遗传算法及其发展状况研究

遗传算法及其发展状况研究
遗传算法及其发展状况研究

关于遗传算法的文献综述

班级:13级机械(4)班学号:913101140439 姓名:元志斌

关键词:遗传算法,编码,搜索,优化,交叉,遗传

摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。Abstract:Genetic algorithm is a kind of natural selection and based on biological evolution of gen etic mechanism, group suitable for complex system optimization adaptive probability optimizatio n technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own.

1.引言

遗传算法Genetic Algorithm(GA)是由美国密歇根大学的John H. Holland教授及其学生于20世纪60年代末到70年代初提出的。它是以达尔文的自然进化论“适者生存、优胜劣汰”和孟德尔遗传变异理论为基础,模拟生物进化过程。它具有大范围快速全局搜索能力,能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求的最优解。正是遗传算法的诸多特点,使得它在求解组合优化、机器学习、并行处理等问题上得到了广泛的应用。普通遗传算法是通过模拟染色体群的选择、交叉和变异等操作,不断迭代,最终收敛到高适应度值的染色体,从而求得问题的最优解。但是随着问题规模的扩大,组合优化问题的搜索空间急剧扩大,普通遗传算法的收敛速度慢、易陷入局部最优的缺点就暴露了。而佳点集遗传算法正是通过佳点集的方法改进交叉算子,加快算法收敛到全局最优解的速度,降低发生早熟的概率,提高整个算法的计算效率。

2.国内外相关研究现状

遗传算法的鼻祖是美国Michigan大学的Holland教授及其学生。他们受到生物模拟技术的启发,创造了一种基于生物遗传和进化机制的适合于复杂系统优化的自适应概率优化技术

——遗传算法。1967年,Holland的学生Bagley在其博士论文中首次提出了“遗传算法”一词,他发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用双倍体的编码方法。Holland教授用遗传算法的思想对自然和人工自适应系统进行了研究,提出了遗传算法的基本理论——模式定理(Schema Theorem)并于1957年出版了第一本系统论述遗传算法和人工自适应系统的专著《Adaptation in Natural and Artificial Systems》。20世纪80年代,Holland教授实现了第一个基于遗传算法的机器学习系统,开创了遗传算法的机器学习的新概念。1975年,De Jong基于遗传算法的思想在计算机上进行了大量的纯数值函数优化计算实验,建立了遗传算法的工作框架,得到了一些重要且具有指导意义的结论。1989年,Goldberg出版了《Genetic Algorithm in Search,Optimization and Machine Learning》一书,系统地总结了遗传算法的主要研究成果,全面完整的论述了遗传算法的基本原理及其应用。1991年,David出版了《Handbook of Genetic Algorithms》一书,介绍了遗传算法在科学计算、工程技术和社会经济中的大量实例。1992年,Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传编程(Genetic Programming,简称GP)的概念。在控制系统的离线设计方面遗传算法被众多的使用者证明是有效的策略。例如,Krishnakumar和Goldberg以及Bramlette和Gusin已证明使用遗传优化方法在太空应用中导出优异的控制器结构比使用传统方法如LQR和Powell(鲍威尔)的增音机设计所用的时间要少(功能评估)。Porter和Mohamed展示了使用本质结构分派任务的多变量飞行控制系统的遗传设计方案。与此同时,另一些人证明了遗传算法如何在控制器结构的选择中使用。

从遗传算法的整个发展过程来看,20世纪70年代是兴起阶段,20世纪80年代是发展阶段,20世纪90年代是高潮阶段。遗传算法作为一种实用、高效、鲁棒性强的优化技术,发展极为迅速,已引起国内外学者的高度重视。

近些年来,国内外很多学者在遗传算法的编码表示、适应度函数、遗传算子、参数选择、收敛性分析、欺骗问题和并行遗传算法上做出了大量的研究和改进。还有很多学者将遗传算法和其他只能算法结合,进一步提高局部搜索能力。在遗传算法的应用上也有很多改进。由于遗传算法具有全局并行搜索、简单通用、鲁棒性强等优点,使得遗传算法广泛地应用于计算机科学、自动控制、人工智能、工程设计、制造业、生物工程和社会科学等领域。针对遗传算法的一些问题,还有一些问题需要进一步的探究,将大大促进遗传算法理论和应用的发展,遗传算法必将在智能计算领域中展现出更加光明的前景。目前遗传算法所涉及的主要应用领域如下表所示:

遗传算法的主要应用领域

3.现阶段存在的问题及技术关键

遗传算法在整个进化过程中的遗传操作是随机的,但它所呈现出的特性并不是完全搜索,它能有效地利用历史信息来推测下一代期望性能有所提高的寻优点集。这样一代代的不断进化,最后收敛到一个最适应环境的个体上,求得问题的最优解。遗传算法所涉及的三大关键技术是:

(1)复制

复制操作又可称为选择、再生或繁殖操作,用于模拟生物界去劣存优的自然选择现象。它从旧种群中选择出适应性强的某些染色体,放入匹配集,为染色体交叉和变异操作产生新种群做准备。适应度越高的染色体被选择的可能性越大,其遗传基因在下一代群体中的分布就越广,其子孙在下一代出现的数量就越多。有多种复制方法,使用比较普遍的一种是适应度比例法。

(2)交叉

复制操作虽然能够从旧种群中选择出优秀者,但不能创造新的染色体。因此,遗传算法

的开创者提出了交叉操作。它模拟生物进化过程中的繁殖现象,通过两个染色体的交换组合,来产生新的优良的品种。

(3)变异

变异操作用来模拟生物在自然的遗传环境中由于各种偶然因素引起的基因突变,它以很小的概率随机地改变遗传基因值。在染色体以二进制编码的系统中,它随机地将染色体的某一个基因由1变成0,或由O变成1。若只有复制和交叉,而没有变异操作,则无法在初始基因组合以外的空间进行搜索,使进化过程的早期就陷入局部解而中正进化过程,从而使解的质量受到很大限制。通过变异操作,可确保群体中遗传基因类型的多样化,以使搜索能在尽可能大的空间中进行,避免丢失在搜索中有用的遗传信息而陷入局部解,获得质量较高的优化解答。

用遗传算法进行路径规划时,随机产生初始种群,为了避免陷入局部极值点,种群数量要达到一定的规模。但种群规模大会导致搜索空间较大,删除冗余个体的能力较差,大大影响路径规划的速度。特别在环境较为复杂的情形下,这种缺点就更加明显。而在现在的工作中,遗传算法(1972年提出)已经不能很好的解决大规模计算量问题,它很容易陷入“早熟”。常用混合遗传算法,合作型协同进化算法等来替代,这些算法都是GA的衍生算法。

遗传算法具有良好的全局搜索能力,可以快速地将解空间中的全体解搜索出,而不会陷入局部最优解的快速下降陷阱;并且利用它的内在并行性,可以方便地进行分布式计算,加快求解速度。但是遗传算法的局部搜索能力较差,导致单纯的遗传算法比较费时,在进化后期搜索效率较低。在实际应用中,遗传算法容易产生早熟收敛的问题。采用何种选择方法既要使优良个体得以保留,又要维持群体的多样性,一直是遗传算法中较难解决的问题。

4. 未来的发展趋势

从自然现象来看,生物演化的目的并非取得某一限制条件下的某些参数优化,而是适应环境。从这一点来看,虽然目前工程实践上遗传算法的主要应用是用于优化,但真正的结果并非如此。借鉴遗传算法和生物演化现象的紧密关系,人工生命和复杂性科学的研究与遗传算法有极其密却的联系。从长远来看。遗传算法还有以下发展空间:

(1)协同进化。进化的目标不是形成一个超级物种,一个生态环境进化的结果是物种与环境的相互

适应的复杂系统。因此,应该研究多个物种早共同的生态环境中的协同进化。对应到遗传算法,可以用于多目标的优化。

(2)学习与进化的相互作用。可以将学习分为以下几种:

①宗亲学习:通过血亲遗传祖先的特征遗传给后代;

②社团学习:经验和知识在群体中共享;

个体学习:个体生存过程中的学习;个体学习获得某种所需特性的机会。但是除了生物界的有性生殖,突变,染色体互换和倒置等等基于生理结构的进化机制外,人类社会还存在基于社会文化的进化机制,个体在社会学习中得到特有的更高级的进化。

而随着计算机技术的高速发展,遗传算法将会更加广泛地应用于国民经济的各个领域,如故障诊断,工业控制,电力系统,系统辨识,神经网络,路径规划,网络通信,社会科学等。随着遗传算法的深入研究以及与其他学科的互相融合,必将在智能领域占有越来越重要的地位。随着理论研究的不断深入和应用领域的不断扩展,遗传算法将得到长足的发展。

参考文献

[1]赵宜鹏,孟磊,彭承靖.遗传算法原理与发展方向综述[J],黑龙江科技信息,2010(13):79-80.

[2]曾文飞,张英杰,颜玲.遗传算法的基本原理及其应用研究[J],软件导刊,2009(9):54-56.

[3]李敏强,寇纪淞,林丹,李书全.遗传算法的基本理论与应用[M].北京:科学出版社,2002

[4]巩敦卫,郝国生,周勇,郭一楠.交互式遗传算法原理及其应用[M].北京:国防工业出版社,2007

[5]D Wolpert,W Macready - 《Working Papers》 - 1995

[6]Z Michalewicz,CZ Janikow,JB Krawczyk - 《Computers & Mathematics with Applications》 - 1992

[7]郑朝晖,张焱,裘聿皇.一种基于复数编码的遗传算法[J].控制理论与应用,2003,20(1):97-100.

[8]LINYung-chien,et al[J].ComputersandMathematicswithAp-plications,2004,47(8-9):1295-1307.

[9]乔家庆,付平,孟升卫.基于个体差异的遗传选择算子设计[J].电子学报,2006,34(12A):2414-2416.

[10]于志刚,宋申民,段广仁.遗传算法的机理与收敛性研究[J].控制与决策,2005,20(9):971-980

[11]葛继科,邱玉辉,吴春明,等.遗传算法研究综述[J].计算机应用研究,2008,25(10):2911-2916

遗传算法——耐心看完-你就掌握了遗传算法【精品毕业设计】(完整版)

遗传算法入门到掌握 读完这个讲义,你将基本掌握遗传算法,要有耐心看完。 想了很久,应该用一个怎么样的例子带领大家走进遗传算法的神奇世界呢?遗传算法的有趣应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(这是一个国外网友的建议:在一个不规则的多边形中,寻找一个包含在该多边形内的最大圆圈的圆心。),TSP问题(在以后的章节里面将做详细介绍。),生产调度问题,人工生命模拟等。直到最后看到一个非常有趣的比喻,觉得由此引出的袋鼠跳问题(暂且这么叫它吧),既有趣直观又直达遗传算法的本质,确实非常适合作为初学者入门的例子。这一章将告诉读者,我们怎么让袋鼠跳到珠穆朗玛峰上去(如果它没有过早被冻坏的话)。 问题的提出与解决方案 让我们先来考虑考虑下面这个问题的解决办法。 已知一元函数: 图2-1 现在要求在既定的区间内找出函数的最大值。函数图像如图2-1所示。 极大值、最大值、局部最优解、全局最优解

在解决上面提出的问题之前我们有必要先澄清几个以后将常常会碰到的概念:极大值、最大值、局部最优解、全局最优解。学过高中数学的人都知道极大值在一个小邻域里面左边的函数值递增,右边的函数值递减,在图2.1里面的表现就是一个“山峰”。当然,在图上有很多个“山峰”,所以这个函数有很多个极大值。而对于一个函数来说,最大值就是在所有极大值当中,最大的那个。所以极大值具有局部性,而最大值则具有全局性。 因为遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。所以从一个基因组到其解的适应度形成一个映射。所以也可以把遗传算法的过程看作是一个在多元函数里面求最优解的过程。在这个多维曲面里面也有数不清的“山峰”,而这些最优解所对应的就是局部最优解。而其中也会有一个“山峰”的海拔最高的,那么这个就是全局最优解。而遗传算法的任务就是尽量爬到最高峰,而不是陷落在一些小山峰。(另外,值得注意的是遗传算法不一定要找“最高的山峰”,如果问题的适应度评价越小越好的话,那么全局最优解就是函数的最小值,对应的,遗传算法所要找的就是“最深的谷底”)如果至今你还不太理解的话,那么你先往下看。本章的示例程序将会非常形象的表现出这个情景。 “袋鼠跳”问题 既然我们把函数曲线理解成一个一个山峰和山谷组成的山脉。那么我们可以设想所得到的每一个解就是一只袋鼠,我们希望它们不断的向着更高处跳去,直到跳到最高的山峰(尽管袋鼠本身不见得愿意那么做)。所以求最大值的过程就转化成一个“袋鼠跳”的过程。下面介绍介绍“袋鼠跳”的几种方式。 爬山法、模拟退火和遗传算法 解决寻找最大值问题的几种常见的算法: 1. 爬山法(最速上升爬山法): 从搜索空间中随机产生邻近的点,从中选择对应解最优的个体,替换原来的个体,不断重复上述过程。因为只对“邻近”的点作比较,所以目光比较“短浅”,常常只能收敛到离开初始位置比较近的局部最优解上面。对于存在很多局部最优点的问题,通过一个简单的迭代找出全局最优解的机会非常渺茫。(在爬山法中,袋鼠最有希望到达最靠近它出发点的山顶,但不能保证该山顶是珠穆朗玛峰,或者是一个非常高的山峰。因为一路上它只顾上坡,没有下坡。) 2. 模拟退火: 这个方法来自金属热加工过程的启发。在金属热加工过程中,当金属的温度超过它的熔点(Melting Point)时,原子就会激烈地随机运动。与所有的其它的物理系统相类似,原子的这种运动趋向于寻找其能量的极小状态。在这个能量的变

遗传算法综述

遗传算法综述 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,适用于处理传统搜索方法难以解决的复杂和非线性优化问题。遗传算法可广泛应用于组合优化、机器学习、自适应控制、设计和人工生命等领域,是21世纪有关智能计算中的重要技术之一。 本文通过对相关论文的查阅和整理,对遗传算法的研究现状和发展趋势进行了综述并谈论了一些自己的看法。 关键词:遗传算法研究现状发展趋势 引言:遗传算法是模拟遗传选择和自然淘汰的生物进化过程的计算模型,由美国Michigan大学的Holland教授于1969年提出,后经DeJong、Goldberg 等人归纳总结,形成一种新的全局优化搜索算法[1]。遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。 1、遗传算法的基本原理 与传统搜索算法不同, 遗传算法从一组随机产生的初始解,称为群体, 开始搜索过程。群体中的每个个体是问题的一个解,称为染色体。这些染色体在后续迭代中不断进化, 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体, 称为后代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择

一定数量的个体, 作为下一代群体, 再继续进化, 这样经过若干代之后, 算法收敛于最好的染色体, 它很可能就是问题的最优解或次优解。“遗传算法中使用适应度这个概念来度量群体中的各个个体的在优化计算中有可能到达最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关”[2]。 遗传算法包含两个数据转换操作,一个是从表现型到基因型的转换,将搜索空间的参数或解转换成遗传空间中的染色体或个体,这个过程称为编码(coding)。另一个是从基因型到表现型的转换,即将个体转化成搜索空间中的参数,这个过程称为译码(decode)。 图1展示了遗传算法的运行过程。 图1 遗传算法的运行过程示意图 2、遗传算法的研究现状 2.1 遗传算法研究方向[3] 在遗传算法的研究中,目前主要有三类研究方向: ⑴研究遗传算法本身的理论基础。 ⑵用遗传算法作为工具解决工程问题。主要是进行优化,关心的是能

计算机系统结构发展历程及未来展望

计算机系统结构发展历程及未来展望 一、计算机体系结构 什么是体系结构 经典的关于“计算机体系结构(computer Architecture)”的定义是1964年C.M.Amdahl在介绍IBM360系统时提出的,其具体描述为“计算机体系结构是程序员所看到的计算机的属性,即概念性结构与功能特性” 。 按照计算机系统的多级层次结构,不同级程序员所看到的计算机具有不同的属性。一般来说,低级机器的属性对于高层机器程序员基本是透明的,通常所说的计算机体系结构主要指机器语言级机器的系统结构。计算机体系结构就是适当地组织在一起的一系列系统元素的集合,这些系统元素互相配合、相互协作,通过对信息的处理而完成预先定义的目标。通常包含的系统元素有:计算机软件、计算机硬件、人员、数据库、文档和过程。其中,软件是程序、数据库和相关文档的集合,用于实现所需要的逻辑方法、过程或控制;硬件是提供计算能力的电子设备和提供外部世界功能的电子机械设备(例如传感器、马达、水泵等);人员是硬件和软件的用户和操作者;数据库是通过软件访问的大型的、有组织的信息集合;文档是描述系统使用方法的手册、表格、图形及其他描述性信息;过程是一系列步骤,它们定义了每个系统元素的特定使用方法或系统驻留的过程性语境。 体系结构原理 计算机体系结构解决的是计算机系统在总体上、功能上需要解决的问题,它和计算机组成、计算机实现是不同的概念。一种体系结构可能有多种组成,一种组成也可能有多种物理实现。 计算机系统结构的逻辑实现,包括机器内部数据流和控制流的组成以及逻辑设计等。其目标是合理地把各种部件、设备组成计算机,以实现特定的系统结构,同时满足所希望达到的性能价格比。一般而言,计算机组成研究的范围包括:确定数据通路的宽度、确定各种操作对功能部件的共享程度、确定专用的功能部件、确定功能部件的并行度、设计缓冲和排队策略、设计控制机构和确定采用何种可靠技术等。计算机组成的物理实现。包括处理机、主存等部件的物理结构,器件的集成度和速度,器件、模块、插件、底板的划分与连接,专用器件的设计,信号传输技术,电源、冷却及装配等技术以及相关的制造工艺和技术。 主要研究内容 1·机内数据表示:硬件能直接辨识和操作的数据类型和格式 2·寻址方式:最小可寻址单位、寻址方式的种类、地址运算 3·寄存器组织:操作寄存器、变址寄存器、控制寄存器及专用寄存器的定义、数量和使用规则 4·指令系统:机器指令的操作类型、格式、指令间排序和控制机构 5·存储系统:最小编址单位、编址方式、主存容量、最大可编址空间 6·中断机构:中断类型、中断级别,以及中断响应方式等

论文-遗传算法的基本步骤

遗传算法 遗传算法(Genetic Algorithm)是基于进化论的原理发展起来的一种广为应用,高效的随机搜索与优化的方法。它从一组随机产生的初始解称为“种群”,开始搜索过程。种群中的每个个体是问题的一个解,成为“染色体”是一串符号。这些染色体在每一代中用“适应度”来测量染色体的好坏, 通过选择、交叉、变异运算形成下一代。选择的原则是适应度越高,被选中的概率越大。适应度越低,被淘汰的概率越大。每一代都保持种群大小是常数。经过若干代之后,算法收敛于最好的染色体,它很可能是问题的最优解或次优解。这一系列过程正好体现了生物界优胜劣汰的自然规律。 比如有编号为1到10的特征,现在要选取其中的5个,基于遗传算法的特征选择可以如下这样直观的理解: 下续(表格) 下续……

即设有4个不同的初始特征组合,分别计算判别值,然后取最大的2个组合([1,2,3,4,9]和[1,3,5,7,8])进行杂交,即互换部分相异的特征(4和7),得到新的两个特征组合([1,2,3,7,9]和[1,3,4,5,8]),然后再计算这两个新的组合的判别值,和原来的放在一起,再从中选择2个具有最大判别值的组合进行杂交。如此循环下去,在某一代的时候就得到了一个最好的特征组合(比如第2代的[1,3,5,7,9]的特征组合)。当然,在实际中每代的个体和杂交的数量是比较大的。 遗传算法的具体的步骤如下:

1.编码:把所需要选择的特征进行编号,每一个特征就是一个基因,一个解就是一串基因的组合。为了减少组合数量,在图像中进行分块(比如5*5大小的块),然后再把每一块看成一个基因进行组合优化的计算。每个解的基因数量是要通过实验确定的。 2.初始群体(population)的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体。N个个体,构成了一个群体。GA以这N个串结构数据作为初始点开始迭代。这个参数N需要根据问题的规模而确定。 3.交换(crossover):交换(也叫杂交)操作是遗传算法中最主要的遗传操作。由交换概率( P)挑选的每两个父代 c 通过将相异的部分基因进行交换(如果交换全部相异的就变成了对方而没什么意义),从而产生新的个体。可以得到新一代个体,新个体组合了其父辈个体的特性。交换体现了信息交换的思想。 4.适应度值(fitness)评估检测:计算交换产生的新个体的适应度。适应度用来度量种群中个体优劣(符合条件的程度)的指标值,这里的适应度就是特征组合的判据的值。这个判据的选取是GA的关键所在。

遗传算法

遗传算法发展前景概况 (华北电力大学电气与电子工程学院,北京102206) 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。 关键词:遗传算法; 遗传算子;进化计算;编码 GENERAL GENETIC ALGORITHM DEVELOPMENT PROSPECT (North China Electric Power University Electrical And Electronic Engineering Institute,Beijing102206) ABSTRACT: Genetic algorithm is a kind of natural selection and based on biological evolution of genetic mechanism, group suitable for complex system optimization adaptive probability optimization technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. KEY WORD: Genetic algorithm; Genetic operator; Evolutionary computation; coding 1.引言 现在,遗传算法正在迅速发展,遗传算法与其很强的解决问题能力和适合于复杂系统的自适应优化技术渗透到研究和工业工程领域,在电力系统,系统辨识,最优控制,模式识别等领域有了很广泛的应用,取得了很好的效果。 2.遗传算法基本思想 遗传算法是建立在自然选择和群体遗传学基础上的随机,迭代和进化,具有广泛适用性的搜索方法,所有的自然种类都是适应环境而生存,这一自然适用性是遗传算法的主要思想。 遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部基因决定了个体的外部表现。因此,在一开始就要实现外部表现到内部基因的映射,即编码工作,通常采用二进制码。初始种群产生之后,按照适者生存和优胜劣汰的原则,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集和种群,这种过程将导致种群像自然进化那样产生比前代更适应于环境的后代种群,末代种群中的最有个体经过解码,可以作为问题近似最优解。 遗传算法采纳了自然进化模型,如选择,交叉,变异等,计算开始时,种群随机初始化产生一定数目的N个个体,并计算每个个体的适应度函数,如果不满足优化准则,就开始新一代的计算。为了产生下一代,按照适应度选择个体父代进行基因重组二产生子代。所有的子代按一定的概率进行变异,子代取代父代构成新一代,然后重新计算子代的适应度。这一过程循环执行,直到满足优化准则为止。 3.遗传算法基本操作

基于遗传算法的自动排课系统毕业设计

摘要 随着科学技术和社会信息技术的不断提高,计算机科学的日渐成熟,其强大的功能已为人们深刻认识,它在人类社会的各个领域发挥着越来越重要的作用,给人们的生活带来了极大的便利,成为推动社会发展的首要技术动力。排课是学校教学管理中十分重要、又相当复杂的工作之一。解决好教学工作中的排课问题对整个教学计划的进行,有着十分重要的意义。首先对排课的已有算法作了相关的调查研究,决定采用遗传算法。通过设计实现基于遗传算法的自动排课系统,研究了遗传算法在排课系统中的应用。 关键词:遗传算法、自动排课、Java。

Abstract Along with science technical and community information technical increases continuously, calculator science is gradually mature, its mighty function has behaved deep cognition, and it has entered the human social each realm erupts to flick the more and more important function, bringing our life biggest of convenience. Curriculum arrangement is an important and complicated working in school,so solving the problem is of great importance for teaching programming.Investigated and studied the algorithm existed, determine that adoptgenetic algorithm. ThroughDesign Implementation theAuto CourseArrangementManagement System Base onGenetic Algorithm, researched the application of genetic algorithmin theCourseArrangementManagement System. Keywords: Genetic Algorithm Auto Course Arrangement ManagementJava.

毕业设计--基于量子遗传算法的函数寻优算法设计

毕业论文(设计) 题目:基于量子遗传算法的函数寻优算法设计学院:数理与信息学院 学生姓名: 专业:计算机科学与技术 班级: 指导教师: 起止日期: 2014年11月16日至2015年6月12日 2015 年5 月13日

基于量子遗传算法的函数寻优算法设计 摘要 量子遗传算法(QGA)是20世纪90年代后期兴起的一种崭新的遗传进化算法。该算法主要是将量子计算的概念引入其中,将量子的态矢量表达引入了遗传编码,使一条染色体可以表达多个信息态的叠加,同时利用量子旋转门实现染色体的演化,实现了目标解的进化。相比传统遗传算法,量子遗传算法能够在较小的种群规模下,快速的收敛到全局最优解。 本文首先介绍了量子遗传算法的基本原理与算法结构,然后对量子遗传算法提出疑问。虽然量子遗传算法的优化性能大大优于传统遗传算法,但是,对于一些多峰函数的优化问题,该类算法依旧容易陷入“局部最优”。在实际的应用中有很多优化问题都是多变量的连续优化问题,现有的量子遗传算法不能有效的解决这些问题。针对量子遗传算法容易陷入局部最优和未成熟收敛的缺陷,我们提出了一种新的优化算法——含有退火操作的量子遗传算法,该优化算法能够以可变的概率选择性地接受恶化的优化函数解,使种群解集的进化方向改变,不在依靠当前解进行遗传演化。从而使算法不易“早熟收敛”。而且在该算法中加入了全干扰的量子交叉操作,使各染色体能进行遗传信息的交换,使种群染色体更具有代表性。最后根据改进后的方案,对改进的量子遗传算法进行了数值仿真。有效地证明了改进算法在函数寻优方面的优越性。 【关键词】量子遗传算法,量子编码,退火思想,量子交叉,函数寻优

介绍遗传算法的发展历程

介绍遗传算法的发展历程 遗传算法起源于对生物系统进行的计算机模拟研究。早在20世纪40年代,就有学者开始研究利用计算机进行生物模拟的技术,他们从生物学的角度进行了生物的进化过程模拟、遗传过程模拟等研究工作。 早期的研究特点是侧重于对一些复杂操作的研究。最早意识到自然遗传算法可以转化为人工智能算法的是J.H.Hnllaad教授。1965年,Holland教授首次提出了人工智能操作的重要性,并将其应用到自然系统和人工系统中。1967年,Holland教授的学生.J.D.Bagley在其博士论文中首次提出了“遗传算法”一词,并发表了遗传算法应用方面的第一篇论文,从而创立了自适应遗传算法的概念e J.D.Bagley发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用了双倍体的编码方法。1970年,Cavicchio把遗传算法应用于模式识别。Holistien最早把遗传算法应用于函数优化。20世纪70年代初,Holland 教授提出了遗传算法的基本定理—模式定理,从而奠定了遗传算法的理论基础。模式定理揭示出种群中优良个体(较好的模式)的样本数将以指数级规律增长,因而从理论上保证了遗传算法是一个可以用来寻求最优可行解的优化过程。1975年,Holland教授出版了第一本系统论述遗传算法和人工自适应系统的专著《自然系统和人工系统的自适应性》。同年,K.A.De Song在博士论文《遗传自适应系统的行为分析》‘护结合模式定理进行了大量的纯数值函数优化计算实验,建立了遗传算法的工作框架,为遗传算法及其应用打下了坚实的基础,他所得

出的许多结论迄今仍具有普遍的指导意义。20世纪80年代,Hntland 教授实现了第一个基于遗传算法的机器学习系统—分类器系统(Classifier Systems,简称CS),提出了基于遗传算法的机器学习的新概念,为分类器系统构造出了一个完整的框架。1989年,D.J.Goldberg 出版了专著—《搜索、优化和机器学习中的遗传算法》。该书系统总结了遗传算法的主要研究成果,全面而完整地论述了遗传算法的基本原理及其应用。可以说这本书奠定了现代遗传算法的科学基础,为众多研究和发展遗传算法的学者所瞩目。1991年,L,Davis编辑出版了《遗传算法手册》一书,书中包括了遗传算法在科学计算、工程技术和社会经济中的大量应用样本,为推广和普及遗传算法的应用起到了重要的指导作用。1992年,J.R.Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传规划(Genetic Programming,简称GP)的概念。

数学建模遗传算法与优化问题【精品毕业设计】(完整版)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

量子遗传算法

量子遗传算法 1.遗传算法 遗传算法是一种模拟达尔文生物进化论和遗传变异的智能算法。这种算法具有鲁棒性(用以表征控制系统对特性或参数扰动的不敏感性)较强,实现的步骤规范、简单通用等优点,在人工智能、多目标决策、社会及经济等领域都有大量运用。但一般遗传算法存在一定得局限性:收敛速度慢、迭代的次数多,易过早收敛,容易陷入局部最优解。 2.量子计算 量子计算为量子力学与信息科学的综合交叉学科。量子计算具有量子力学的并行性,计算速度更快;同时,量子状态多种多样,在进行最优解的搜索时极少陷入局部的极值。 3.量子遗传算法 量子遗传算法将量子的态矢量引入遗传算法,利用量子比特的概率幅应用于染色体的编码。一条染色体是多个量子状态的叠加。并使用量子旋转门实现染色体的变异更新。因此量子遗传算法具有迭代次数少,运行速度快,能以较少种群进行遗传变异,搜索范围广,难以陷入局部的极值等优点。 4.操作步骤 1)运用量子比特初始化父代染色体 2)在量子遗传算法中,染色体采用量子位的概率幅进行编码,编码方案如下: 1212cos()cos()cos()sin()sin()sin()i i ik i i i ik P θθθθθθ??=??? ? k j n i rand ij ,...,2,1,,...,2,1,2==?=πθ 3)对初始化种群中的每一个个体进行测量。 4)对每个测量值进行适应度的评估,以适应度来选择最优个体,进行遗传变异。 5)使用量子旋转门进行下一代个体的更新,量子旋转门为逻辑门中一种较为常用的方法,具体表示为: ???? ? ?-=i i i i u θθθθθcos sin sin cos )( 6)进行迭代1+=y y 7)达到终止设定条件,输出最佳个体,得到最优解。

遗传算法

遗传算法的基本理论 一、起源: 早在20世纪50年代和60年代,就有少数人几个计算机科学家独立地进行了所谓的“人工进化系统”研究,其出发点是进化的思想可以发展成为许多工程问题的优化工具。早期的研究形成了遗传算法的雏形,如大多数系统都遵循“适者生存”的仿自然法则,有些系统采用了基于群体(population)的设计方案,并且加入了自然选择与变异操作,还有一些系统对生物染色体编码进行了抽象处理,应用二进制编码。由于缺乏一种通用的编码方案,人们只能依赖变异而非交叉来产生新的基因结构,早期的算法收敛甚微。20世纪60年代中期,美国Michigan大学的John Holland在A.S.Fraser和H.J.Bremermann等人工作的基础上提出了位串编码技术。这种编码既适用于变异操作,又适用于交叉(即杂交)操作。并且强调将交叉作为主要的遗传操作。随后,Holland将该算法用于自然和人工系统的自适应行为的研究中,并于1975年出版了其开创性著作“Adaption in Natural and Artificial System”。以后,Holland等人将该算法加以推广,应用到优化及机器学习等问题中,并正式定名为遗传算法。遗传算法的通用编码技术和简单有效的遗传操作作为其广泛、成功地应用奠定了基础。Holland早期有关遗传算法的许多概念一直沿用至今,可见Holland对遗传算法的贡献之大。他认为遗传算法本质上是适应算法,应用最多的是系统最优化的研究。 二、发展: 年份贡献者内容 1962Holland程序漫游元胞计算机自适应系统框架 1968Holland模式定理的建立 1971Hollstein具有交配和选择规则的二维函数优化 1972Bosworth、Foo、Zeigler提出具有复杂变异、类似于遗传算法的基因操作1972Frantz位置非线性和倒位操作研究 1973Holland遗传算法中试验的最优配置和双臂强盗问题 1973Martin类似遗传真法的概率算法理论 1975De Jong用于5个测试函数的研究基本遗传算法基准参数 1975Holland 出版了开创性著作《Adaptation in Natural and Artificial System》 1981Bethke应用Walsh函数分析模式 1981Brindle研究遗传算法中的选择和支配问题 1983Pettit、Swigger遗传算法应用于非稳定问题的粗略研究1983Wetzel用遗传算法解决旅行商问题(TSP) 1984Mauldin基本遗传算法小用启发知识维持遗传多样性1985Baker试验基于排序的选择方法 1985Booker建议采用部分匹配计分、分享操作和交配限制法1985Goldberg、Lingle TSP问题个采用部分匹配交叉 1985Grefenstette、Fitzpattrick对含噪声的函数进行测试 1985Schaffer多种群遗传算法解决多目标优化问题1986Goldberg最优种群大小估计 1986Grefenstette元级遗传算法控制的遗传算法 1987Baker选择中随机误差的减少方法 1987Goldberg复制和交叉时最小欺骗问题(MDP) 1987Goldberg、Richardson借助分享函数的小生境和物种归纳法

认知无线电的发展历程与现状

认知无线电的发展历程与现状 认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互 信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing )和系统的智能学习能力,实现动态频谱分配(DSA dynamic spectrum allocation )和频谱共享(Spectrum Shari ng )。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Sha nnon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz 左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1. 认知无线电的发展历程

基于遗传算法的配送路径优化研究开题报告

北京师范大学珠海分校 本科生毕业论文(设计)开题报告

理论和实践的意义及可行性论述 (包括文献综述) 理论和实践的意义:当前,现代物流是企业继续降低物资消耗、提高劳动生产 率后的第三利润源泉。但我国物流企业的运输成本普遍偏高。其中很重要一个 原因就是对配送车辆运输路线规划不科学。要想降低运输成本,离不开对配送 路线的优化和配送车辆的合理安排。对物流配送车辆行驶路径进行优化,可以降低物流成本,节约运输时间,是提高物流经济效益的有效手段。 可行性论述:配送路径优化问题是典型的优化组合问题,具有很高的计算复杂 性。但遗传算法解决作为一种有效的全局搜索方法具有隐并行性和较强的鲁棒性,在解决非线性的大规模复杂问题上具有很好的适应性,适合于对VPR问 题进行优化求解。标准遗传算法虽然未必每次都能找到最优解,但通过对标准 遗传算法进行改进,完全可以在有限时间内对较复杂的VPR问题计算出次优 解或可行解。因此,用遗传算法来解决物流车辆调度问题还是完全可行的。 文献综述: [1]朱剑英?非经典数学方法[M].武昌:华中科技大学出版社,2001 [2]李敏强,寇纪淞,林丹,李书全?遗传算法的基本理论与应用[M].北京:科 学技术出版社,2002 [3]孙丽丽?物流配送中车辆路径算法分析与研究[D].上海:上海海事大学,2007 [4]盖杉.基于遗传算法的物流配送调度系统 [D].长春:长春理工大学,2007 [5]高运良,基于免疫遗传算法的物流配送V RP 求解[D].武汉:武汉科技大学, 2007 论文撰写过程中拟采取的方法和手段 本论文主要采用遗传算法作为解决物流配送路径优化问题的主要算法。但由于标准遗传算法具有“早熟收敛”的缺陷,有可能使算法陷入局部最优解。论文还将尝试通过把其他算法和遗传算法相结合,来有效控制早熟现象的发生。为了快速得到任意两个配送点之间的最优路线。本论文还拟采用佛洛依德 算法构造配送路线的地理数据库的方式来对路线网络进行预处理。从而减少整 个算法的时间复杂度和空间复杂度。

遗传算法的应用研究_赵夫群

2016年第17期 科技创新科技创新与应用 遗传算法的应用研究 赵夫群 (咸阳师范学院,陕西咸阳712000) 1概述 遗传算法(Genetic Algorithms,GA)一词源于人们对自然进化系统所进行的计算机仿生模拟研究,是以达尔文的“进化论”和孟德尔的“遗传学原理”为基础的,是最早开发出来的模拟遗传系统的算法模型。遗传算法最早是由Fraser提出来的,后来Holland对其进行了推广,故认为遗传算法的奠基人是Holland。 随着遗传算法的不断完善和成熟,其应用范围也在不断扩大,应用领域非常广泛,主要包括工业控制、网络通讯、故障诊断、路径规划、最优控制等。近几年,出现了很多改进的遗传算法,改进方法主要包括:应用不同的交叉和变异算子;引入特殊算子;改进选择和复制方法等。但是,万变不离其宗,都是基于自然界生物进化,提出的这些改进方法。 2遗传算法的原理 遗传算法是从某一个初始种群开始,首先计算个体的适应度,然后通过选择、交叉、变异等基本操作,产生新一代的种群,重复这个过程,直到得到满足条件的种群或达到迭代次数后终止。通过这个过程,后代种群会更加适应环境,而末代种群中的最优个体,在经过解码之后,就可以作为问题的近似最优解了。 2.1遗传算法的四个组成部分 遗传算法主要由四个部分组成[1]:参数编码和初始群体、适应度函数、遗传操作和控制参数。编码方法中,最常用的是二进制编码,该方法操作简单、便于用模式定理分析。适应度函数是由目标函数变换而成的,主要用于评价个体适应环境的能力,是选择操作的依据。遗传操作主要包括了选择、交叉、变异等三种基本操作。控制参数主要有:串长Z,群体大小size,交叉概率Pc,变异概率Pm等。目前对遗传算法的研究主要集中在参数的调整中,很多文献建议的参数取值范围一般是:size取20~200之间,Pc取0.5~1.0之间,Pm取0~0.05之间。 2.2遗传算法的基本操作步骤 遗传算法的基本操作步骤为: (1)首先,对种群进行初始化;(2)对种群里的每个个体计算其适应度值;(3)根据(2)计算的适应度,按照规则,选择进入下一代的个体;(4)根据交叉概率Pc,进行交叉操作;(5)以Pm为概率,进行变异操作;(6)判断是否满足停止条件,若没有,则转第(2)步,否则进入(7);(7)得到适应度值最优的染色体,并将其作为问题的满意解或最优解输出。 3遗传算法的应用 遗传算法的应用领域非常广泛,下面主要就遗传算法在优化问题、生产调度、自动控制、机器学习、图像处理、人工生命和数据挖掘等方面的应用进行介绍。 3.1优化问题 优化问题包括函数优化和组合优化两种。很多情况下,组合优化的搜索空间受问题规模的制约,因此很难寻找满意解。但是,遗传算法对于组合优化中的NP完全问题非常有效。朱莹等[2]提出了一种结合启发式算法和遗传算法的混合遗传算法来解决杂货船装载的优化问题中。潘欣等[3]在化工多目标优化问题中应用了并行遗传算法,实验结果表明该方法效果良好。王大东等[4]将遗传算法应用到了清运车辆路径的优化问题求解中,而且仿真结果表明算法可行有效。 3.2生产调度 在复杂生产调度方面,遗传算法也发挥了很大的作用。韦勇福等[5]将遗传算法应用到了车间生产调度系统的开发中,并建立了最小化完工时间目标模型,成功开发了车间生产调度系统模块,并用实例和仿真验证了该方法的可行性。张美凤等[6]将遗传算法和模拟退火算法相结合,提出了解决车间调度问题的混合遗传算法,并给出了一种编码方法以及建立了相应的解码规则。 3.3自动控制 在自动控制领域中,遗传算法主要用于求解的大多也是与优化相关的问题。其应用主要分为为两类,即离线设计分析和在线自适应调节。GA可为传统的综合设计方法提供优化参数。 3.4机器学习 目前,遗传算法已经在机器学习领域得到了较为广泛的应用。邢晓敏等[7]提出了将遗传算子与Michigan方法和基于Pitt法的两个机器学习方法相结合的机器学习方法。蒋培等[8]提出了一种基于共同进化遗传算法的机器学习方法,该方法克服了学习系统过分依赖于问题的背景知识的缺陷,使得学习者逐步探索新的知识。 3.5图像处理 图像处理是一个重要的研究领域。在图像处理过程中产生的误差会影响图像的效果,因此我们要尽可能地减小误差。目前,遗传算法已经在图像增强、图像恢复、图像重建、图像分形压缩、图像分割、图像匹配等方面应用广泛,详见参考文献[9]。 4结束语 遗传算法作为一种模拟自然演化的学习过程,原理简单,应用广泛,已经在许多领域解决了很多问题。但是,它在数学基础方面相对不够完善,还有待进一步研究和探讨。目前,针对遗传算法的众多缺点,也相继出现了许多改进的算法,并取得了一定的成果。可以预期,未来伴随着生物技术和计算机技术的进一步发展,遗传算法会在操作技术等方面更加有效,其发展前景一片光明。 参考文献 [1]周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,1999,6. [2]朱莹,向先波,杨运桃.基于混合遗传算法的杂货船装载优化问题[J].中国船舰研究,2015:10(6):126-132. [3]潘欣,等.种群分布式并行遗传算法解化工多目标优化问题[J].化工进展,2015:34(5):1236-1240. [4]王大东,刘竞遥,王洪军.遗传算法求解清运车辆路径优化问题[J].吉林师范大学学报(自然科学版),2015(3):132-134. [5]韦勇福,曾盛绰.基于遗传算法的车间生产调度系统研究[J].装备制造技术,2014(11):205-207. [6]黄巍,张美凤.基于混合遗传算法的车间生产调度问题研究[J].计算机仿真,2009,26(10):307-310. [7]邢晓敏.基于遗传算法的机器学习方法赋值理论研究[J].软件导刊[J].2009,8(11):80-81. [8]蒋培.基于共同进化遗传算法的机器学习[J].湖南师范大学自然科学学报,2004,27(3):33-38. [9]田莹,苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,12(3):389-396. [10]周剑利,马壮,陈贵清.基于遗传算法的人工生命演示系统的研究与实现[J].制造业自动化,2009,31(9):38-40. [11]刘晓莉,戎海武.基于遗传算法与神经网络混合算法的数据挖掘技术综述[J].软件导刊,2013,12(12):129-130. 作者简介:赵夫群(1982,8-),女,汉族,籍贯:山东临沂,咸阳师范学院讲师,西北大学在读博士,工作单位:咸阳师范学院教育科学学院,研究方向:三维模型安全技术。 摘要:遗传算法是一种非常重要的搜索算法,特别是在解决优化问题上,效果非常好。文章首先介绍了遗传算法的四个组成部分,以及算法的基本操作步骤,接着探讨了遗传算法的几个主要应用领域,包括优化、生产调度、机器学习、图像处理、人工生命和数据挖掘等。目前遗传算法以及在很多方面的应用中取得了较大的成功,但是它在数学基础方面相对还不够完善,因而需要进一步研究和完善。 关键词:遗传算法;优化问题;数据挖掘 67 --

遗传算法经典MATLAB代码【精品毕业设计】(完整版)

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其 中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

相关文档
最新文档