北京地铁7号线综合监控大纲

北京地铁7号线综合监控大纲
北京地铁7号线综合监控大纲

北京市轨道交通7号线工程

综合监控系统

三个月考核大纲

同方股份有限公司

二〇一四年十一月

序言

本考核大纲用于考核北京市轨道交通7号线综合监控系统的稳定性,持续时间为三个月。本大纲包括以下部分:考核目的、考核时间、参加单位、考核环境、考核方法、考核内容及其评价、考核安排和记录、考核评估、考核结论和附录,附录中包括记录表格。

修订记录

目录

1考核目的 (1)

2考核时间 (1)

3参加考核单位及相关责任 (1)

4考核环境 (2)

4.1控制、备用中心及车站硬件环境 (2)

4.2集成和互联系统的接入 (3)

5系统软件环境 (4)

6考核方法 (5)

6.1禁止项 (5)

6.2允许项 (5)

7考核评价 (5)

7.1记录但不终止考核的系统异常 (6)

7.2终止考核的系统异常 (7)

7.3考核结果的评价原则 (8)

8考核安排和记录 (8)

8.1考核时间 (8)

8.2考核记录 (8)

9考核结论 (9)

2019年北京地铁规划详细解读-14页文档资料

2019年北京地铁规划图 1号线(一线) 线路标识色:正红色 北京地铁1号线北京地铁1号线,又称一线,全长30.44千米,设53#站(101)、52#站(102)、苹果园站(103)、古城站(104)、八角游乐园站(105)、八宝山站(106)、玉泉路站(107)、五棵松站(108)、万寿路站(109)、公主坟站(110)、军事博物馆站(111)、木樨地站(112)、南礼士路站(113)、复兴门站(114)、西单站(115)、天安门西站(116)、天安门东站(117)、王府井站(118)、东单站(119)、建国门站(120)、永安里站(121)、国贸站(122)、大望路站(123)、四惠站(124)、四惠东站(125)共25座车站。(52#、 53#站不运营)。地铁1号线和地铁八通线顺利贯通后,这条轨道线路成为世界上最长的城市铁道。 1号线未开放车站 黑石头站(54#站)、高井站(53#站,101)、福寿岭站(52#站,102)作为地铁1号线一期工程就已建成的车站,自建成日起至今尚未对公众开放。 福寿岭站(地铁技校站)编号为52#,102。其中102为地铁系统的编号,52#是军用铁路系统编号(一说地铁修建时期的旧编号)。由于正式名称未对公众公布,也有人将这站称为地铁技校站。位于苹果园站西北方向福寿岭村,与地铁技校临接。本站作为地铁技校通勤车的停靠站,每个工作日早晚各有一班通勤车停靠。车站构造与古城站和苹果园站基本相同,目前地面出入口仅有一个尚可使用,其他三个入口中有两个被水泥和各种杂物封死,另外一个被从内部锁住。站内墙壁留下了很多地铁技校学生的涂鸦。入口处虽固定着非工作人员严禁入内的警示牌,但除学生外,时常有以城市冒险为目的的组织或个人进入,目前尚未有因该行为违法而被处罚的实例。 高井站(北京军区站)编号为53#,101。由于该站的正式名称尚未公布,因此也有人将此车站臆称为北京军区站。本站坐落于西山中,一说已属于北京军区的管辖区内。由于进入的方法复杂并且较为危险,目前仅能从几张照片来了解站内设施及构造。该站与客运站的构造完全不同。站台比较狭窄,站内墙壁上涂抹白灰,顶部较低矮,照明设施也较为简陋。 黑石头站编号为54#。在地铁系统中没有编号,因此也被认为不包含在北京的地铁系统之内。本站为一地上车站,位于北京西山中的黑石头村附近,因此被大多数人称为黑石头站。 1号线现有换乘车站: 复兴门站:与地铁2号线换乘,车站位于复兴门立交桥下,呈向东布置的T字,两线之间采用单向换乘,1号线换乘2号线时,走东端站厅,经过两侧专门修建的换乘通道到达2号线两端站厅,经楼梯进入站台,2号线换乘1号线时,直接走站台中部楼梯下行即可到达1号线站台,由于是特殊年代修建的地铁,从方便换成角度而言,该站的设计显得比较落伍了。 建国门站:换乘方式类似于复兴门站,但1号线-2号线的换乘有所改进,乘客通过1号线站台上专门设置的换乘楼梯即可去往2号线,换乘距离缩短不少。东单站:新开通的与5号线的换乘车站,用两条换乘通道连接5号线车站,内设自动步道和自动扶梯,换乘条件比较舒适,但自动步道单向运行,是设计上的缺

北京地铁发展史

北京地铁发展史 北京地铁始建于1965年7月1日,1969年10月1日第一条地铁线路建成通车,使北京成为中国第一个拥有地铁的城市。 北京地铁线路(目前)1950年代末期中国与苏联的关系恶化后,中国开始规划在北京、沈阳、上海三座重要城市修建地铁,以作为平战结合的战备防御手段。北京地铁首先开工,一期工程于1965年7月1日开工建设,其线路沿长安街与北京城墙南缘自西向东贯穿北京市区,连接西山的卫戍部队驻地和北京站,采用明挖填埋法施工。全长23.6公里,设17 座车站和一座车辆段(古城车辆段),1969年10月1日建成通车。根据预计,北京地铁在战时可以每天运送5个陆军整编师的兵力自西山运至北京市区。 由于属于战备工程,北京地铁在通车后很长时间内不对公众开放,需凭介绍信参观及乘坐。1971年1月15日公主坟至北京站段开始试运行,1971年8月5日延长为玉泉路至北京站,1971年11月7日延长为古城路至北京站,1973年4月23日延长为苹果园至北京站。北京地铁二期工程始于1969年,其线路沿北京内城城墙自建国门至复兴门,呈倒U字型,设12座车站及太平湖车辆段,线路长度为17.2公里。1981年9月15日,北京地铁正式对外运营。 北京地铁复八线于1992年6月24日开工建设,1999年9月28日通车试运营,2000 年6月28日与一线全线贯通。 截至2005年,北京地铁已开通的线路包括1号线、2号线、13号线和八通线,运营线路总里程114公里,共有70座运营车站。其中,1号线全长31.04公里,23座运营车站;2号线全长23.61公里,18座运营车站;13号线全长40.85公里,16座运营车站;八通线全长18.9公里,13座运营车站。北京地铁目前日客运量150万人次左右。 1号线(一线) 北京地铁1号线北京地铁1号线,又称一线,全长30.44千米,设53#站(101)、52#站(102)、苹果园站(103)、古城站(104)、八角游乐园站(105)、八宝山站(106)、玉泉路站(107)、五棵松站(108)、万寿路站(109)、公主坟站(110)、军事博物馆站(111)、木樨地站(112)、南礼士路站(113)、复兴门站(114)、西单站(115)、天安门西站(116)、天安门东站(117)、王府井站(118)、东单站(119)、建国门站(120)、永安里站(121)、国贸站(122)、大望路站(123)、四惠站(124)、四惠东站(125)共25座车站。(52#、 53#站不运营)。地铁1号线和地铁八通线顺利贯通后,这条轨道线路成为世界上最长的城市铁道。 2号线(环线)

城市轨道交通综合监控系统

城市轨道交通综合监控介绍 单元1 综合监控系统概述 城市轨道交通综合监控系统:简称“综合监控系统”【ISCS】Integrated Supervisory Control System,轨道交通综合监控系统主要功能包括对机电设备的实时集中监控功能和各系统之间协调联动功能两大部分。一方面,通过综合监控系统, 可实现对电力设备、火灾报警信息及其设备、车站环控设备、区间环控设备、环境参数、屏蔽门设备、防淹门设备、电扶梯设备、照明设备、门禁设备、自动售检票设备、广播和闭路电视设备、乘客信息显示系统的播出信息和时钟信息等进行实时集中监视和控制的基本功能;另一方面,通过综合监控系统,还可实现晚间非运营情况下、日间正常运营情况下、紧急突发情况下和重要设备故障情况下各相关系统设备之间协调互动等高级功能。 ISCS相关英文缩写 1 AFC Automatic Fare Collection 自动售检票系统 2 ATC Automatic Train Control 自动列车控制 3 ATO Automatic Train Operation 自动列车运行 4 ATP Automatic Train Protection 自动列车防护 5 ATS Automatic Train Supervision 自动列车监控 6 BAS Building Automatic System 环境与设备监控系统 7 CLK Clock 时钟系统 8 FAS Fire Alarm System 火灾报警系统 9 FEP Front End Processor 前端处理机 10 OCC Operating Control Centre 控制中心 11 CCTV Closed Circuit Television 闭路电视系统 12 ISCS Integrated Supervisory Control System 综合监控系统 13 PA(S)Public Address(System)公共广播(系统) 14 PIS Passenger Information System 乘客信息系统 15 PSCADA Power SCADA 电力监控系统 16 PSD Platform Screen Door 屏蔽门 17 SIG Signaling 信号系统 18 FG Flood Gate 防淹门 19 ACS Access 门禁 20 UPS Uninterrupted Power System 不间断电源系统 21 EMCS Electrical and Mechanical Control System 机电设备监控系统 22 SCADA Supervisory Control and Data Acquisition 监控与数据采集 FACP (Fire Alarm Control Panel )火灾报警控制盘 COM (Communication System )通信系统 ASD (Automatic Sliding door)滑动门 OA (Office Automation )办公自动化系统 ISCS系统介绍 1.硬件构成 1)中心级ISCS硬件设备 2)车站级ISCS硬件设备 2.软件构成 1)数据接口层

地铁视频监控系统应用

以“地铁视频监控系统应用”为例 目前,我国各大城市的地铁交通车站、车辆段、停车场等都安装了视频监控系统,实现了对车站、车辆段、停车场情况的24小时安防监控,并发挥了重要作用。 从简约的角度来分析,地铁视频监控系统可看成由机房内和机房外两大部分所组成。机房外的核心设备为摄像机,主要分布在站台、站厅、自动扶梯、部分机房、变电所变压器室、10KV开关柜室、AFC的售票机和闸机、出入口、垂直电梯口及轿厢、出入段线、平交道口及轨行区、停车列检库内外、洗车库等重要公共区域。通过选择不同种类的摄像机和合理的工程布局,来完成整个车站的视频采集,做到无死角、全方位覆盖。机房内的核心设备为控制管理工作站、网关、流媒体服务器、网络录像机、存储设备、编解码器、电视墙、矩阵等,主要分布在车站、换乘站、停车场控制室、运营中心控制中心和车辆段备用控制中心等,通过这些设备来完成系统媒体流的处理、智能分析、控制信令的交互等功能。 就目前而言,整个系统需要具有如下功能:实时监看、云台控制、图像选择调用、录像存储、摄像范围控制、优先级设置、字符迭加、智能分析和远程系统管理控制,且能够被综合监控系统所集成等。 1云台控制及图像选择功能 系统要求可按优先级对云台进行控制;摄像机的图像可同时在车站、控制中心和临时/备用控制中心显示和控制,也可在综合监控系统中显示和控制。车站值班员可在本地选择调用本站任一摄像机的图像显示,控制中心的各调度员可远程选择调用本线任一摄像机的图像显示,既可用各种时序自动循环切换,也可由操作人员手动切换。 2字符迭加功能 系统能够将车站站名、摄像机编号及位置、摄像日期和时间、正在控制云台摄像机的操作员名字等信息实时迭加在图像中,且一并显示。 3视频分配功能 每路摄像机的视频图像能够被分成多路图像输出,以满足多个视频监控系统共享同一前端摄像机的要求。 4实时监视功能 系统在同一时刻可对同一路监控画面进行监控,也可以根据需要分别监控不同的监控画面,能够进行单画面及多画面分割显示,如固定监视、循环监视、多画面分割监视。 5数字录像存储功能 视频图像以数字方式实时不间断录像存储,具备解决自溢出、无终止循环存储的功能;具备任意控制点自动定时连续录像、手动录像、预制录像等多种录像模式功能,并可分别设置图像编码技术、清晰度、码流大小、帧率等;具备录像回放、检索功能,回放时不影响正常的录制存储,全分布式视频存储的查询、检索服务,全网存储视频的检索回放,且不影响正常视频的存储功能;多种录像数据呈现功能,如:录像数据提取、录像回放、回放处理功能、检索查询、图像抓拍打印;支持本地的直连存储(DAS)、存储局域网(SAN)和网络附件存储(NAS)等多种存储技术。 6优先级设置功能

北京地铁十号线某标工程概况及重点难点施工方案

第2章工程概况 2.1 工程范围 北京地铁十号线xx期工程(第三批)01标段,包括万柳站、起点~万柳站区间、万柳站~苏州街站区间和车辆出入段线区间、倒车线及其附属工程。万柳车站总建筑面积16196.08m2·,正线区间总长度1118.55m,车辆段出入线区间1166.6m,倒车线244.6m。 1、万柳站为明挖车站,包括主体结构、4个出入口和两个风亭; 2、起点~万柳站为明挖区间,由标准段和交叉渡线段组成; 3、万柳站~苏州街站区间以K0+540明暗挖分界点,西侧为明挖区间,东侧为暗挖区间,K0+805处设联络通道一个,联络通道里程处设竖井一座。 4、车辆出入线段分为左线和右线,左线全部为明挖结构,主要衔接万柳站与万柳车辆段。右线为明暗挖相结合,K0+416处为明暗挖分界处,主要衔接万柳车辆段与苏州街站方向。 5、车辆倒车线:长244.6单延米,明挖结构。 6、具体图见2-1全标段工程范围示意图。 隧道洞口 图2-1 全标段工程范围示意图 2.2 工程设计简介 2.2.1 万柳站 万柳站位于巴沟村北路以北,沿巴沟村北路呈东西方向设置,为明挖侧式车站,车站起讫里程为K0+269~K0+497,全长228m。有效站台中心里程为K0+379。车站结构采用双跨单柱结构(局部为双柱三跨结构)。地下一层为车站站厅层,站厅层-出露地面0.6~1.3m,地下二层为车站站台层,站台宽12m,有效长度为120m。车站有效站台中心线处轨顶距地面为11.808m。车站主体工程采用明挖顺作法施工,主体结构外包轮廓尺寸为:长229.6米,宽33.1米,深13.75米。万柳站车站平面图见图2-2。 1、主体结构 主体结构为现浇钢筋混凝土地下双层双跨箱形结构,断面结构尺寸31.5m(宽)×14.1m

北京地铁规划

北京地铁规划 昌平线二期全长10.6公里,将从南邵站向北延伸,依次经过昌平新区站、水库路站、昌平站、十三陵景区站,直达涧头西站,全部为地下线路,也真正进入到昌平城区。根据计划,昌平线二期2015年内开通,开通后从最南的西二旗站到最北的涧头西站,预计需要40分钟。 地铁14号线是北京市轨道交通线网中一条连接东北、西南方向的轨道交通“L”形骨干线,线路全长47.3公里,途经丰台、东城、朝阳等区。目前西段(张郭庄站-西局站)和东段(金台路站-善各庄站)均已建成通车运营。即将开通的中段(西局站-金台路站)长20.3公里,规划在沿途设置了20座车站。

点击进入:北京地铁16号线车站设计方案展示(点击查看大图) 一、功能定位 西郊线连接了颐和园、南水北调公园、玉东、北坞郊野公园、万安公墓、植物园、香山等景点,是一条服务于西郊风景区,以旅游、休闲、观光为目的的旅游专用轨道交通线路。 二、线路方案 西郊线西起于香山路停车场,沿香山路向东,下穿西五环路香泉环岛后,右转进入旱河路,沿旱河路向南经过万安东路后右转,沿万安东路向东穿过茶棚村后进入规划玉泉郊野公园,线路经过北坞村路前转向南并下穿北坞村路,而后沿北坞村南街向东,在规划金河路路口转向南,再沿规划金河路向南,同时线路穿过规划南水北调公园北端,在规划金河路终点处线路右转从南水北调公园东侧上跨四环路和京

密引水渠进入巴沟路,终点进入巴沟车辆段与地铁10号线巴沟站衔接换乘。 西郊线全长约9.4公里,新建7座车站和1座巴沟车辆段。 图上所载站名为命名预案。正式命名方案,将在市规划委就车站站名做专题公示、听取公众意见,并请示市政府同意后确定。 从北京市轨道交通建设管理有限公司获悉,作为一条房山新城与中心城区的连接线路,地铁燕房线主线计划于2015年底实现线路基本贯通,力争在2016年底开通,并将在阎村北站实现和房山线的同台换乘。 主要服务房山新城居民 对于住在房山新城的居民来说,进出城一直是件难事。地铁房山线只开到苏庄站,从苏庄站下车,必须搭乘公交车回到房山新城。因此,正在施工建设中的地铁燕房线,对于他们是个福音。 燕房线分为主线和支线,主线自燕化产业区南段起,沿燕房路、京周路、大件路接入阎村北站;支线起自周口店地区,沿兴房大街、京周路在饶乐府站接入主线。 燕房线主线长度约14.4公里,设8座高架车站,分别为阎村北站、大紫草坞站、阎村站、星城站、顾八路站、饶乐府站、老城区北站和燕化站,并在阎村北站和西延的房山线

地铁综合监控系统施工方法及总结

地铁综合监控系统施工方法及总结 1综合监控系统概况 综合监控系统的主要功能包括对机电设备的实时集中监控功能和各系统之间协调联动功能两大部分。一方面,通过综合监控系统, 可实现对电力设备、火灾报警信息及其设备、车站环控设备、区间环控设备、环境参数、屏蔽门设备、防淹门设备、电扶梯设备、照明设备、门禁设备、自动售检票设备、广播和闭路电视设备、乘客信息显示系统的播出信息和时钟信息等进行实时集中监视和控制的基本功能;另一方面,通过综合监控系统,还可实现晚间非运营情况下、日间正常运营情况下、紧急突发情况下和重要设备故障情况下各相关系统设备之间协调互动等高级功能。 2综合监控系统施工环节及方法 2.1前期现场调查 地铁施工工期紧张、专业较多。各专业为了保证施工工期,不可避免的存在交叉施工作业。对于我们设备安装专业来说,与土建总包单位的配合施工在整个施工过程中是比较重要的一个环节。我们设备安装专业与土建总包专业从工程的开始直至结束,一直贯穿其中。 在施工开展前期,我们设备安装专业需做好现场调查。施工现场调查的情况,对未来施工的顺利开展和工期的确保将起到决定性的因素。所以我们在前期现场调查的时候需要与各土建标段及相关设备安装单位建立有效的联系方式。 对于综合监控专业来说,我们前期现场调查的时候主要要注意以下几个问题: (1)土建总包专业二次结构墙砌筑及孔洞预留情况; (2)土建总包专业设备房间地面找平及墙面抹灰情况; (3)土建总包专业房间内装修50cm线或者1m线画线情况; (4)土建总包专业设备房间临时门窗安装情况; (5)土建总包专业吊装孔预留情况及封堵时间。 以上5项在现场调查期间,我们需要与土建总包单位的相关负责人了解清楚。建立现场情况调查表,逐项与相关人员核实并做记录。并及时沟通更新。确保一手资料的准确性。 2.2基础底座的制作及固定 2.2.1基础底座的制作 (1)准备工作 综合监控设备房间属于弱电设备间,为防止静电对弱电设备产生危害,房间内会安装防静电地板。在土建总包单位施工期间,每个站的土建总包单位的装修层的高度均有差距。所以我们综合监控设备的底座的高度也是不同的。在制作基

地铁监控系统方案【最新】

地铁监控系统方案 适用范围:地铁监控系统方案,铁路监控系统方案 某轨道交通线总长23km ,全线共设22 个地下车站、1 座车辆段、 2 所主变电站、 1 幢控制中心大楼(OCC) ,安保控制管理系统在各车站、控制指挥中心及车辆段设置主、分控制中心,以对轨道交通设备、管理用房和通道进行监控。 系统采用了先进的计算机、通信、网络、自控等技术,为通道和出入口的管理提供智能化手段,从而达到保障地铁内人员的正常出入、维护秩序、防止入侵等目的,同时还可针对工作地点分散的地铁员工施行综合管理,提高地铁整体运营管理水平。 系统分为中央和车站两个管理级,以及现场控制三层网络架构。根据地铁车站运营安全的需要,在各车站前端安装视频监控终端,进行监控的部位包括:地铁隧道、车站控制室、站长室、通信设备室、信号设备室、公共无线引入室、车票分类/ 编码室、交接班室、环控电控室、防灾报警设备室、配电室、消防泵房、值班室、库房、男/ 女更衣室、降压/ 牵引变电所、蓄电池室、环控机房、电梯机房、屏蔽门管理室、AFC 收费区、残疾人进出口等。

系统特别要求设计 安保监控系统的所有设备包括计算机和显示器,应在地铁电磁场和静电干扰的环境中不出现任何画面跳动和扰动; 安保监控系统的所有设备应具有较强的抗电磁干扰能力,并满足国家相关的标准和规范要求; 设备可抵抗无线电频率为150KHZ-27MHZ 中的接触性干扰,并满足国家相关的标准和规范要求。 系统的硬件、软件设计应充分考虑系统的可*性、可维护性、可扩展性、通用性和先进性,并具有故障诊断、在线修改、离线编辑等功能,同时系统设计应遵循模块化原则。 系统应开放协议,开放数据格式及定义。本系统与其它各专业的通信接口,采用国际通用的接口方式及开放性协议。安保监控系统的备份应该具备多层次、异地等方式。 系统抗干扰设计 地铁内部的电磁干扰是安防系统需主要考虑的干扰问题,对于

北京地铁10号线二期简介

北京地铁10号线二期简介 地铁10号线二期将于12月28日启动土建工程,预计2013年9月30日竣工。届时,将与已通车的一期工程组成本市第二条地铁环线,连接城市东南部、西北部最为密集的居住区,有效缓解三环路交通压力。

地铁10号线二期工程全长32公里,起点劲松站,终点巴沟站,中间设车站23座,其中换乘站12座。根据10号线二期初步规划,23座车站包括:潘家园站、十里河站、分钟寺站、成寿寺站、宋家庄站、石榴庄站、大红门站、角门东站、角门西站、草桥站、樊家村站、孟家村站、前泥洼站、西局站、六里桥站、马官营站、莲花桥站、公主坟站、西钓鱼台站、慈寿寺站、车道沟站、长春桥站、火器营站。 中铁十六局集团中标北京地铁十号线二期11标工程 2008年10月中旬,中铁十六局集团中标“北京地铁十号线二期11标工程”。 北京地铁十号线二期11标段全长约4.6km,包括两座车站(马官营、莲花桥站)四个区间(西局~六里桥、六里桥~马官营、马官营~莲花桥、莲花桥~公主坟区间),工程位于海淀区、丰台区。其中:西局~六里桥、六里桥~马官营为盾构法施工隧道,马官营和莲花桥站主体均采用盖挖法施工,马官营~莲花桥区间为盾构法和浅埋暗挖法隧道,莲花桥~公主坟区间浅埋暗挖法隧道。项目总投资为81716万元,开工日期为2008年12月28日,完工日期为2013年9月30日。 1、西局~六里桥区间:该区间左、右线里程分别为K43+674.160~K45+056.479(长1382.319m)、K43+674.160~K44+956.000(长1281.840m),区间设2个联络通道,采用盾构法施工,从六里桥南端头始发,到达西局站北端调头,向六里桥方向推进。 2、六里桥~马官营区间:该区间里程为K45+242.879~K46+35.97,线路双线长度为793.091m,设联络通道一个。区间出六里桥站后即下穿京石高速公路,之后沿南北向莲怡园东路方向敷设。莲怡园东路道路红线宽30m,东侧为八一电影制片厂和六里桥北里小区,均为6层住宅楼;西侧是风荷曲苑小区和莲香园小区,临街为18~24层住宅楼,区间结构距离建筑物较近。 3、马官营站:车站位于吴家村与莲怡园东路交叉路口南侧,沿莲怡园东路南北向布置,主体总长度163m,标准段总宽度20.9m,基坑深度约22.5m,覆土厚度约3.5m,有效站台中心里程为K46+107.020,共设3个出入口、2组风亭。围护结构采用钻孔灌注桩+内支撑,主体结构采用钢筋混凝土箱型结构,结构外侧设全包防水层,与钻孔桩一起组成复合墙体系。车站两端区间均为盾构区间,南北两端盾构井均为调头井。 车站周边两条路均已实施规划,其中吴家村道路红线宽40m,莲怡园东路红线宽30m.周边建筑物以住宅及商业为主,东西两侧距离现状建筑物较近,南端盾构井距西侧18层住宅楼仅5.5m.车站主体中部距西侧24层住宅楼为8.0m.路面地下管线较多,施工前需对管线进行改移处理。本站主体结构施工结合两侧建筑物保护方案,采取盖挖法施工,附属结构均采取明挖法施工。 4、马官营~莲花桥区间:该区间里程为K46+197.37~K47+486.198,长度1288.828m.在右线里程K47+241处设盾构始发接收井一座,其中施工期间兼作矿山法隧道施工竖井,永久使用兼联络通道,并在右线里程K46+805处设置联络通道一个。本区间采用一台盾构机从始发井始发,向马官营站掘进,到马官营站后调头,最后在区间盾构井吊出。 5、莲花桥站:车站位于西三环中路莲花立交桥桥区内,主体位于西三环主路下,成南北向布置。主体总长度146.3m,标准段总宽度20.7m,站台宽度12m,底板埋深约18m,顶板覆土平均厚度约3.5m,为岛式站台车站。车站主体基坑围护采用钻孔灌注桩+钢支撑支护结构型式,主体结构为地下两层三跨的矩形框架结构。为了压缩车站长度,且充分利用路西侧绿地,车站布置采用设备用房外挂方案。车站共设2个风道、5个出入口及1个安全出入口。 车站主体结构采用盖挖法施工,分幅施做车站顶板结构;出入口通道及风道结构跨路段采用暗挖法施工,其余附属结构采用明挖法施工。 6、莲花桥~公主坟区间:该区间起讫里程为K47+632.498~K48+466.873,线路双线长度为834.375m,

北京地铁终极规划图,看完以后我崩溃了

北京地铁终极规划图,看完以后我崩溃了北京地铁终极规划图,看完以后我崩溃了 1号线(一线) 线路标识色:正红色 北京地铁1号线北京地铁1号线,又称一线,全长30.44千米,设53#站(101)、52#站(102)、苹果园站(103)、古城站(104)、八角游乐园站(105)、八宝山站(106)、玉泉路站(107)、五棵松站(108)、万寿路站(109)、公主坟站(110)、军事博物馆站(111)、木樨地站(112)、南礼士路站(113)、复兴门站(114)、西单站(115)、天安门西站(116)、天安门东站(117)、王府井站(118)、东单站(119)、建国门站(120)、永安里站(121)、国贸站(122)、大望路站(123)、四惠站(124)、四惠东站(125)共25座车站。(52#、53#站不运营)。地铁1号线和地铁八通线顺利贯通后,这条轨道线路成为世界上最长的城市铁道。 1号线未开放车站 黑石头站(54#站)、高井站(53#站,101)、福寿岭站(52#站,102)作为地铁1号线一期工程就已建成的车站,自建成日起至今尚未对公众开放。 福寿岭站(地铁技校站)编号为52#,102。其中102为地铁系统的编号,52#是军用铁路系统编号(一说地铁修建时

期的旧编号)。由于正式名称未对公众公布,也有人将这站称为地铁技校站。位于苹果园站西北方向福寿岭村,与地铁技校临接。本站作为地铁技校通勤车的停靠站,每个工作日早晚各有一班通勤车停靠。车站构造与古城站和苹果园站基本相同,目前地面出入口仅有一个尚可使用,其他三个入口中有两个被水泥和各种杂物封死,另外一个被从内部锁住。站内墙壁留下了很多地铁技校学生的涂鸦。入口处虽固定着非工作人员严禁入内的警示牌,但除学生外,时常有以城市冒险为目的的组织或个人进入,目前尚未有因该行为违法而被处罚的实例。 高井站(北京军区站)编号为53#,101。由于该站的正式名称尚未公布,因此也有人将此车站臆称为北京军区站。本站坐落于西山中,一说已属于北京军区的管辖区内。由于进入的方法复杂并且较为危险,目前仅能从几张照片来了解站内设施及构造。该站与客运站的构造完全不同。站台比较狭窄,站内墙壁上涂抹白灰,顶部较低矮,照明设施也较为简陋。 黑石头站编号为54#。在地铁系统中没有编号,因此也被认为不包含在北京的地铁系统之内。本站为一地上车站,位于北京西山中的黑石头村附近,因此被大多数人称为黑石头站。 1号线现有换乘车站:

【交通运输】城市轨道交通综合监控系统

一、填空题(共27空,每空1分) 1.地铁和轻轨的运营管理可分为3部分:列车运行、车站站务、设备运转。 2.集成系统的3个基本特性是:开放系统、应用需求和接口。 3.BAS系统设备总体而言包括了3类设备:车站空调通风系统、隧道通风和其他系统及其机电设备。 4.车站BAS系统除了要具备火灾工况的防灾联动控制系统功能之外,同时它具备对控制范围内的的其他设备的联动控制,如电源控制、导向控制、和屏蔽门的控制等。 5.BAS是一个集成系统,集成系统的一个特点就是它处理各种形式的接口,如FAS接口、低压专业、主控系统。 6.火灾报警系统一般由火灾报警触发器件、火灾报警控制装置、火灾报警装置以及火灾联动控制装置组成。 7.车站级FAS的工作模式有监视模式、报警模式、消防联动模式及防灾通信模式等。 8.车站级监控系统主要实现对车站系统和设备的监控和联动控制。 9.自动化监控系统按照信息的实时响应性要求,可分为实时数据库和事务数据库管理系统两大类。 10.地铁防灾报警系统的功能分为中央级和车站级。 11.在BAS系统中,车站级监控系统位于车站,以车站监控工作站、PLC控制器为基础,具体包括车站监控局域网、打印机、后被操作盘等。 12.设备运转管理以机电设备管理为主,主要是供电系统和地下车站中的通风和供电空调系统。

13.完整的变电所供电系统应当包括保护测控装置、网络层、管理层三大部分。 二、判断题(共13题,每题1分) 1.国内地铁第一次采用综合自动化监控系统的是北京地铁1期工程。(×) 2.ATP是自动防护系统通过固定闭塞或移动闭塞技术实现列车的自动保护,控制方式不同于一般工业自动控制。(√) 3.地铁信号系统属于安全系统。(√) 4.地铁自动化集成系统多一电力SCDA系统为核心。(×) 5.在BAS中,模式控制由OCC实现,模式的判断,命令的发出及正确的模式编号的获得成为实现模式的关键所在。(√) 6.在BAS中,实时数据处理和控制主要由各PLC控制器完成,PLC是车站BAS 系统的核心。(√) 7.火灾报警控制器是火灾报警系统的心脏,是系统运行的指挥中心。(√) 8.深圳地铁1期工程中在OCC设置了EMCS、FAS、SCADA三个独立的总监控功能。(√) 9.在深圳地铁1期工程中EMCS+SCADA+FAS系统在中心是一个完全集成的综合系统共属相同的中央服务器。(√) 10.在城轨交通中,完成接口的开发并实现成功,这是集成系统构建成功的关键。(√) 11.(×) 12.在FAS的车站级功能主要有监视、报警、控制以及其他系统的联动等。(√) 13.城市轨道交通自动化系统是一个地理上分散的DCS系统。(×) 补充:轨道自动化集成系统多以电力SCADA系统为核心。(√)

北京地铁10号线一期(含奥运支线)

北京地铁10号线一期(含奥运支线) 北京地铁 10号线一期 工程系段由海 淀区的万柳站 向东苏州街、 黄庄、科南路、 知春路、学院 路、花园东路、 八达岭高速、 熊猫环岛、安 定路、北土城 东路、芍药居、 太阳宫、三元 桥、亮马河、 农展馆、工体 北路、呼家楼、光华路、国贸、双井至劲松站共设22座车站,全部为地下车站,一座车辆段(万柳车辆段)占地面积17.0公顷,一期工程线路全长为24.685km,其中与其他线立交换乘站7座,黄庄站与4号线的黄庄站十字形换乘,知春路与13号线的知春路站为丁字形换乘站经地下通道换乘,惠新西里南口站与5号线惠新西里南口站为十字形换乘站。芍药居站与13号线芍药居站为L字形换乘站经地下通道换乘,三元桥站与机场线三元桥站换乘为平行形通道换乘,国贸站与1号线国贸站换乘为L字形地下通道换乘。熊猫环岛站与奥运支线熊猫环岛站丁字形换乘,奥运支线由熊猫环岛、奥体中心、奥林匹克公园、森林公园,共4座车站,线路全长4.5km。 地铁十号线一期是2003年12月28日开工,计划2008年6月30日竣工通车运营。总投资138亿元,平均每公里造价55904.4万元人民币。奥运支线,投资21亿,平均每公里造价46666.67万元人民币。 城建院是工程的总体设计单位,并负责设计了全线的:线路、轨道、行车组织与管理,供电、客户服务(PIS)、自动售检票(AFC)、安全门、电扶梯、综合监控、勘探、测量,还有13座(10号线9个、奥运支线4座)车站的结构、建筑,动力照明、通风空调、给排水与消防、环控(BAS)、自动报警(FAS)、奥运支线4座车站的精装修设计等专业设计。

北京地铁奥运支线工程 根据2008年第二十九届奥运会申办报告对国际奥委会的承诺,在2008年奥 运会之前,完成300公里的轨道交通线网建设,建成一条直达奥运会中心区的地 铁专线,奥运支线就是为落实上述承诺修建的奥运专用地铁线路。地铁奥运支线 通过地铁十号线与整个北京地铁线网连接,承担了奥林匹克中心区奥运会举办期 间大量观众的疏散任务,疏散客流量达每小时2.88万人次,对于顺利举办第29 届奥运会具有重要意义。 地铁奥运支线利用的是北京市规划轨道交通线网中的8号线中的一部分, 南端起点为熊猫环岛,沿北中轴路中间绿化带和奥林匹克公园中轴线向北,穿过 北四环 路、成Array府路、 大屯路、 辛店村 路后, 终点设 在规划 森林公 园南门。 线路全 长 4.528km,全部为地下线。全线设4座车站,全部为地下站,分别是熊猫环岛站、 奥体中心站、奥运公园站和森林公园站。 为保证奥运期间乘客的安全集散,为节约能源,降低运营费用,经市政府专 门批准,奥运支线车站将安装站台屏蔽门,车站空调系统相应变更为屏蔽门空调 系统。奥运支线的控制中心近期与地铁十号线合建,远期并入地铁八号线。 本工程投资总额27243.6万元。地铁奥运支线采用了与以往北京地铁其他 建设项目不同的BT融资方式实施,2005年6月28日开工建设,2008年6月1 日建成通车。 城建院是该工程的总体设计单位,同时承担了全部土建工点和除通信信号 系统之外的全部设备系统得设计任务。 设计单位:北京城建设计研究总院 项目负责人:曹宗豪 设计时间:2005年--2008年

地铁视频监控解决方案

地铁视频监控解决方案 随着城市交通的发展,日常生活节奏的加快,城市流动人口的增加,在地铁轨道沿线建立视频监控系统,对车站各个关键点以及车厢等场所实现实时视频监控,并同时能为地铁公安、城市公安系统提供公安视频监控功能已是大势所趋,势在必行。 中兴地铁视频监控系统利用通信传输网为基础,构建专业、统一、共享、可靠、安全和高度可扩展的数字化平台,涵盖了地铁各站、停车站、车辆段,并预留系统扩充能力,具有良好的可扩展性。该方案可为车站内的各业务部门提高安全生产能力、提高工作效率、防范事故隐患起到良好作用,实现“面对面、零距离”指挥和交流效果。 中兴地铁视频监控解决方案针对的主要监控对象为车站场所的各个关键点:如出站口、售票厅、候车区域、检票区域、站台、广场等旅客活动场所、重要通道等人流量密集区重点安全防范场所等进行实时视频监控。闭路电视监视系统是保证轨道交通行车组织、保证运输安全的重要设备,系统为控制中心调度员、车站值班员、列车司机等提供有关列车运行、防灾救灾、客流情况及社会治安等方面的视觉信息,系统同时为防灾调度指挥抢险提供指挥辅助工具。 系统架构 系统由前端视频和告警信号的采集、处理,车站监控中心,总监控中心三层架构组成。由临时控制中心或控制中心调度员行车监视、防灾监视,车站值班员监视和司机上、下车监视两大部分构成,组成一个三级(中心、车站、司机)监视、两级控制(总监控中心、车站监控中心)的视频监控网络。

地铁视频监控解决方案组网图 总监控中心:设置中心管理单元、存储管理单元、数据库管理单元、媒体转发单元、接入管理单元、多媒体交换单元、磁盘阵列等设备,实现控制中心对全线视频资源的调看、控制、管理等功能。 车站监控中心:设置摄像机、前端视频处理设备、视频分配器、数字网络实时存储设备、监控终端等。视频分配器负责将前端视频信号分为两路,一路接入多媒体接入单元进行编码传输至控制中心,提供车站监控中心监视与控制。另一路视频流经专用通信系统传输网络送至派出所及轨警分局,然后经多媒体交换单元解码后送至大屏幕电视墙。 在监控现场,在站台、站厅及自动扶梯、出入口、售票处、票务室、检票口等处安装摄像机,采集现场模拟视频信号,在多媒体接入单元进行编码压缩,转换为数字信号,存储在多媒体接入单元的硬盘上,同时通过监控系统承载网,监控信息传输至车站及总监控中心。

北京地铁十号线二期公主坟站下穿既有车站施工方案研究

北京地铁十号线二期公主坟站下穿既有车站施工方案研究 摘要:随着城市地下轨道交通及市政管线等建设,新建线路下穿既有线路愈发常见。本文依托北京地铁十号线二期公主坟站下穿既有一号线车站工程,从施工角度,探讨大断面暗挖隧道“零距离”下穿既有车站施工中,根据施工现场动态完善方案,有效控制既有站沉降的相关技术措施。 关键词:暗挖隧道、下穿、既有车站 1、工程概况 1.1新建站简介 新建的10号线二期公主坟车站,位于复兴路与西三环中路交汇的新兴桥桥区绿地内,采用“分离岛”站台形式与既有1号线十字交叉换乘。 车站全长193.65m,为两端双层、中间单层车站。其中中间下穿既有1号线段长26.1m,结构净宽11.75m,高6.32m,顶板覆土约12.5m,为单层双跨平顶直墙矩形结构,采用“CRD+千斤顶”暗挖法施工。 1.2既有站简介 既有站为钢筋混凝土矩形框架结构,长169.69m、宽20.3m、高7.95m;底板厚0.8m、侧墙厚1m,顶板厚1.3m。自投入运营已近40年,在下穿施工前,由业主委托有资质的第三方对既有线结构现状进行全面的调查评估,根据评估结论,业主组织各方据以制定保证既有线运营安全的施工技术措施。 1.3新建站与既有站位置关系 新建站的车站主体单层段为两个分离式双跨矩形断面,单个矩形断面的开挖尺寸为宽×高=14.5m×9.32m,两矩形断面之间净距49.2m,采取十号线顶板紧贴一号线底板的“零距离”刚性接触下穿既有站。下穿横断面如图1.1新建站与既有站位置关系横断面图。 新建站单层段下穿施工影响范围内存在既有1号线车站四条变形缝,左线左侧距变形缝1.271m,右线右侧距变形缝2.409m。

北京地铁17号线01标(施工测量方案)

北京地铁17号线01标施工测量方案 中铁十六局集团有限公司 北京地铁17号线01标项目经理部 二〇一六年二月

目录 一、编制依据 _______________________________________________________________________ 1 二、工程概况 _______________________________________________________________________ 1 2.1、未来科技城南区站_________________________________________________________ 1 2.2、未来科技城北区站_________________________________________________________ 2 2.3、天未区间盾构井~未来科技城南区站区间 __________________________________ 2 2.4、未来科技城南区站~未来科技城北区站区间 ________________________________ 2 2.5、未来科技城北区站~终点区间_____________________________________________ 3 三、施工测量仪器及程序 ____________________________________________________________ 3 3.1施工测量仪器_______________________________________________________________ 4 3.2施工测量程序_______________________________________________________________ 4 四、控制测量 _______________________________________________________________________ 5 4.1控制测量要求_______________________________________________________________ 5 4.2控制测量原则_______________________________________________________________ 6 4.3地上控制测量_______________________________________________________________ 6 4.4地下控制测量_______________________________________________________________ 7 4.5盾构区间控制测量 __________________________________________________________ 9 4.6井上井下联系测量 __________________________________________________________ 9 4.7井上井下高程传递测量____________________________________________________ 10 4.8趋近导线和趋近水准测量__________________________________________________ 11五.施工测量 _____________________________________________________________________ 12

关于地铁7号线采用A型车6辆编组的

关于地铁7号线采用A型车6辆编组的 必要性及可行性研究报告编制提纲 第1章研究背景 1.1 问题的提出 (根据北京地铁2号线目前的运营状况以及环线在设计阶段客流预测的不确定性、与之相关的放射线、大环9号线的建设时序的不确定性均会对7号线客流的发生量带来不确定性,目前成都地铁1号线一期工程运营现状及对将来运营线路的状况预判,提出研究7号线采用A6的必要性及可行性。) 1.2 需求分析 (客流的不确定性分析、环线的运营特点分析等等) 1.3 改A6的必要性分析 (从需求分析中归纳出改A6的必要性) 第2章7号线采用A型车主要技术问题的清理和应对方案 (7号线改A车主要的技术问题在于线路条件、预留节点工程的改造条件(含车站建设、区间)、车辆段方案调整(含另择段址的可能性分析)、外电引入问题(主所数量的确定、容量是否满足要求)等等。) 2.1线路方案 (以A6拉通的方案情况、是否存在问题的分析) 2.2车站方案 (以A6拉通方案的技术标准,已经实施节点工程的改造方案及代价分析)

2.3区间工程方案 (以A6拉通方案的技术标准,已经实施预留工程的改造方案及代价分析) 2.4车辆段方案的研究 (大体有三个方案:1、仍在北郊与3号线共址,尽量按资源共享最大化合设,增加7号线大、架修功能,但该方案会影响3号线实施进度;2、仍在北郊与3号线共址,在不影响3号线实施进度前提下7号线部分检修功能独立设置;3、7号线检修功能完全独立设置,考虑另外选择方案。) 2.5牵引供电方案的研究 (分析改A6后的外电引入容量是否满足、是否需要增设主所以及牵引变电所的分布方案。) 第3章主要的建设成本调整分析、运营指标调整分析 (对引起建设成本和运营成本增加的专业分析。比如:建筑面积增加百分比?车辆购置费增加多少?车辆段几个方案的增加情况?可以是定性分析或得出增加的百分比值。) 第4章研究结论和建议

城市地铁视频监控联网技术系统

发布时间:2009-3-10 目前城市地铁站视频监控一般分为两级监控;在地铁站端要求监视所有本站图像,另外在监控中心要求可以监视下属各地铁站的情况。考虑到资金投入的问题,在中心端,一般不要求同时看到所有地铁站的所有图像;而是采取两种方式监视:一种是同时监视各地铁站的某几路图像,另外一种是要求可同时看到某一个地铁站的所有图像或大部分图像。这就需要考虑从各地铁站到监控中心的视频传输问题。 从各地铁站到监控中心的视频传输一般有两种方案。 第一种是使用数字视频编解码器,通过SDH提供的E1信道完成视频传输; 第二种是采用光纤方式,独立组成城铁视频监控联网系统完成传输。若采用第一种方式,需要占用大量SDH资源,增大了通信系统的压力。在第二种方式中,如过采用传统点对点方式,则要占用很多的光纤资源。随着现代光纤通信技术和数字视频技术的飞速发展,在监控领域内,实时数字视频的光纤传输也已经被越来越多的人所接收。城铁系统光纤拓扑结构一般呈链状或环网结构,建议采用,系统远端设备对模拟图像进行压缩编码、数字化并通过复用器复接到高速信道,通过电/光转换将信号发送到光纤通道,组成链网或环网;在局端进行反向复用、解码,输出模拟图像,图像质量可达到DVD效果。我们以下面的案例为例,详细介绍如何采用VOX-基于光纤的数字视频传输平台解决城铁视频监控联网传输问题。 现状及用户要求 某城市地铁站联网监控项目,共具有16个地铁站,每个地铁站上传6路图像,共96路图像。 全网共设1个监控中心,在监控中心需要设置6台监视器,同时观看

16个站96图像中的任意6路。同时另设3个独立的操作席,各配1台监视器观看任意1路图像。 设计原则及解决方案 本设计方案着眼于整个系统的先进性、可靠性、灵活性和符合需方远期规划的原则设计,综合考虑系统的可扩展性,业务拓展功能及系统升级功能。 根据现有状况及要求,提出采用北京蛙视通信有限公司的光纤数字音视频传输平台-VOX系统。VOX系统远端设备对模拟图像进行压缩编码、数字化并通过复用器复接到高速信道,通过电/光转换将信号发送到光纤通道,可组成链网或环网;在局端进行反向复用、解码,输出模拟图像,图像质量可达到DVD效果。 VOX系统介绍 VOX系统采用光纤作为传输介质,内置光传输模块,VOX系统摒弃了传统视频光端机点对点的传输模式,采用了电信级的光纤通信系统中数字中继的技术,信号逐级再生,与本地信号进行交叉复用,信号可在任何一点上下,非常灵活。通过时隙配置可以实现图像的全网交叉,使用极为方便。 VOX采用模块化的结构——————包含机箱、光传输板、业务板(视频压缩板、视频解压缩板、数据板、E1版、以太网网桥、以太网接口板)等模块。每个监控点可根据需要及数量选择相关的模块,一般在监控点配置一台VOX设备,需要机箱一个、光传输板一块、业务板若干。在监控中心需VOX机箱一个、光传输板一块、业务板若干。 VOX系统可以实现音视频双向传输和多点信息共享的功能。比如在监控中心插入一块视频压缩板,分中心或地铁站插入一块解压缩板,通过时隙配置即可实现音视频的反向传输,即简单的会议电视功能。 VOX系统可以通过以太网与上级监控联网。VOX系统支持在中心端VOX设备上插入一块10/100M以太网接口板,用于上传视频信号,并且与本地信号互不干扰。上级监控中心可以通过计算机上的解压软件观看图

相关文档
最新文档