最为重要,对温室环境控制的研究也是最先从温度控制开始的。不同种类的作物对温度的要求是不同的,同一作物在不同发育阶段对温度的要求亦有所不同,而且在同一发育期阶段内对温度的要求也会随着昼夜变化而呈周期性地变化。一般说来在白天作物进行光合作用需要的温度较高,晚上维持呼吸作用所需的温度要低一些。

作物生长发育适宜的温度,随种类、品种、生育阶段及生理活动的变化而变化。

为了增加光合产物的生成,抑制不必要的呼吸消耗,在一天中,随着光照强度的变化,实行变温管理是一种很有效的管理方法[1]。

(2)湿度温室内作物对水分的要求体现为对温室内空气湿度和土壤湿度的要求。空气湿度用相对湿度来表示,因为相对湿度更能反应事实。根据有关研究记载,除了阴雨天以外,温室内午后过低的空气湿度会导致作物发生光合作用的午休现象,因此空气相对湿度的大小直接影响到作物的光合作用,这时就需要增加温室内的空气湿度。当温室内的空气湿度较高时,可能会诱发一些病虫害。温室中空气湿度的管理包括增湿和降湿。

土壤湿度对作物的影响也很大。如果土壤中水分过剩,湿度过高,导致土壤中的氧气含量减少,作物根部呼吸困难,进而危害作物的生长发育。相反,当土壤中含水量减少时,作物根部吸收的水分就相应的减少,从而阻碍作物的生长,严重时作物出现萎蔫现象。不同的作物对湿度的要求不同,即使是同一种类在不同发育阶段对湿度的要求也不尽相同。

土壤湿度的管理就是把包括渗灌、滴灌、微灌等灌溉技术应用到温室中来。传统的大水漫灌既浪费水资源,又容易使土壤发生板结,提高了室内湿度。在温室中应用渗灌技术具有灌水均匀,提高地温,保持土壤疏松,降低室内湿度,减轻病害发生,生育期提前等优点。

从很久以前人类就想出各种方法控制温度和湿度,以满足人们生产生活的需要。从古代人们通过扇子、雨伞、毛巾等试图去控制温度和湿度到今天高科技发展迅速的社会所发明出的各种工具,如风扇、空调、加热器等,表明人类一直努力去控制这两种和人类密切相关的环境因素。现代科技的发展,使得温度和湿度的控制更容易,更高效,特别是传感器和单片机的应用,使得温度和湿度控制系统性能有了根本性的提高,精度更高,而且实现了自动化[2]。

人们使用温度计、湿度计来采集温度和湿度,通过人工操作加热、加湿、通风和降温设备来控制温湿度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。即使有些用户采用半导体二极管作温度传感器,但由于其互换性差,效果也不理想。在某些行业中对温湿度的要求较高,特别是在大型的电力系统中,由于温度过高或过低引起的元器件失效或由于环境湿度过高而引起的漏电事故时有发生。对电力系统的可靠运行造成影响,甚至危及到电力系统局部及操作人员的安全。为了避免这些故障,需要在电力设备柜体内安装控温、除湿设备。

1.2 本设计的内容及意义

1.2.1 本设计的主要内容

本设计以STC89C51单片机的温度、湿度测量和控制系统为核心来对温湿度进行实时巡检。单片机能独立完成各自功能,同时能根据主控机的指令对温度进行定时采集。测量结果不仅能在本地显示,而且可以利用单片机的串行口和 RS-232总线通信协议能把温室中的温度、湿度等参数及时上传至上位机,并与设定值进行比较,与设定值不符时采取相应的处理措施,以实现恒温恒湿环境。

在设计的过程中充分考虑到性价比和精度,在选用低价格、通用元件的的基础上,尽量满足设计要求,并使系统具有高的精度。本控制系统以单片机的控制为核心,实时监测环境的温度和湿度,并设定了这两个参数的上下限定值,并具有相应的报警系统,当超过设定的限定值时,单片机控制报警系统进行报警,而且同时驱动继电器打开相应的开关使相应的执行机构运行。当参数值恢复到设定值范围内时,单片机控制执行机构停止运行。从而使环境的温湿度在一定的范围内得到控制。

本设计主要内容包括以下几个方面:

(1)掌握STC89C51单片机的主要功能和特性,以其为核心设计控制系统。

(2)设计简单的人机对话接口系统,如键盘、显示、报警等。

(3)利用RS232实现单片机与上位机的通信。

(4)实现系统的可靠性和抗干扰性。

(5)选择适合的传感器,设计相应的信号采集和处理电路。

1.2.2本设计的意义

传统的方法,人们主要采用温度计、湿度计来采集温度值和湿度值,通过人工操作加热、加湿、通风和降温设备来控制温湿度。但是由于温度计、湿度计精度比较低,以及人工读数的人为因素等原因,温湿度检测不仅速度慢,精度低,实时性差,而且操作人员的劳动强度大。随着科技的发展,采用各种传感器、模数转换器、报警器等组成的温湿度监测系统的出现,可对环境内的各个测点进行巡回检测,检测速度、精度有了一定的提高,降低了劳动强度,但由于所采用的传感器灵敏度比较低、稳定性比较差,致使检测精度、系统可靠性还不够理想,同时在农业生产和农业科研过程中的很多场合需要对上面提到的物理量进行精确的检测和控制。由于现在基本沿用人工的测控方法,这就不可避免的存在着劳动强度大、繁琐、测量精度低,并且由于检测报警不及时,给生产和科研工作造成了一定的损失[2]。

近年来,随着单片机功能的日益强大和计算机的广泛应用,人们对参数监测的准确性、稳定性要求也越来越高。本设计就是针对此问题,设计相对精度高、性能稳定的、的温度湿度控制装置。该仪器可广泛应用于大棚、仓库、体育场等领域。

2. 温室控制系统总体设计

2.1 测控系统的设计要求

(1)能够实时采集与显示室内环境温度、湿度等参数。主要参数的监测范围和检测精度如表2.1所示:

表2.1 主要环境参数

(2)能够根据每天各个阶段以及季节等的外部环境变化通过键盘输入改变对参数的设置,以满足不同的要求达到最佳效益;

(3)声音报警功能;

(4)根据检测到的信号,实时控制执行机构的开启与关断。

(5)自带+5 V和+12 V直流稳压电源。

2.2 设计目标

本设计是基于STC89C51单片机的温湿度智能控制采集系统,主要完成一下主要任务:

(1)选择STC89C51单片机,了解其基本特性和功能,使用STC89C51实现对温湿度的智能控制。

(2)使用温度传感器测量环境的温度,进行数据的采集并传送到单片机进行数据处理,实现范围为-30℃~+50℃温度采集和控制。

(3)使用湿度传感器对现场环境湿度数据采集,由单片机进行数据处理和控制,实现范围为10%~100%RH的湿度控制。

(4)采用串行总线RS-232实现单片机和上位机通讯。

(5)设计人机对话接口,键盘、显示和报警系统。

(6)设计执行机构电路,使单片机能自动控制执行机构工作。

使系统完成特定功能的同时,要保证系统的可靠性和稳定性,使系统能够长期稳

定的工作。还要尽量实现系统的低成本、低功耗和高精度。

2.3 测控系统的组成及控制原理

本设计是以STC89C51单片机为核心的自动控制系统,硬件系统由键盘输入电路、LCD显示电路、传感器和A/D转换电路、和执行电路、报警电路等组成。

硬件系统原理框图如图2.1所示:

图2.1 测控系统硬件组成原理框图

传感器一般输出的为模拟量,需要通过A/D转换,转换为单片机能够接收的数字信号,若模拟信号太弱,还需经过运算放大器放大信号。键盘输入的是系统参数的上、下限极限值,若检测到的信号值出现不在此极限区间的情况,单片机就会驱动蜂鸣器产生报警,此时就需要执行机构控制室内环境相应的改变,使得环境参数重新回到设定的理想区间。

3. 硬件设计

硬件元器件的选择,必须考虑到功能的实现、器件的适时性、价格和通用性等几个方面。在电路的设计中,在实现所要求功能的基础上,尽量使电路简单。

3.1 单片机的选择及其特性

计算机的产生加快了人类改造世界的步伐,但是它毕竟体积庞大。单片机(微控制器)就是在这种情况下诞生的。微控制器,亦称单片机或者单片微型计算机。它是把中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(1/0) 等主要计算机功能部件都集成在一块集成电路芯片上的微型计算机。它的结构与指令功能都是按照工业控制的要求设计的,在智能控制系统中,微控制器得到了广泛的应用。

单片机目前己被广泛地应用于家电、医疗、仪器仪表、工业自动化、航空航天等领域。市场上比较流行的单片机种类主要有Intel公司、Atmel公司和Philip公司的8951系列单片机,Motorola公司的M6800系列单片机,Intel公司的MCS96系列单片机,Microchip公司的PIC系列单片机等。各个系列的单片机各有所长,在处理速度、稳定性、I/O能力、功耗、功能、价格等方面各有优劣。这些种类繁多的单片机家族,给我们单片机的选择也提供了很大的余地。本设计选用STC89C51单片机,它是一种低功耗、低价格,高性能8位微处理器[3]。

3.2 STC89C51系列单片机介绍

STC89C51 是美国ATMEL 公司生产的低电压,高性能CMOS 8 位单片机,片内含4k bytes 的可反复擦写的Flash 只读程序存储器和256 bytes 的随机存取数据存储器(RAM),器件采用ATMEL 公司的高密度、非易失性存储技术生产,与标准MCS-51 指令系统及8051产品引脚兼容,片内置通用8 位中央处理器(CPU)和Flash 存储单元,功能强大的STC89C51 单片机适合于许多较为复杂控制应用场合。

3.2.1 STC89C51基本特性

STC89C51系列单片机主要性能参数如下:

·与MCS-51产品指令和引脚完全兼容

·4k字节可重擦写Flash闪速存储器

·1000次擦写周期

·全静态操作:0Hz-24MHz

·三级加密程序存储器

·256字节内部RAM

·32个可编程I/O口线

·3个16位定时/计数器

·8个中断源

·可编程串行UART通道

·低功耗空闲和掉电模式。

STC89C51 提供以下标准功能:

4k字节Flash 闪速存储器,256字节内部RAM,32 个I/O 口线,3 个16 位定时/计数器,一个6 向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,STC89C52 可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。

空闲方式停止CPU 的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM 中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。

3.2.2 STC89C51单片机的内部组成结构

STC89C51单片机的内部结构如图3.1所示:

图3.1 STC89C51单片机的内部结构

3.2.3 STC89C51的引脚功能

引脚功能说明如图3.2:

·Vcc:电源电压

·GND:地

·P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口P0写“1”时,可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash 编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

图3.2 STC89C52单片机封装图

·P1口:P1口是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL 逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。与STC89C51 不同之处是,P1.0 和P1.1 还可分别作为定时/计数器2 的外部计数输入(P1.0/T2)和输入(P1.1/T2EX),参见表3.1。

表3.1 引脚P1.0和P1.1的第二功能

Flash 编程和程序校验期间,P1 接收低8位地址。

·P2口:P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口P2写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被

)。

外部信号拉低时会输出一个电流(I

IL

在访问外部程序存储器或16 位地址的外部数据存储器(例如执行MOVX @DPTR 指令)时,P2口送出高8 位地址数据。在访问8 位地址的外部数据存储器(如执行MOVX

@RI 指令)时,P2口输出P2 锁存器的内容。

Flash 编程或校验时,P2亦接收高位地址和一些控制信号。

·P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。P3口输出缓冲级可驱动(吸收或输出电流)4个TTL 逻辑门电路。对P3口写入“1”时,它们被内部上拉电阻

)。

拉高并可作为输入端口。此时,被外部拉低的P3口将用上拉电阻输出电流(I

IL

P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如表3.2所示:表3.2 引脚P3口的第二功能

此外,P3 口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

·RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

·ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。一般情况下,ALE仍以时钟振荡频率的1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,可禁止ALE 操作。该位置位后,只有一条MOVX 和MOVC指令才能将ALE 激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。

·PSEN:程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52

由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。此期间,当访问外部数据存储器,将跳过两次PSEN信号。

·EA/VPP:外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),EA 端必须保持低电平(接地)。需注意的是:如果加密位LB1 被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU 则执行内部程序存储器中的指令。Flash 存储器编程时,该引脚加上+12V 的编程允许电源Vpp,当然这必须是该器件是使用12V 编程电压Vpp。

·XTAL1:振荡器反相放大器的及内部时钟发生器的输入端。

·XTAL2:振荡器反相放大器的输出端[4]。

3.2.4 STC89C51的存储器

·中断寄存器:

STC89C51有6个中断源,2个中断优先级,IE寄存器控制各中断位,IP寄存器中6个中断源的每一个可定为2个优先级。

·数据存储器:

STC89C51有256个字节的内部RAM,80H-FFH高128个字节与特殊功能寄存器(SFR)地址是重叠的,也就是高128字节的RAM和特殊功能寄存器的地址是相同的,但物理上它们是分开的。当一条指令访问7FH 以上的内部地址单元时,指令中使用的寻址方式是不同的,也即寻址方式决定是访问高128 字节RAM还是访问特殊功能寄存器。如果指令是直接寻址方式则为访问特殊功能寄存器。

例如,下面的直接寻址指令访问特殊功能寄存器0A0H(即P2 口)地址单元。

MOV 0A0H,#data

间接寻址指令访问高128 字节RAM,例如,下面的间接寻址指令中,R0 的内容为0A0H,则访问数据字节地址为0A0H,而不是P2口(0A0H)。

MOV @R0,#data

堆栈操作也是间接寻址方式,所以,高128 位数据RAM 亦可作为堆栈区使用。

·定时器0和定时器1:

STC89C51的定时器0和定时器1的工作方式与STC89C51的相同。

·定时器2:

定时器2 是一个16 位定时/计数器。它既可当定时器使用,也可作为外部事件计数器使用,其工作方式由特殊功能寄存器T2CON的C/T2 位选择。定时器2 有三种

温湿度传感器介绍

DWTHI100-S02 无线多功能综合传感器 一、产品介绍 1.1产品概述 ●本产品可以实时、准确的测量环境温度、环境相对湿度和照度,它能使用户对现 场环境实现远程的数据采集和监测,大大减少人工工作量,突出便利性、准确性和实时性。 ●本产品具有体积小、使用寿命长、无线信号传输距离远、环境适应性好、测量 精度高、安装便捷、防水等特点,是一款高性价比的产品。 ●本产品可广泛应用于仓储管理、生产制造、气象观测、科学研究以及日常生活等 领域。 1.2 产品外观 1.3技术参数 1. 温度测量范围:-40℃~+125℃; 2. 温度测量精度:±0.3℃±2.5%(rdg-25℃); 3. 绝对湿度测量范围:1%RH~100%RH; 4. 绝对湿度测量精度: <10%RH:±1.8%RH±20%(rdg-20%RH); 10%RH~90%RH:±1.8%RH

>90%RH:±1.8%RH±20%(rdg-90%RH); 5. 工作环境温度:-20℃~+80℃; 6. 信号调制方式:GFSK; 7. 工作频率:2.45GHz; 8. 无线通讯距离:>300米(2.45GHz、开阔地); 9. 测量周期:30s(3.6V、典型值); 10.平均功耗:<7μA(3.6V); 11.电池寿命:≥6年; 12.外壳材料:增强型耐高温ASA树脂; 13.外形尺寸:45 mm×24 mm×18.5mm; 14.重量:25g(含天线); 15.防护等级:IP34; 16.安装方式:螺丝固定或无痕泡棉双面胶粘贴。 1.4应用场所 1、机房、厂房、仓库、无菌室; 2、温室大棚、智能大棚; 3、图书馆、档案馆、文物馆; 4、生物制药; 5、食品加工、储存场所; 6、医卫场所; 7、气象站; 8、智能楼宇; 9、其它需要监测温、湿、照度的场所。 1.5产品尺寸

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

TH-802P网络型温湿度传感器安装使用说明书

TH-802P网络型温湿度传感器安装使用说明书 一.概述 TH-802P温湿度传感器是一种检测和采集环境温湿度的网络型智能 传感器,该传感器采用大屏幕液晶实时显示当前环境的温湿度值。 TH-802P温湿度传感器可以通过安装相应的监控软件,配备相应的 RS485串口通信模块与计算机进行通讯,实现计算机对温湿度控制器的 远程监控。适用于数据机房、通讯基站、计算机机房、精密车间、仓库、 温棚等场所的温湿度检测。 图1 TH-802P 二.特点 ●属精密网络型温湿度传感器,可以设定通讯地址0-255和波特率1200-19200bps; ●经可溯源标准检验,精度高并具备程序校准精度功能,低功耗、高稳定性; ●提供LCD段码显示和RS485通讯,设备地址和通讯波特率可通过按键设定 ●阻燃绝缘纤维外壳,采用5.08mm间距升降式接线端子,安全可靠; ●方便的壁挂安装方式 三.技术指标 ●供电电源:9~24VDC±20% ●测温范围:-10 ~60℃; ●测湿范围:0 ~ 100%RH; ●精度:温度±0.5℃(全量程内);湿度±3%RH(25℃时); ●采集周期:不小于200ms; ●通讯距离:大于1000米 ●工作环境:-10℃~ 60℃,10 ~ 95%RH无冷凝 ●存储温度:-40℃~ 80℃ ●整机功耗:小于0.2W ●最大尺寸:86×86×30mm ●重量:100g。 四.典型应用 图2 应用图 五.按键说明 ●“确认”:按住“确认”按键持续约三秒,设备进入参数设置状态; 在参数设置状态下,单击该按键可选择设置参数类型为波特率设置或地址设置。 在参数设置状态下,长按“确认按键”3秒以上返回正常工作状态,同时保存设置参数。 ●“上调”:在参数设置状态下,单击此键参数循环递加; ●“下调”:在参数设置状态下,单击此键参数循环递减;六.波特率、地址设置 ●设备加电后自检,1秒后进入正常工作状态;● ● 所指; ● 波特率设置范围:1200、2400、4800、9600、19200 地址设置范围:A 0-255 ●波特率或地址完成后,长按“确定”键3秒以上,返回正常工作状态, 同时保存设置参数。 提示:通讯波特率缺省值为9600bps,地址为“1”。 七.电磁兼容 ●静电放电抗干扰检验:参照标准IEC61000-4-2 (GB/T17626.2); ●工频磁场抗扰度检验: 参照标准IEC61000-4-8 (GB/T17626.8); ●浪涌(冲击)抗扰度试验:参照标准IEC61000-4-5(GB/T17626.5) ●快速瞬变: 参照标准IEC61000-4-4 (GB/T17626.4); ●安全要求: 参照标准IEC61010-1 (GB/T4793.1)。 V+:接12VDC电源正极; GND:接12VDC电源负极; RS+:接RS485正极; RS-:接RS485负极。 图4 PCB接线端子九.安装尺寸 两挂墙孔中心间距:59mm 1.将TH-802P后盖打开; 2.将螺丝装钉在墙面上,两螺丝间距为58-60mm; 3.旋紧螺丝将TH-802P的后盖固定在墙上; 4.按接线端子示意图正确接入电源线、通讯线; 5.检查无误后将TH-802P合上后盖。 图3 波特率、地址设置状态 图5 TH-802P后盖图及安装尺寸

温湿度传感器SHT21的应用介绍

温湿度传感器SHT21的应用介绍 近年来,随着智能手机、平板电脑等移动设备的迅速发展,其中内置的微机电系统(MEMS)的比例越来越高。根据市调机构Juniper Research公布的最新研究报告,预计到2016年应用到移动设备中的MEMS器件收入将超过60亿美金。其中除了已经大规模应用的加速度计、陀螺仪、重力感应计、麦克风、射频器件等,还包括刚进入商用不久的压力传感器、扬声器、轨迹球、微型投影机、温湿度传感器等。其中温湿度传感器等新兴的MEMS器件则有望成为智能手机硬件差异化的重要部件。 "目前,我们公司的传感器每年的出货量已经超出了几千万片,全球业务增长幅度近年来都在40%左右。"总部位于瑞士的深圳盛思锐(Sensirion)公司总经理Paul Chia表示,作为全球领先的传感器制造商,盛思锐公司早在七年前就已经进入中国市场,并向中国厂商推广温湿度传感器。"我们的产品在中国市场主要分三大应用:第一是安防监控;第二是节能,普遍应用到家电,汽车等领域;第三则是舒适度,主要应用于消费类电子产品领域。"在2009年,盛思锐公司推出了一款当时世界上最小的数字湿度和温度传感器--SHT21,引起市场广泛关注。 一直以来,盛思锐在推广温湿度传感器的过程中,都非常注重于宣传舒适度概念。"之前的客户只有温度的概念,而没有湿度概念。其实相对湿度是与温度密切相关的,只有对同一测量点的湿度和温度进行数据采集,才能保证相对湿度的准确性。"Paul Chia表示,人体对空气湿度的舒适感应空间较窄,因此需要通过感应器来感知湿度,随时补充或降低水分。 在2009年,盛思锐公司推出了一款当时世界上最小的数字湿度和温度传感器-SHT21,引起市场广泛关注。 盛思锐是业内第一家将温、湿度传感器集成到一起的厂商。"我们不仅仅是提供一个感应器,而是把温度补偿和标定数据都集成在一个电路里面。我们的温湿度传感器在出厂前都经过完全标定,客户只需将其跟单片机通讯就可以直接采集到数据。"据介绍,温湿度传感器作为电子技术和物理化学原理的复合技术,硬件因素只占其中50%,另一个重要因素

温度传感器的结构和安装方法精编版

热电偶的结构 热电偶前端接合的形状有3种类型,如图2.5所示。可根据热电偶的类型、线径、使用温度,通过气焊、对焊、电阻焊、电弧焊、银焊等方法进行接合。 在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。套管一般分为保护管型和铠装型。 1.带保护管的热电偶 是将热电偶的芯线以及绝缘管插入保护管使用的热电偶。保护管在防止芯线氧化、腐蚀的同时,还可以保持热电偶的机械强度。保护管有多种类型,常用的如下表所示。

氮化硅管 1400 1600 与碳化硅管大致相同,适用于熔融铝 Si3N4 2.铠装型热电偶 铠装热电偶的测量原理与带保护管的热电偶相同。它使用纤细的金属管(称为套管)作为上图中绝缘管(陶瓷)的替代品,并使用氧化镁(MgO)等粉末作为绝缘材料。由于其外径较细且容易弯曲,所以最适合用来测量物体背面与狭小空隙等处的温度。此外,与带保护管的热电偶相比,其反应速度更为灵敏。铠装热电偶的套管外径范围较广,可以拉长加工为8.0mmф到0.5mmф的各种尺寸。芯线拉伸得越细,常用温度上限越低。如K型热电偶,套管外径0.5mmф的常用温度上限是600℃,8.0mmф的是1050℃。 热电阻的结构 如下图所示,热电阻的元件形状有3种,目前陶瓷封装型占主导地位。陶瓷封装型用于带保护管的热电阻以及铠装热电阻。陶瓷与玻璃封装型的铂线裸线直径为几十微米左右,云母板型的约为0.05mm。引线则使用比元件线粗很多的铂合金线。

热电阻元件的种类 带保护管的热电阻图例 温度传感器的安装方法 1. 安装实例和测量误差 热电偶和热电阻在设备中的安装方法和测量误差如下图所示。安装时要注意机械强度,特别是高温中保护管的变形。另外,为了避免保护管的热损失对元件温度的影响,需要考虑流向和保护管的外形、插入长度、保温、隔热等问题。

基于智能手机的温湿度传感器应用

一、基于智能手机的温湿度传感器应用 1、应用系统简介 由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。市场上的温湿度传感器一般是测量温度量和相对湿度量。温湿度传感器不仅广泛的应用在工控行业、食品药物储存行业、档案管理行业中,也可安装在我们的手机上。温湿度传感器的传统应用是天气预报以及室内监测,手机中如果集成这种应用这就极大的方便了客户的出行。 2、应用体系结构 (1)感知层 感知层通过温湿度传感器采集数据,其中包括温度、湿度。 (2)网络层 网络层将传感器采集的数据传给手机应用系统进行处理分析。 (3)应用层 应用层中应用系统将数据处理后的数据展示给用户。 3、信息感知(采集)、传输、处理等方面的技术 温湿度传感器选用湿敏电容型传感器,图1为该传感器的结构。该传感器是温湿感应元件共体,具有防电磁干扰的性能。测温是一个标准的铂电阻Pt100,以四线制方式测量,减少长引线带来的测量误差。 图1 HMC45A温湿传感器外型图 工作原理 传感器主要由湿敏电容和转换电路两部分组成。湿敏电容的结构见图2所示。它由玻璃底衬、下电极、湿敏材料、上电极几部分组成。两个下电极与湿敏材料,上电极构成的两个电容成串联连接。湿敏材料是一种高分子聚合物,它的介电常数随着环境的相对湿度变化而变化。当环境湿度发生变化时,湿敏元件的电容量随之发生改变,即当相对湿度增大时,湿敏电容量随之增大,反之减小(电容量通常在48~56pf间)。传感器的转换电路把湿敏电容变化量转换成电压量变化,对应于相对湿度0~100%RH的变化,传感器的输出呈0~1v的线性变化。

温湿度传感器原理

课程名称:_传感器原理与应用_项目名称:_温湿度传感器的使用_ 1注:1、实验准备部分包括实验环境准备和实验所需知识点准备。 2、若是单人单组实验,同组成员填无。

3、电源引脚 DHT11的供电电压为3-5.5V。传感器上电后,要等待1s 以越过不稳定状态在此期间无需发送任何指令。电源引脚(VDD,GND)之间可增加一个100nF 的电容,用以去耦滤波。 4、串行接口(单线双向) DATA 用于微处理器与DHT11之间的通讯和同步,采用单总线数据格式,一次通讯时间4ms左右,数据分小数部分和整数部分,具体格式在下面说明,当前小数部分用于以后扩展,现读出为零.操作流程如下: 一次完整的数据传输为40bit,高位先出。 数据格式:8bit湿度整数数据+8bit湿度小数数据 +8bi温度整数数据+8bit温度小数数据 +8bit校验和 数据传送正确时校验和数据等于“8bit湿度整数数据+8bit湿度小数数据+8bi温度整数数据+8bit温度小数数据”所得结果的末8位。 用户MCU发送一次开始信号后,DHT11从低功耗模式转换到高速模式,等待主机开始信号结束后,DHT11发送响应信号,送出40bit的数据,并触发一次信号采集,用户可选择读取部分数据.从模式下,DHT11接收到开始信号触发一次温湿度采集,如果没有接收到主机发送开始信号,DHT11不会主动进行温湿度采集.采集数据后转换到低速模式。 1.通讯过程如图1所示 图1 总线空闲状态为高电平,主机把总线拉低等待DHT11响应,主机把总线拉低必须大于18毫秒,保证DHT11能检测到起始信号。DHT11接收到主机的开始信号后,等待主机开始信号结束,然后发送80us低电平响应信号.主机发送开始信号结束后,延时等待20-40us后, 读取DHT11的响应信号,主机发送开始信号后,可以切换到输入模式,或者输出高电平均可, 总线由上拉电阻

基于51单片机SHT11温湿度传感器检测程序

基于51单片机SHT11温湿度传感器检测程序(含电路图) 下面是原理图: 下面是SHT11与MCU连接的典型电路: 下面是源代码:

view source print? 001.#include 002.#include 003. 004./******************************************************** 005. 宏定义 006.********************************************************/ 007.#define uint unsigned int 008.#define uchar unsigned char 009.#define noACK 0 010.#define ACK 1 011.#define STATUS_REG_W 0x06 012.#define STATUS_REG_R 0x07 013.#define MEASURE_TEMP 0x03 014.#define MEASURE_HUMI 0x05 015.#define RESET 0x1e 016. 017.enum {TEMP,HUMI}; 018. 019.typedef union //定义共用同类型 020.{ 021. unsigned int i; 022. float f; 023.} value; 024. 025. 026./******************************************************** 027. 位定义 028.********************************************************/ 029.sbit lcdrs=P2^0; 030.sbit lcdrw=P2^1; 031.sbit lcden=P2^2; 032.sbit SCK = P1^0; 033.sbit DATA = P1^1; 034. 035./******************************************************** 036. 变量定义 037.********************************************************/ 038.uchar table2[]="SHT11 温湿度检测"; 039.uchar table3[]="温度为:℃"; 040.uchar table4[]="湿度为:"; 041.uchar table5[]="."; 042.uchar wendu[6];

温度采集实验报告

课程设计任务书 题目基于AD590的温度测控系统设计 系(部) 信息科学与电气工程学院 专业电气工程及其自动化 班级电气092 学生姓名刘玉兴 学号090819210 月日至月日共周 指导教师(签字) 系主任(签字) 年月日

摘要 温度是工业生产和自动控制中最常见的工艺参数之一。过去温度检测系统设计中,大多采用模拟技术进行设计,这样就不可避免地遇到诸如传感器外围电路复杂及抗干扰能力差等问题;而其中任何一环节处理不当,就会造成整个系统性能的下降。随着半导体技术的高速发展,特别是大规模集成电路设计技术的发展, 数字化、微型化、集成化成为了传感器发展的主要方向。 以单片机为核心的控制系统.利用汇编语言程序设计实现整个系统的控制过程。在软件方面,结合ADC0809并行8位A/D转换器的工作时序,给出80C51单片机与ADC0908并行A /D转换器件的接口电路图,提出基于器件工作时序进行汇编程序设计的基本技巧。本系统包括温度传感器,数据传输模块,温度显示模块和温度调节驱动电路,其中温度传感器为数字温度传感器AD590,包括了单总线数据输出电路部分。文中对每个部分功能、实现过程作了详细介绍。 关键词:单片机、汇编语言、ADC0809、温度传感器AD590

Abstract Temperature is the most common one of process parameters in automatic control and industrial production. In the traditional temperature measurement system design, often using simulation technology to design, and this will inevitably encounter error compensation, such as lead,complex outside circuit,poor anti-jamming and other issues, and part of a deal with them Improperly, could cause the entire system of the decline. With modern science and technology of semiconductor development, especially large-scale integrated circuit design technologies, digital, miniaturization, integration sensors are becoming an important direction of development. In the control systems with the core of SCM,assembly language programming is used to achieve the control of the whole system.Combining with the operation sequence of ADC0809,the interface circuit diagrams of 80C51 SCM and ADC0809 parallel A/D conveger ale given.The basic skills of assembly language programming based on the operation se—quenee of the chip ale put forward.This system include temperature sensor and data transmission, the moduledisplays

DHT11温湿度传感器C程序测试可以用(有说明)

DHT11温湿度传感器C程序 说明: DHT11温湿度传感器只有整数位没有小数,传感器内部小数位留空备用,使用该程序时,只需要在while循环里面调用RH函数即可,间隔时间大于1秒,读取以下几个效验后的变量可以获取温湿度值: U8RH_data_H 湿度高8位整数位 U8RH_data_L 湿度低8位小数位(空的) U8T_data_H 温度高8位整数位 U8T_data_L 温度低8位整数位(空的) 1,如果是用数码管显示,按时序延时18毫秒后如果有中断得关中断,取完40个Bit数据后开中断,防止MCU内部中断打断时序时间,引起读数误差或 读不出来的问题,LCD显示器无需该操作。 2,循环读取传感器时间得大于1秒,否则读不准。 自己做的实验板温度25,湿度45% #include #include // typedef unsigned char U8; /* defined for unsigned 8-bits integer variable 无符号8位整型变量*/ typedef signed char S8; /* defined for signed 8-bits integer variable 有符号8位整型变量*/ typedef unsigned int U16; /* defined for unsigned 16-bits integer variable 无符号16

位整型变量*/ typedef signed int S16; /* defined for signed 16-bits integer variable 有符号16位整型变量*/ typedef unsigned long U32; /* defined for unsigned 32-bits integer variable 无符号32位整型变量*/ typedef signed long S32; /* defined for signed 32-bits integer variable 有符号32位整型变量*/ typedef float F32; /* single precision floating point variable (32bits) 单精度浮点数(32位长度)*/ typedef double F64; /* double precision floating point variable (64bits) 双精度浮点数(64位长度)*/ // #define uchar unsigned char #define uint unsigned int #define Data_0_time 4 //----------------------------------------------// //----------------IO口定义区--------------------// //----------------------------------------------// sbit P2_0 = P3^2 ; //----------------------------------------------// //----------------定义区--------------------// //----------------------------------------------// U8 U8FLAG,k; U8 U8count,U8temp; U8 U8T_data_H,U8T_data_L,U8RH_data_H,U8RH_data_L,U8checkdata; U8 U8T_data_H_temp,U8T_data_L_temp,U8RH_data_H_temp,U8RH_data_L_temp,U8checkdata_t emp; U8 U8comdata; U8 outdata[5]; //定义发送的字节数 U8 indata[5]; U8 count, count_r=0; U8 str[5]={"RS232"}; U16 U16temp1,U16temp2; void Delay(U16 j) { U8 i; for(;j>0;j--) { for(i=0;i<27;i++);

温度传感器实验报告

温度传感器实验 姓名学号 一、目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、仪器 温度传感器实验模块 热电偶(K 型、E 型) CSY2001B 型传感器系统综合实验台(以下简称主机) 温控电加热炉 连接电缆 万用表:VC9804A,附表笔及测温探头 万用表:VC9806,附表笔 三、原理 (1)热电偶测温原理 由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

图1中T 为热端,To 为冷端,热电势 本实验中选用两种热电偶镍铬—镍硅(K 分度)和镍铬—铜镍(E 分度)。 (2)热电偶标定 以K 分度热电偶作为标准热电偶来校准E 分度热电偶,被校热电偶热电势与标准热电偶热电势的误差为 式中:——被校热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶分度表上标定温度的热电势值。

——被校热电偶标定温度下分度表上的热电势值。 ——标准热电偶的微分热电势。 (3)热电偶冷端补偿 热电偶冷端温度不为0℃时,需对所测热电势值进行修正,修正公式为: E(T,To)=E(T,t1)+E(T1,T0) 即:实际电动势=测量所得电势+温度修正电势 (4)铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在0℃≤T≤650℃时, 式中:——铂热电阻T℃时的电阻值 ——铂热电阻在0℃时的电阻值 A——系数(=3.96847×10-31/℃) B——系数(=-5.847×10-71/℃2) 将铂热电阻作为桥路中的一部分在温度变化时电桥失衡便可测得相应电路的输出电压变化值。 (5)PN结温敏二极管 半导体PN 结具有良好的温度线性,根据PN 结特性表达公式 可知,当一个PN 结制成后,其反向饱和电流基本上只与温度有关,温度每升高一度,PN 结正向压降就下降2mv,利用PN 结的这一特性可以测得温度的变化。 (6)热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件。它呈负温度特性,灵敏度高,可以测量小于0.01℃的温差变化。图2为金属铂热电阻与热敏电阻温度曲线的比较。

温度传感器的结构和安装方法

热电偶的结构 热电偶前端接合的形状有 3种类型,如图2.5所示。可根据热电偶的类型、线径、使用温度,通过气焊、 对焊、电阻焊、电弧焊、银焊等方法进行接合。 气澤 对輝 电隍埠.电弧挥 在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。套管一般分为保护管型 和铠装型。 1. 带保护管的热电偶 是将热电偶的芯线以及绝缘管插入保护管使用的热电偶。保护管在防止芯线氧化、腐蚀的同时,还可以保 持热电偶的机械强度。保护管有多种类型,常用的如下表所示。 材质 常用 温度'C 最高使用温 度C 概要 SUS304 850 950 适用于高温、酸性、碱性环境, 不适用于氧化性、还原性气体环境 金 属 保 护 SUS316 850 950 比SUS304在高温中的耐蚀性好 SUS301S 1000 1100 Ni 、Cr 的含量高,耐热性强 SandviRP4 1050 1200 27Cr 钢,适用于高温环境, 不适用于氧化性、还原性气体 管 Kanthal A-1 1100 1350 Cr24%、A15.5%的耐热钢、在高温中机械强度高 镍铬合金 1100 1250 Ni80%、Cr20%、适用于氧化环境,不适用于硫化、还原 性气体环境 非 石英管QT 1000 1050 抗热冲击性强,但机械强度低 金 陶瓷管PT2 1400 1450 氧化铝质,气密性优 属 高铝管PT1 1500 1550 同上,抗热冲击性弱 保 刚玉管PT0 1600 1750 高纯度铝管,抗热冲击性最弱 护 管 碳化硅管 1250 1350 抗热冲击性强,但气密性差 SiC 1550 1600 在双保护管的外管上使用 氮化硅管

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

温度传感器的结构和安装方法

温度传感器的结构和安 装方法 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

热电偶的结构 热电偶前端接合的形状有3种类型,如图所示。可根据热电偶的类型、线径、使用温度,通过气焊、对焊、电阻焊、电弧焊、银焊等方法进行接合。 在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。套管一般分为保护管型和铠装型。 1.带保护管的热电偶 是将热电偶的芯线以及绝缘管插入保护管使用的热电偶。保护管在防止芯线氧化、腐蚀的同时,还可以保持热电偶的机械强度。保护管有多种类型,常用的如下表所示。 材质 常用 温度℃最高使用 温度℃ 概要 金属保护管SUS304850950 适用于高温、酸性、碱性环境, 不适用于氧化性、还原性气体环境 SUS316850950比SUS304在高温中的耐蚀性好 SUS301S10001100Ni、Cr的含量高,耐热性强 SandviRP410501200 27Cr钢,适用于高温环境, 不适用于氧化性、还原性气体 Kanthal A-1 11001350Cr24%、%的耐热钢、在高温中机械强度高 镍铬合金11001250 Ni80%、Cr20%、适用于氧化环境,不适用于硫化、

还原性气体环境 非金属保护管石英管QT10001050抗热冲击性强,但机械强度低 陶瓷管 PT2 14001450氧化铝质,气密性优 高铝管 PT1 15001550同上,抗热冲击性弱 刚玉管 PT0 16001750高纯度铝管,抗热冲击性最弱 碳化硅管 SiC 1250 1550 1350 1600 抗热冲击性强,但气密性差 在双保护管的外管上使用 氮化硅管 Si3N4 14001600与碳化硅管大致相同,适用于熔融铝 2.铠装型热电偶 铠装热电偶的测量原理与带保护管的热电偶相同。它使用纤细的金属管(称为套管)作为上图中绝缘管(陶瓷)的替代品,并使用氧化镁(MgO)等粉末作为绝缘材料。由于其外径较细且容易弯曲,所以最适合用来测量物体背面与狭小空隙等处的温度。此外,与带保护管的热电偶相比,其反应速度更为灵敏。铠装热电偶的套管外径范围较广,可以拉长加工为ф到ф的各种尺寸。芯线拉伸得越细,常用温度上限越低。如K型热电偶,套管外径ф的常用温度上限是600℃,ф的是1050℃。 热电阻的结构

温湿度传感器在家庭中的应用

家庭当中常用的传感器主要有温度传感器、气体传感器、光传感器、超声波传感器以及红外线传感器等等。其中温湿度传感器在家电应用最为普遍,它不仅给生活带来极大的便利,还能使家庭内外的空气相平衡。 随着生活水平的提高,家具智能化的需求逐步显现,温度、湿度等数据采集的应用也开始显现出越来越大的市场潜力。通过温湿度传感器,C8051F985低功耗MCU,CP2403 LCD 驱动,和LCD显示器构建一个用于家庭等温度、湿度数据采集的系统,该系统主要用于方便、及时的获取室内、外的温度、湿度等数据(也可和其他传感器集成扩展数据采集应用范围)。家庭数据采集系统的工作原理 使用温湿度传感器,C8051F985低功耗处理器,CP2403 LCD驱动,都具有I C通信接口,可做成模块,只需要选用自己的LCD显示器即可。 典型应用如下:室内、室外各放置温湿度传感器(以下简称采集节点)一个,定时唤醒采集温度、湿度原始数据,经过温湿度传感器内部的AD转换器,和出厂校准的原始数据处理,转换成温、湿度最终数据,经由I C总线传递到低功耗处理器C8051F985处理。C8051F985低功耗处理器决定启用哪个采集节点,以此降低功耗,并控制CP2403 LCD驱动,将数据最终显示LCD显示器上。本文使用的Si7001温湿度传感器,C8051F985低功耗处理器,CP2403 LCD驱动,都具有I2C通信接口,可做成模块,只需要选用自己的LCD显示器即可。典型应用如下:室内、室外各放置2个Si7001温湿度传感器(以下简称采集节点),定时唤醒采集温度、湿度原始数据,经过Si7001内部的AD转换器,和出厂校准的原始数据处理,转换成温、湿度最终数据,经由I2C总线传递到低功耗处理器C8051F985处理。C8051F985低功耗处理器决定启用哪个采集节点,以此降低功耗,并控制CP2403 LCD驱动,将数据最终显示LCD显示器上。 家庭数 据采集系统的性 能- 各节点 功耗① Si7001的功耗 Si7001湿度测量 周期内典型的电 流为240uA,温度 测量周期内典型 的电流为320uA, 睡眠电流0.2uA, 每分钟进行一次 温、湿度测量的平 均功耗仅为1uA。 ②C8051F985的功 耗C8051F985睡眠电流10nA,工作电流150uA/MHz ③CP2403的功耗。睡眠电流0.02μA,工作电流<3uA。以每分钟测量一次,工作频率4MHz进行计算,平均功耗为不超过15uA,非常适合电池供电

温度传感器的连接与信号获取

情景五 温度传感器的连接与信号获取 任务1:炉温检测 5.1.1任务目标 使学生了解炉温检测器件、测温范围和测温电路。 5.1.2任务内容 针对炉温检测要求,确定温度传感器。分析制定安装位置、实施效果检测方案,成本分析。学生现场安装、连接和调测传感器电路。 5.1.3知识点 热电偶传感器是一种自发电式传感器,测量时不需要外加电源,直接将被测量转换成电势输出。使用十分方便,常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。它的测温范围很广,常用的热电偶测温范围为-50℃~+1600℃,某些特殊热电偶最低可测-270℃,最高可达+2800℃。 它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。 一、热电偶的外形结构、种类和特性 (一)常用热电偶的外形 各种普通装配型热电偶的外形如下图所示。 各种普通装配型热电偶 接线盒 引出线套管 不锈钢保护套管 热电偶工作端 固定螺纹

各种铠装型热电偶的外形如下图所示。 各种防爆型热电偶的外形如图所示。 (二)热电偶的结构 接线盒固定装置 B -B 金属导管绝缘材料 A 放大 A B B 各种防爆型热电偶 (a ) (b ) 热电偶的结构 (a )普通热电偶;(b )铠装热电偶 各种铠装型热电偶

(三)热电偶的分类 1.热电偶的结构分类: (1)普通热电偶: 普通热电偶一般由热电极、绝缘套管、保护套管和接线盒等几部分组成。常用于测量气体、蒸气和各种液体等介质的温度。 (2)铠装热电偶: 铠装热电偶又称缆式热电偶,此种热电偶是将热电极、绝缘材料连同保护管一起拉制成型,经焊接密封和装配等工艺制成的坚实的组合体。可做得很细、很长,可弯曲,外径小到1~3mm。主要特点是测量端热容量小、动态响应快、绕性好、强度高。 2.热电偶的种类: (1)标准型热电偶: 标准型热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶。标准热电偶有配套显示仪表可供选用。 国际电工委员会(IEC)向世界各国推荐了8种热电偶作为标准型热电偶。表2-1是它们的基本特性。热电偶名称的含义如下: 标准型热电偶及基本特性

温度传感器的温度特性测量实验

温度传感器的温度特性测量实验 【目的要求】 测量PN结温度传感器的温度特性;测试PN结的正向电流与正向电压的关系(指数变化规律)并计算出玻尔兹曼常数。 【实验仪器】 FD-ST-TM温度传感器温度特性实验模块(需配合FD-ST系列传感器测试技术实验仪)含加热系统、恒流源、直流电桥、Pt100铂电阻温度传感器、NTC1K热敏电阻温度传感器、PN结温度传感器、电流型集成温度传感器AD590、电压型集成温度传感器LM35、实验插接线等)。 【实验原理】 “温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用广泛。温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。常用的温度传感器的类型、测温范围和特点见下表。 PN结温度传感器 1.测试PN结的Vbe与温度变化的关系,求出灵敏度、斜率及相关系数 PN结温度传感器是利用半导体PN结的结电压对温度依赖性,实现对温度检测的,实验证明在一定的电流通过情况下,PN结的正向电压与温度之间有良好的线性关系。通常将硅三极管b、c极短路,用b、e

极之间的PN 结作为温度传感器测量温度。硅三极管基极和发射极间正向导通电压Vbe 一般约为600mV (25℃),且与温度成反比。线性良好,温度系数约为-2.3mV/℃,测温精度较高,测温范围可达-50——150℃。缺点是一致性差,互换性差。 通常PN 结组成二极管的电流I 和电压U 满足(1)式 [] 1/-=kT qU S e I I (1) 在常温条件下,且1/??KT qU e 时,(7)式可近似为 kT qU S e I I /= (2) (7)、(8)式中: T 为热力学温度 ; Is 为反向饱和电流; 正向电流保持恒定条件下,PN 结的正向电压U 和温度t 近似满足下列线性关系 U=Kt+Ugo (3) (3)式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。实验测量如下图。图中用恒压源串接51K 电阻使流过PN 结的电流近似恒流源。 2.玻尔兹曼常数测定 PN 结的物理特性是物理学和电子学的重要基础之一。模块通过专用电路来测量研究PN 结扩散电流与结电压的关系,证明此关系遵循指数变化规律,并准确的推导出玻尔兹曼常数(物理学的重要常数之一)。 由半导体物理学可知,PN 结的正向电流——电压关系满足式(1),式(1)中,I 是通过PN 结的正向电流,I S 是不随电压变化的常数(漏电流)。T 是热力学温度。e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K )时KT/e ≈0.026V ,而PN 结正向压降约为几百毫伏,则 exp(eU/KT)>>1, 为电子电量, C q ;10602.119-?=为玻尔兹曼常数,K J k /10381.123-?=

相关文档
最新文档