数字图像处理大作业.c

数字图像处理大作业.c
数字图像处理大作业.c

西安邮电大学

数字图像处理大作业

学生姓名:

专业名称:

班级:

图像增强

一.引言

图像作为一种有效的信息载体,是人类获取和交换信息的主要来源。人类感知的外界信息80%以上是通过视觉得到的。因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。

视觉是人类最重要的感知手段,图像又是视觉的基础。早期图像处理的目的是改善图像质晕,它以人为对象,以改善人的视觉效果为目的。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片进行图像处理,如:几何校正、灰度变换、去除噪声,并考虑了太阳位和月球环境的影响,由计算机成功地绘出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,获得月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术探测研究中,数字图像处理技术都发挥巨大的作用[1]

数字图像处理是利用计算机对图像进行去除噪声、增强、复原、分割、提取特征等相关理论、方法和技术的总称。因为通常图像处理是用计算机和实时硬件实现的,因此也称之为计算机图像处理。一般而言,数字图像处理的主要内容包括图像获取、图像复原、图像增强、图像分割、图像分析、图像重建、图像压缩编码等等。20世纪20年代,图像处理首次应用于改善伦敦和纽约之间海底电缆发送的图片质量。直到20世纪50年代数字计算机发展到一定水平后,数字图像处理才真正引起人们的兴趣。

二.国内外发展及现状

从20世纪70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理技术向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少的重要的研究成果。其中代表性的成果是70年代末MIT 的Marr提出的视觉计算理沦,这个理论成为计算机视觉领域其后十多年的主导思想[2]。

20世纪80年代末期,人们开始将其应用于地理信息系统,研究海图的自

动读入、自动生成方法。数字图像处理技术的应用领域不断拓展。

数字图像处理技术的大发展是从20世纪90年代初开始的。自1986年以来,小波理论和变换方法迅速发展,它克服r 傅里叶分析不能用于局部分析等方面的不足之处,被认为是调和分析半个世纪以来工作之结晶。Ma11at 于1988年有效地将小波分析应用于图像分解和重构。小波分析被认为是信号,图像分析在数学方法上的重大突破。随后数字图像处理技术迅猛发展,到目前为止,图像处理在图像通讯、办公自动化系统、地理信息系统、医疗设备、卫星照片传输及分析和工业自动化领域的应用越来越多。

进入21世纪,随着计算机技术的迅猛发展和相关理论的不断完善, 图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。如对x 射线图片、CT 影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题;对不同时间拍摄的同一地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的工作量。图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用[3]。

三 .传统图像增强的基本方法

1 基本的灰度变换

实践证明,灰度变换技术是一种简便而有效的提高图像对比度的方法。灰度变换也叫点运算,它不改变像素的位置,只改变像素的灰度。设输入图像为),(y x f ,输出图像为),(y x g ,则灰度变换的数学表达式可表示为:

)],([),(y x f T y x g (式3.1) 这里T 为灰度变换的具体映射关系。

经常出现这样的情况,图像的灰度范围],[b a 没有充分利用显示装置所允许的最大灰度范围max][min,从而导致图像的对比度太低,使一些细节不易被观察到。比如:摄影过程中如果曝光过度,就会出现这样的缺陷。解决上述问题的最简单方法是进行灰度的线性变换,其数学表达式如下:

min ]),([min max )],([),(+---==a y x f a b y x f T y x g (式3.2) 对灰度做这样线性变换以后,把原始图像),(y x f 的灰度范围],[b a 强行扩展为显示装置所允许的最大灰度范围max][min,,从而提高了整幅图像的对比度,原来观察不到的一些图像细节可能更加突出了,图3.1给出了这种线性灰度变换关系:

图3.1灰度范围的线性变换

如果在图像处理过程中,需要突出图像中某些灰度范围内的图像的细节,同时又允许适当损失另外灰度范围内的图像处理细节,可以采用线性灰度变换的另一种形式,即分段线性变换。经过这种变换以后,可以使所关心的图像细节的灰度范围得以扩展,增强其对比度;同时又使的所不关心的图像细节所处的灰度范围得以压缩,降低其对比度。值得注意,这种分段线性变换,变换前后整幅图像总的灰度范围

不变的。三段线性变换的数学表达式可写成:

),(y x g =??????-+??-+??232312121),(),(),(f k g y x f k f k g y x f k y x f k ?????≤≤≤≤≤≤)),(()),(()),(0(2211M f y x f f f y x f f f y x f (式3.3)

式中 111f g k =,)()(12122f f g g k --=,)()(223f f g g k M M --=

在实际的处理过程中,如果图像上灰度范围的两端区域上有噪声,比如感光

胶片上有划伤和黑色感光颗粒,则可以用这种变换把灰度范围的两端区域压缩,

使人眼视觉对噪声的感受不明显,而对有用细节所占据的灰度区域给予线性扩展,提高这部分的对比度。

如果图像上绝大部分的像素的灰度级集中在],[b a 范围内,比较少的像素的灰度级超出此范围,则可用以下变换增强原图像上的],[b a 范围的对比度:

),(y x g =???????><≤≤+-?--)),(max()

),(min()),((min

)),((min max M f y x f a y x f b y x f a a y x f a b (式3.4)

图3.2表示了这种变换关系。值得注意,扩展原图像灰度范围],[b a 是以完全损失灰度小于a 和灰度大于b 的图像节为代价的。这种变换与分段线性变换实际上都是非线性变换。实际上,可能利用一些数学函数进行灰度变换,如平方、对数、指数等但这种变换必须满足以下条件,即:

如果 max ),(min ≤≤y x f ,则需有 max ),(min ≤≤y x g ,也就是说,灰度变换前后的灰度范围必须在显示装置所允许的最大灰度范围之内。下面介绍以下常用的几种变换。

(1) 图像反转:对图像适用于求反是将原图灰度值反转,简单来说就是把黑的变百,白的变黑。嵌入于图像暗色区域的白色或者灰色细节,特别当黑色面积占主导地位时,进行图像反转是比较理想的。

(2)对数变换:使窄带低灰度输入图像值映射为宽带输出值,可以利用这种变换来扩展被压缩的高值图像中的暗像素,相对的是反对数变换的调整值;对数函数有它重要的特征,就是它很大程度上压缩了图像像素值的动态范围;

(3)幂次变换:幂次曲线中γ的部分值把输入窄带暗值映射到宽带输出值,相反,输入高值时也成立。

(2) 对比度增强:增强图像比度(Contrast stretching)实际上是增强原图各部分之间的反差。对比度增强分为线性和非线性对比度增强两种,线性是指将对比度较差的图像灰度线性扩展,常能显著改善图像的质量。当用某些非线性函数如对数、指数函数作为映射函数时,可实现图像灰度的非线性变换。对比度增强是图像增强中最普遍的增强方法。当图像成像不足或过度曝光,图像记录设备

范围太窄等,都会产生对比不足的问题,使图像的细节分辨不清。为此需对每一像素的灰度级进行变换,扩大图像灰度的范围,达到图像增强目的。

2 直方图处理

设图像的灰度级范围为max][min,,

r 为此灰度范围内的任一灰度级,)(r p 为这幅图像灰度级为r 的像素出现的频数,可以看出,)(r p 是r 的函数,该函数的图形称为这幅图像的直方图。一般横坐标表示灰度级,纵坐标表示具有该灰度级的像素的频数。数字图像直方图显然是有一系列竖线条组成的图形,竖线条的高度代表了该灰度级在此幅图像出现的频数(或相对频数或频率),如下图3.2所示:

图3.2 数字图像方图

为讨论方便,把灰度级r 归一化,即

)10(10代表白代表黑,==≤≤r r r ,假定对原始图像灰度级r 做以下灰度变换:)(r T S = 为使这种灰度变换具有实际意义,应满足如下条件:

(1)在10≤≤r 区间内,)(r T 为单值单调增加;

(2)在10≤≤r ,对应有1)(0≤≤r T 。

这里条件(1)使变换后的灰度值保持从黑到白的次序,条件(2)保证变换后的像素灰度级仍在允许的范围内。由S 到r 的反变换可用下式表示:

)(1S T r -= )10(≤≤S 这里)(1S T -对于变量S 也应满足条件(1)和

(2)。图3.3表示了满足条件(1)和(2)的变换)(r T S =。

图3.3具有实际意义的灰度变换

接下来简单介绍以下常见的两种基于直方图灰度变换:

(1)直方图均衡化:是一种借助于直方图变换实现灰度映射从而达到图像增强目的的方法。直方图表示数字图像中每一灰度级与其出现的频数(具有该灰度级的像素数目)间的统计关系。直方图能给出图像整体分布描述,如图像的灰度范围、灰度级的大致分布情况等。把原图像的直方图变换为各灰度值频率固定的直方图称为直方图均衡化。

(2)直方图规定化:也是一种借助于直方图变换来增强图像方法,它通过将原始的直方图转换为期望得到的直方图,从而达到预先确定的增强效果。也就是使处理后的图像具有指定的直方图。

3 中值滤波

传统图像增强算法中,空域滤波是直接在图像空间借助摸板卷积来实现的增强方法。根据不同的模板设计,空域滤波即可以实现对图像平滑功能。在空域滤波时即可线性的组合模板运算的结果,也可非线性的利用模板运算的结果。中值滤波的思想是对一个窗口内的所有像素灰度值进行排序,取排序结果的中间值作为原窗口中心点像素的灰度值。这种滤波也就是平滑操作,对干扰噪声的效果较好。中值滤波的关键在于选择合适的窗口大小和形状。

4 小波变换图像增强

小波变换(Wavelate Transform)是由法国科学家Molret在进行地震数据分析时提出的,在1986年Mallat将计算机视觉领域的多尺度分析思想引入到小波函数构造中,形成了统一的小波函数构造理论。小波变换在图像分解与重建过程中,按需要改变有关小波参数,并且它的多分辨率分析具有良好的空间域和频率域局

部化特性,对高频采用逐渐精细的时域或空域步长,可以聚焦到分析对象的任意细节,由此可增强图像中感兴趣的部分,国内外已有部分学者开始对此方法进行研究,到目前为止小波变化在图像压缩领域应用效果最好。

四结论

总体来说,以上方法都有各自的使用范围,传统图像增强方法在原理上容易理解,计算也简便。图像增强是数字图像理中的重要研究内容,不仅在于它的广泛使用性,更在于它于我们的日常生活息息相关,一方面体现在医疗仪器上;另一方面在于我们通过传感器获取的大多数图像并不如我们所想象的那么理想例如噪声太大,图像模糊,背景黑或者太亮等等,都需要我们对图像进行增强处理。

参考文献

[1] 冯安, 王希常. MATLAB在数字图像增强中的应用. 信息技术, 2007, 23(01):

14-16.

[2] 夏德深, 傅德胜. 计算机图像处理及应用. 南京:东南大学出版社, 2004.

[3] 王斌. MATLAB实现数字图像增强处理. 佳木斯大学学报, 2005, 23(1):

31-34.

实验部分

用Matlab编程实现以下题目中的三个。

(1)亮图像、暗图像、和低对比度图像的直方图均衡化。

(2)用中值滤波滤除图像中的椒盐噪声。

(3)用空域拉普拉斯模板实现图像锐化。

(4)用频域高斯低通、高斯高通滤波器分别对图像进行平滑和锐化。

实验一

一、实验题目

用中值滤波滤除图像中的椒盐噪声。

二.实验原理

椒盐噪声是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起;中值滤波是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值.是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列;因为椒盐噪声是幅值近似相等但随机分布在不同的位置上,图像中有干净点也有污染点。而中值滤波是选择适当的点来代替污染点的值,所以去除椒盐噪声最常用的算法是中值滤波。

三、源程序

A=imread('D:\pp.png');// 读取图片文件中的数据

B=rgb2gray(A);// 将真彩色图像转换为灰度图像

figure,subplot(131),imshow(B);

title('原图');

C=imnoise(B,'salt & pepper',0.03);

subplot(132),imshow(C);

title('加入椒盐噪声图');

D=medfilt2(C);

subplot(133),imshow(D);

title('经过中值滤波');

四、实验结果

原图像通过加椒盐噪声,图像出现了黑白杂点,因为盐=白色,椒=黑色,前者是高灰度噪声,后者属于低灰度噪声。一般两种噪声同时出现,呈现在图像上就是黑白杂点。而后在通过中值滤波后,图像与原图像相差无二,但是清晰度没有以前的好。总的来说中值滤波法对消除椒盐噪声非常有效。

五、程序流程图

实验二

一、实验题目

用空域拉普拉斯模板实现图像锐化。

二.实验原理

拉式算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子,亦称为边界提取算子。通常图像和对他实施拉式算子后的结果组合后产生一个锐化图像。拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。而且也是最简单的各向同性微分算子,具有旋转不变性。

如果在图像中一个较暗的区域中出现了一个亮点,那么用拉普拉斯运算就会使这个亮点变得更亮。因为图像中的边缘就是那些灰度发生跳变的区域,所以拉普拉斯锐化模板在边缘检测中很有用。一般增强技术对于陡峭的边缘和缓慢变化的边缘很难确定其边缘线的位置。但此算子却可用二次微分正峰和负峰之间的过零点来确定,对孤立点或端点更为敏感,因此特别适用于以突出图像中的孤立点、孤立线或线端点为目的的场合。同梯度算子一样,拉普拉斯算子也会增强图像中的噪声,有时用拉普拉斯算子进行边缘检测时,可将图像先进行平滑处理。

空域滤波是在图像控件通过领域操作完成的,实际实现方法基本都是利用模板进行卷积,模板可看成是一幅尺寸为n*n的小图像,为了使模板有唯一确定的中心,n一般为基数。主要步骤如下:

(1)将模板在图中漫游,并将模板中心与图中某个像素位置重合;

(2)将模板上的系数与模板下对应的像素相乘;

(3)将所有的乘积相加;

(4)将和(模板的输出响应)赋给图中对应的模板中心位置像素。

三、源程序

A=imread('D:\pp.png');

B=rgb2gray(A);

figure,subplot(131),imshow(B);

title('原图');

C=[0 1 0,1 -4 1,0 1 0];

D=filter2(C,B);

D=uint8(D);

subplot(132),imshow(D);

title('拉普拉斯锐化图');

E=B-D;

subplot(133),imshow(E);

title('叠加结果');

四、实验结果

由实验图像可知:由图可以看出,将原始图像通过拉普拉斯变换后增强了图像中灰度突变处的对比度,使图像中小的细节部分得到增强并保留了图像的背景色调,使图像的细节比原始图像更加清晰。

拉普拉斯算子获得的边界是比较细致的边界。反应的边界信息包括了许多的细节信息,但是所反映的边界不是太清晰

五、程序流程图

实验三

一、实验题目

用频域高斯低通、高斯高通滤波器分别对图像进行平滑和锐化。。

二.实验原理

高斯高通滤波器传递函数为:20

),(2/),(2D e v u H v u D -=式中D0为截止频率距远点距离。与低通滤波器的情况一样,可认为巴特沃斯高通型滤波器比IHPF 更平滑。

二维理想高通滤波器的传递函数为{0

),(,00),(,1),(D v u D D v u D v u H ≤>=D0是从频率矩形中点

测得的截止频率长度,它将以D0为半径的圆周内的所有频率置零,而毫不衰减地通过圆周外的任何频率。但其物理上是不可实现的。

巴特沃斯高通滤波器的传递函数为20

),(2/1),(2D e v u H v u D --= 高通滤波器能够用高斯型低通滤波器的差构成。这些不同的滤波器有更多的参数,因此能够对滤波器的形状进行更多的控制。

三、源程序

A=imread('D:\pp.png');

B=rgb2gray(A);

figure,subplot(131),imshow(B);

title('原图');

B=double(B);

B=fftshift(fft2(B));

E=B;

[M,N]=size(B);

k1=round(M/2);

k2=round(N/2);

D=50;

for i=1:1:M

for j=1:1:N

juli=sqrt((i-k1)^2+(j-k2)^2);

H(i,j)=exp((-1/2)*juli^2*(1/D^2));

K(i,j)=1-exp((-1/2)*juli^2*(1/D^2));

B(i,j)=H(i,j)*B(i,j);

E(i,j)=K(i,j)*E(i,j);

end

end

B=ifft2(ifftshift(B));

E=ifft2(ifftshift(E));

B=uint8(real(B));

E=uint8(real(E));

subplot(132),imshow(B);

title('高斯低通滤波器');

subplot(133),imshow(E);

title('高斯高通滤波器');

四、实验结果

对于理想的低通滤波器,当截止频率D0较低的时候,图像严重模糊,被滤去的高频部分的能量包含了图像的主要的边缘信息,同时振铃效应也非常的明显。随着截止频率的增加,模糊地程度减少,这是因为保留的边缘信息增加了。巴特沃思滤波器和高斯滤波器滤去的频率和通过的频率之间没有明显的不连续性,图像的模糊程度降低,而且也没有振铃效应,这是由于在低频和高频之间,滤波器平滑过渡的缘故;理想的高通滤波器把半径为D0的圆内的所有频率完全衰减掉,却使圆外的所有的频率无损的通过。图像整体变得模糊,边缘和细节比较清晰。巴特沃思高通滤波器和高斯高通滤波器处理后的图像中只显现边缘,边缘的强度不同,而灰度平滑的区域都变暗了。

五、程序流程图

设计心得

通过本次实验让我对图像处理有了更深的理解,同时学会了使用matlab软件,在此之前也只是听说这个软件有多么强大,但是从未想过去学习如何使用它。这次实验给予动力去了解它,通过查阅资料,知道了该软件的操作步骤和编写简单程序,并知道了如何结合数字图像处理知识使用matlab软件对数字图像进行处,感觉收获挺大的。

数字图像处理大作业

大作业指导书 题目:数字图像处理 院(系):物联网工程学院 专业: 计算机 班级:计算机1401-1406 指导老师: 学号: 姓名: 设计时间: 2016-2017学年 1学期

摘要 (3) 一、简介 (3) 二、斑点数据模型 .参数估计与解释 (4) 三、水平集框架 (5) 1.能量泛函映射 (5) 2.水平集传播模型 (6) 3.随机评估方法 (7) 四、实验结果 (8) 五、总结 (11)

基于水平集方法和G0模型的SAR图像分割 Abstract(摘要) 这篇文章提出了一种分割SAR图像的方法,探索利用SAR数据中的统计特性将图像分区域。我们假设为SAR图像分割分配参数,并与水平集模型相结合。分布属于G分布中的一种,处于数据建模的目的,它们已经成功的被用于振幅SAR图像中不同区域的建模。这种统计数据模型是驱动能量泛函执行区域映射的基础,被引用到水平集传播数值方案中,将SAR 图像分为均匀、异构和极其异构区域。此外,我们引入了一个基于随机距离和模型的评估过程,用于量化我们方法的鲁棒性和准确性。实验结果表明,我们的算法对合成和真实SAR 数据都具有准确性。+ 简介 1、Induction(简介) 合成孔径雷达系统是一种成像装置,采用相干照明比如激光和超声波,并会受到斑点噪声的影响。在SAR图像处理过程中,返回的是斑点噪声和雷达切面建模在一起的结果。这个积性模型(文献[1])因包含大量的真实SAR数据,并且在获取过程中斑点噪声被建模为固有的一部分而被广泛应用。因此,SAR图像应用区域边界和目标检测变得更加困难,可能需要斑点去除。因此,斑点去除是必需的,有效的方法可以在文献[2][3][4][5][6][7][8][9][10]中找到。 对于SAR图像分割,水平集方法构成一类基于哈密顿-雅克比公式的重要算法。水平集方法允许有效的分割标准公式,从文献[12]中讨论的传播函数项可以得到。经典方法有着昂贵的计算成本,但现在的水平集的实现配置了有趣的低成本的替换。 水平集方法的一个重要方面,比如传播模型,可以用来设计SAR图像的分割算法。这个传播函数能够依据伽马和伽马平方根法则将斑点统计进行整合,函数已经被广泛地应用于SAR图像中的均质区域分割。Ayed等基于伽马分布任意建模,设计方案将SAR图像分成多个均质区域。尽管多区分割问题已经解决,该方案人需要一定数量的区域作为输入。Shuai 和Sun在文献[16]中提出对这个方法进行了改进,他们使用了一个有效的传播前收敛判断。Marques等引入了一个类似于含有斑点噪声图像中目标检测的框架,将基于本地区域的斑点噪声统计融合进去。这些作者采用伽马平方根对均质区域进行建模并用一个自适应窗口方案检测本地的同质性。 最近,新的SAR数据模型比如K,G,显示出了优势。经典法则受限于均质区域特性的描述,而最近的法则展现出了在数据建模中更有吸引力的特性。法则允许同构、异构和高度异构幅度SAR数据的建模。这个分布族提供了一组参数,可以描述SAR图像中的不同区域。分布的参数信息,可以被广泛的应用于设计SAR图像处理和分类技术。在文献[21]中,Mejail 等人介绍了SAR监督数据分类器,它基于其参数映射并实现了有趣的结果。Gambini等人在文献[22]中使用这个分布的一个参数来量化SAR数据的粗糙度,通过活动轮廓和B样条差值来检测边缘。然而,这种技术需要一个初始分割步骤,并受拓扑限制。一般来说,活动轮廓方法不能解决不连续区域分割的问题。 本文介绍了一种新的水平集算法来实现SAR图像中均质、异构和极其异构区域分割的目标。由于分布能够描述SAR图像的同质性和规模,我们的方法采用分布对斑点数据进行建模。这些分布参数基于每一个域点进行估计,通过这些信息,我们可以在水平集分割框架内得到一个能量泛函来驱动向前传播(front propagation)。该泛函以最大化不同区域平均能量间的差异作为结束。最终水平集阶段以能量带作为依据得到SAR图像的分割结果。

数字图像处理课后参考答案

数字图像处理 第一章 1、1解释术语 (2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。 (3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。 1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。 1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。 1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。 1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。 1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。 1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。 第二章 2、1解释下列术语 (18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。 (19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。 (20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。 (21)像素的8邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的8个像素称为该像素的8邻域像素,她们的坐标分别为(x-1,y-1)(x-1,y)(x-1,y+1)(x,y-1)(x,y+1)(x+1,y-1)(x+1,y)(x+1,y+1)。 (28)欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D e(p,q)=[(x-u)2+(y-v)2]1/2 (29)街区距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的街区距离定义为:D4(p,q)=|x-u|+|y-v|。 (30)棋盘距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D8(p,q)=max(|x-u|,|y-v|)。 (33)调色板:就是指在16色或者256色显示系统中,将图像中出现最频繁的16种或者256种颜色组成的一个颜色表,并将她们分别编号为0~15或0~255,这样就使每一个4位或者8位的颜色编号或者颜色表中的24位颜色值相对应。这种4位或者8位的颜色编号称为颜色的索引号,由颜色索引号及对应的24位颜色值组成的表称为颜色查找表,即调色板。 2、7对图像进行描述的数据信息一般应至少包括: (1)图像的大小,也即图像的宽与高 (2)表示每个像素需要的位数,当其值为1时说明就是黑白图像,当其值为4时说明就是16色或16灰度级图像,当其值为8时说明就是256色或256灰度级图像,当其值为24就是说明就是真彩色图像。 同时,根据每个像素的位数与调色板的信息,可进一步指出就是16色彩色图像还就是16灰度级图像;就是256色彩色图像还就是256灰度级图像。 (3)图像的调色板信息。 (4)图像的位图数据信息。 对图像信息的描述一般用某种格式的图像文件描述,比如BMP等。在用图像文件描述图像信息时,相应的要

数字图像处理 作业1汇总

数字图像处理 报告标题:01 报告编号: 课程编号: 学生姓名: 截止日期: 上交日期:

摘要 (1)编写函数计算灰度图像的均方误差(MSE)、信噪比(SNR)、峰值信噪比(PSNR)、平均绝对误差(MAE);(2)编写函数对灰度图像经行降采样,直接消除像素以及消除像素前进行简单平滑滤波;(3)编写函数对图像进行放大,分别使用像素直接复制和双线性插值的方法:(4)编写函数用题目给出的量化步骤Q去量化灰度图像,并给出相应的MSE和直方图;(5)编写函数对灰度图像执行直方图均衡化,显示均衡前后的直方图。同时,熟悉使用MATLAB,并且熟练操作对图像进行各种修改变换等。 KEY WORD :MATLAB MSE、PSNR 直方图量化

技术探讨 数字图像处理是基于Matlab来实现的,由于Matlab 独特的功能和对矩阵,图像,函数灵活的处理,因而用于图像的处理相当的方便。 task1 均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)。可以使用使用for循环语句,分别计算图像MSE/SNR/PSNR/MAE,具体的计算公式见附录代码,下面只附运算原理代码 均方误差(MSE): sum=sum+(a(i,j)-b(i,j))^2; MSE=sum/(M*N) 信噪比(SNR): sum2=sum2+a(i,j)^2; SNR=10*log10(sum2/MSE) 峰值信噪比(PSNR): sum=sum+(a(i,j)-b(i,j))^2; PSNR=10*log10(255^2/MSE) 平均绝对误差(MAE): sum=sum+a(i,j)+b(i,j); MAE=sum/(M*N) 在每次对同一个图像处理时它们的均方误差(MSE),信噪比(SNR),峰值信噪比(PSNR),平均绝对误差(MAE)都会有所不同,因为它是原图像与加噪后的图像比较,而电脑的每次操作都会对加噪过得图像有影响。 task3 按比例缩小灰度图像 (1)直接消除像素点: I1=g(1:m:end,1:m:end);I1 为缩小后的图像,g为原图。 (2)先平滑滤波再消除像素点: 滤波函数,g=imfilter(I,w,'corr','replicate'); task4 对图像的放大运用了pixel repetition法以及双线性插值法: 它有三种插值法:即最近邻插值(pixel repetition)、双线性插值、双三次插值(缩放倍数为0.5) ;缩放与放大由给定的参数来确定。 ;缩放与放大由给定的参数来确定。而缩小则同样适用I1=g(1:m:end,1:m:end); 而放大的代码为“J=imresize(I,m,'nearest');%使用pixel repetition法”和“J=imresize(I,m,'bilinear');%使用双线性插值法” 放大倍数更改m值即可 task4 对图像的量化,使用“J=histeq(I,x); ”,x为可变的量化步长 task5 灰度图像的量化和直方图均衡化直接调用函数。“J=histeq(I)”“imhist(I,64)”

数字图像处理大作业.doc

-------------精选文档 ----------------- 1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请 给出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。 解:步骤与思路: ○1.进行模糊处理,消除噪声 ○2.边缘检测,进行图像增强处理 ○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。 ○4.采用横向标号法,根据值为1 像素在标号中的相邻位置可以确定间距 I=imread('xz mjt.bmp'); I1=medfilt2(I);%对图像中值滤波 imshow(I1); [m,n]=size(I1); for i=1:m for j=1:n if(I1(i,j)<100)% 阈值为 100 I1(i,j)=255; else I1(i,j)=0;%进行二值化

-------------精选文档 ----------------- end end end figure; imshow(I1); Y1=zeros(1,25); y2=y1; c=y2; i=100; for j=1:1200 if (I1(i,j)==255&&I1(i,j+1)==0) Y1=j+1; end if (I1(i,j)==0&&I1(i,j+1)==255) Y2=j; end end for i=1:25 c=Y2(i)-Y1(i) end c%找出每两个条纹之间的距离

2.现有 8 个待编码的符号 m0,,m7, 它们的概率分别为 0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。 3.请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。

数字图像处理大作业

1、下图是一用于干涉原理进行测试的干涉场图像,要求判读条纹的间距,请给 出图像处理的方案并说明每一步的作用及其对其它处理步骤可能产生的影响。 解:步骤与思路: ○1.进行模糊处理,消除噪声 ○2.边缘检测,进行图像增强处理 ○3.二值化图像,再进行边缘检测,能够得到很清晰的边界。 ○4.采用横向标号法,根据值为1像素在标号中的相邻位置可以确定间距 I=imread('xz mjt.bmp'); I1=medfilt2(I); %对图像中值滤波 imshow(I1); [m,n]=size(I1); for i=1:m for j=1:n if(I1(i,j)<100) %阈值为100 I1(i,j)=255; else I1(i,j)=0; %进行二值化 end end end figure; imshow(I1);

Y1=zeros(1,25); y2=y1; c=y2; i=100; for j=1:1200 if (I1(i,j)==255&&I1(i,j+1)==0) Y1=j+1; end if (I1(i,j)==0&&I1(i,j+1)==255) Y2=j; end end for i=1:25 c=Y2(i)-Y1(i) end c %找出每两个条纹之间的距离

2. 现有8个待编码的符号m0,……,m7,它们的概率分别为0.11,0.02,0.08,0.04,0.39,0.05,0.06,0.25,利用哈夫曼编码求出这一组符号的编码并画出哈夫曼树。 3. 请以图像分割方法为主题,结合具体处理实例,采用期刊论文格式,撰写一篇小论文。

数字图像处理部分作业答案

3.数字化图像的数据量与哪些因素有关? 答:数字化前需要决定影像大小(行数M、列数N)和灰度级数G的取值。一般数字图像灰度级数G为2的整数幂。那么一幅大小为M*N,灰度级数为G的图像所需的存储空间M*N*g(bit),称为图像的数据量 6.什么是灰度直方图?它有哪些应用?从灰度直方图你能获得图像的哪些信息? 答:灰度直方图反映的是一幅图像中各灰度级像素出项的频率之间的关系。以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。 应用:通过变换图像的灰度直方图可以,使图像更清晰,达到图像增强的目的。 获得的信息:灰度范围,灰度级的分布,整幅图像的平均亮度。但不能反映图像像素的位置。 2. 写出将具有双峰直方图的两个峰分别从23和155移到16和255的图像线性变换。 答:将a=23,b=155 ;c=16,d=255代入公式: 得 1,二维傅里叶变换有哪些性质?二维傅里叶变换的可分离性有何意义? 周期性,线性,可分离性,比例性质,位移性质,对称性质,共轭对称性,差分,积分,卷积,能量。 意义:分离性表明:二维离散傅立叶变换和反变换可用两组一维离散傅立叶变换和反变换来完成。 8.何谓图像平滑?试述均值滤波的基本原理。 答:为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。 均值滤波是一种局部空间域处理的算法,就是对含有噪声的原始图像f(x,y)的每个像素点取一个领域S,计算S中所有像素的灰度级平均值,作为空间域平均处理后图像g(x,y)像素值。 9.何谓中值滤波?有何特点? 答:中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。 它对脉冲干扰及椒盐噪声的的图像却不太合适。抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多 6图像几何校正的一般包括哪两步?像素灰度内插有哪三种方法?各有何特点? 答:1)建立失真图像和标准图像的函数关系式,根据函数关系进行几何校正。 2)最近邻插值,双线性插值,三次卷积法 3)最近邻插值:这种插值方法运算量小,但频域特性不好。 3、若f(1,1)=4,f(1,2)=7,f(2,1)=5,f(2,2)=6,分别按最近邻元法、双线性插值法确定点(1.2,1.6)的灰度值。 最近邻元法:点(1.2,1.6)离(1,2)最近,所以其灰度值为7.双线性法:f(i+u,j+v)=(1-u)(1-v)f(i,j)+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1) 将i=1,j=1,u=0.2,v=0.6代入,求得:f(i+u,j+v)=5.76。四舍五入取整后,得该点其灰度值为6

《数字图像处理》习题解答

胡学龙编著 《数字图像处理(第 3 版)》思考题与习题参考答案 目录 第 1 章概

述 (1) 第 2 章图像处理基本知识 (4) 第 3 章图像的数字化与显示 (7) 第 4 章图像变换与二维数字滤波 (10) 第 5 章图像编码与压缩 (16) 第 6 章图像增强 (20) 第 7 章图像复原 (25) 第 8 章图像分割 (27) 第 9 章数学形态学及其应用 (31) 第 10 章彩色图像处理 (32)

第1章概述 连续图像和数字图像如何相互转换 答:数字图像将图像看成是许多大小相同、形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像 (连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字 化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅 度值(可能是灰度或色彩)整数化的过程称为量化。 采用数字图像处理有何优点 答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点: 1.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活性高。 2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。 3.数字图像处理技术适用面宽。 4.数字图像处理技术综合性强。 数字图像处理主要包括哪些研究内容 答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的 图像。 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。 答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可

数字图像处理大作业

大作业要求 1.数字图像处理中的图像增强、图像分割、数学形态学、图像编码这几个章节中,围绕你所感兴趣的题目写一篇综述。 2.要求: (1)在中国知网上下载5篇以上相关文章,结合上课所学内容,确定综述的内容。(2)文字3000字以上,包含 a. 课题背景和概述 b. 国内外研究现状 c. 技术应用(可以实现哪些功能,实 现的方法及结果 d. 结论 e. 学习体会 f.参考文献 (3)综述的排版: 正文层次格式如下: 1(空两格)×××××(居中,三号宋体,加粗,占4行) 1.1×××(左顶格,四号宋体,加粗,占 2.5行,不接排) 1.1.1×××(左顶格,小四号宋体,加粗,占2行,不接排) a.(左空两格,a.后空一格)×××(小4号宋体,加粗) (正文)×××××(小4 号宋体,接排)

(1)(左空两格,(1)后空一格)×××(小4号宋体,加粗) (正文)×××××(小4号宋体,接排) 1)(左空两格,1)后空一格)(小4号宋体,加粗) (正文)×××××(小4号宋体,接排) 正文中段落一律段前、段后0磅,行距为20磅,对齐方式:两端对齐。小4号字体。 论文中的图和表居中,并且有图题和表题。 例如: 图 1 主站工作过程(5号字体,加粗) 表1 不同总线速率下从站的延迟时间(5号字体,加粗) 速率(Kbit/s ) 9.6 19.2 93.75 187.5 500 1500 1200SDR minT (bit T ) 11 11 11 11 11 11 11 SDR maxT (bit T ) 60 60 60 60 100 150 800 参考文献按照下面形式给出: 参考文献 (居中,三号,宋体,加粗,占4行)

(完整版)数字图像处理大作业

数字图像处理 1.图像工程的三个层次是指哪三个层次?各个层次对应的输入、输出对象分别是什么? ①图像处理 特点:输入是图像,输出也是图像,即图像之间进行的变换。 ②图像分割 特点:输入是图像,输出是数据。 ③图像识别 特点:以客观世界为中心,借助知识、经验等来把握整个客观世界。“输入是数据,输出是理解。 2.常用的颜色模型有哪些(列举三种以上)?并分别说明颜色模型各分量代表的意义。 ①RGB(红、绿、蓝)模型 ②CMY(青、品红、黄)模型 ③HSI(色调、饱和度、亮度)模型 3.什么是图像的采样?什么是图像的量化? 1.采样 采样的实质就是要用多少点来描述一幅图像,采样结果质量的高低就是用前面所说的图像分辨率来衡量。简单来讲,对二维空间上连续的图像在水平和垂直方向上等间距地分割成矩形网状结构,所形成的微小方格称为像素点。一副图像就被采样成有限个像素点构成的集合。例如:一副640*480分辨率的图像,表示这幅图像是由640*480=307200个像素点组成。 2.量化 量化是指要使用多大范围的数值来表示图像采样之后的每一个点。量化的结果是图像能够容纳的颜色总数,它反映了采样的质量。 针对数字图像而言: 采样决定了图像的空间分辨率,换句话说,空间分辨率是图像中可分辨的最小细节。 量化决定了图像的灰度级,即指在灰度级别中可分辨的最小变化。 数字图像处理(第三次课)

调用图像格式转换函数实现彩色图像、灰度图像、二值图像、索引图像之间的转换。 图像的类型转换: 对于索引图像进行滤波时,必须把它转换为RGB图像,否则对图像的下标进行滤波,得到的结果是毫无意义的; 2.用MATLAB完成灰度图像直方图统计代码设计。

《数字图像处理》复习大作业及答案

2014年上学期《数字图像处理》复习大作业及参考答案 ===================================================== 一、选择题(共20题) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增 强。(B) A 图像整体偏暗 B 图像整体偏亮 C图像细节淹没在暗背景中D图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。(B ) A 平均灰度 B 图像对比度 C 图像整体亮度D图像细节 3、计算机显示器主要采用哪一种彩色模型( A ) A、RGB B、CMY或CMYK C、HSI D、HSV 4、采用模板[-1 1]T主要检测( A )方向的边缘。 A.水平 B.45? C.垂直 D.135? 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图像 7、彩色图像增强时, C 处理可以采用RGB彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以 便引入一些低频分量。这样的滤波器叫B。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器 10、图象与灰度直方图间的对应关系是 B __ A.一一对应 B.多对一 C.一对多 D.都不 11、下列算法中属于图象锐化处理的是:C A.低通滤波 B.加权平均法 C.高通滤 D. 中值滤波 12、一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:( A ) A、256K B、512K C、1M C、2M 13、噪声有以下某一种特性( D ) A、只含有高频分量 B、其频率总覆盖整个频谱 C、等宽的频率间隔内有相同的能量 D、总有一定的随机性 14. 利用直方图取单阈值方法进行图像分割时:(B) a.图像中应仅有一个目标 b.图像直方图应有两个峰 c.图像中目标和背景应一样大 d. 图像中目标灰度应比背景大 15. 在单变量变换增强中,最容易让人感到图像内容发生变化的是( C )

数字图像处理作业 1

数字图像处理作业 1 1.基本问题 a.什么是数字图像处理,英语全称是什么? 数字图像处理:对图像进行一些列的操作,以达到预期目的的技术,可分为模拟图像处理和数字图像处理两种方式。英文全称:Image Processing b.数字图像处理与什么领域的发展密切相关? 数字图像处理与数字计算机的发展,医学,遥感,通信,文档处理和工业自动化等许多领域的发展密切相关。 c.人类主要通过什么来感知获取信息的? 主要通过人的视觉、味觉、嗅觉、触觉、听觉以及激光、量子通信、现代计算机网络、卫星通信、遥感技术、数码摄影、摄像等来获取信息。 d.数字图像处理技术与哪些学科领域密切相关? 与数学、物理学、生理学、心理学、电子学、计算机科学等学科密切相关 e.数字图像处理在哪些领域得到广泛应用? 数字图像处理的应用越来越广泛,已渗透到工程、工业、医疗保健、航空航天、军事、科研、安全保卫等各个领域。 f.数字图像处理起源于什么年代? 20世纪20年代 g.现代大规模的图像处理需要具备哪些计算机能力? 需要具备图像处理、图像分析、图像理解计算机能力 h.根据人的视觉特点,图像可分为哪两种图像? 分为可见图像和不可见图像。 i.根据光的波段,图像可分为哪几种图像? 分为单波段、多波段和超波段图像。 j.图像数字与模拟图像的本质区别是什么? 区别: 模拟图像:空间坐标和明暗程度都是连续变化的、计算机无法直接处理。 数字图像:空间的坐标和灰度都不连续、用离散的数字表示,能被计算机处理。 2.通过互联网,查下数字图像处理有哪些应用?选一个应用范例即可。具体描绘如何通过数字图像处理技术来实现其应用。要有图像范例说明。 数字图像处理主要应用领域有:生物医学,遥感领域,工业方面,军事公安领域,通信领域,交通领域等。我就生物医学领域做一个简单介绍。 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理,医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。 医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性。下面是关于人体微血管显微图像的采集实例。

数字图像处理大作业要点

数字图像处理实验报告 学院:信息学院 专业:电科1004班 姓名: 学号: 辅导老师: 完成日期: 2013年6月29日 空域图像增强 实验要求:

(1)选择若干图像(两幅以上),完成直方图均衡化。 (2)选择若干图像(两幅以上),对图像文件分别进行均值滤波、中值滤波和拉 普拉斯锐化滤波操作。 (3)添加噪声,重复上述过程观察处理结果。 实验原理: (1)图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅 图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。处理的结果使图像更适应于人的视觉特性或机器的识别系统。图像增强主要可分为三类:频域图像增强方法、小波域图像增强方法、空域图像增强方法。 (2)空域图像增强主要包括:直方图均衡化、平滑滤波和锐化滤波等方法。 (3)直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。 这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。 这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。 (4)平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另 一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。 (5)均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板, 该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。再用模板中的全体像素的平均值来代替原来像素值。均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。 线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x,y)=1/m ∑f(x,y) m为该模板中包含当前像素在内的像素总个数。 (6)中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技 术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为2*2,3*3区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。 (7)拉式算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子, 亦称为边界提取算子。通常图像和对他实施拉式算子后的结果组合后产生一个锐化图像。拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。 拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。一个二维

西安交通大学大学数字图像处理大作业

数字图像处理

目录 作业一 (1) 一作业要求 (1) 二源代码 (1) 三运行结果 (3) 作业二 (5) 一作业要求 (5) 二算法描述 (5) 三源代码 (7) 四运行结果 (10)

作业一 一作业要求 在图像的空间域滤波操作中,会出现有部分掩膜矩阵在图像外面的情况,所以需要给图像先加入一个边界,执行完操作之后,再去掉这个边界,保证图像中所有的像素都参与矩阵运算。 二源代码 byte[,] filter(byte[,]f,float[,]mask) { int w = f.GetLength(0); int h = f.GetLength(1); byte[,] g = new byte[w,h]; int M = mask.GetLength(0)/2; int N = mask.GetLength(1)/2; for (int y=N;y255) return 255; if (v<0) return 0; return (byte)v;

} float[,] averagingMask(intM,int N) { float[,] mask = new float[2*M+1,2*N+1]; for (int m=-M;m<=M;m++) for (int n=-N;n<=N;n++) mask[M+m,N+n] = 1.0f/((2*M+1)*(2*N+1)); return mask; } byte[,] addboard(byte[,] f,intM,int N) { int w=f.GetLength(0); int h=f.GetLength(1); intgw=w+2*M; intgh=h+2*N; byte[,] g=new byte[gw,gh]; //add top board and bottom board for(inti=0;i

数字图像处理大作业

[HW5][24]SA11009045_张海滨 大作业 1、行模糊、锐化、和直方图均衡化。 程序: I=imread('E:\研一\数字图像处理\作业\HW5\DSC00003.JPG'); figure,imshow(I),title('原始图像'); I1=rgb2gray(I); I1=imresize(I1,0.5); figure,imshow(I1),title('灰度图像'); h=ones(5,5)/25; I2=imfilter(I1,h); figure,imshow(I2),title('模糊处理'); J=double(I1); h1=fspecial('laplacian'); I3=filter2(h1,J); figure,imshow(I3),title('锐化处理'); I4 = histeq(I1,256); figure,imhist(I1),title('原图像直方图'); figure,imshow(I4),title('均衡化处理'); figure,imhist(I4),title('均衡化后直方图'); 进行运算的结果为: 原始图像

此为进行处理的原始图像。进行图像灰度化并把图像的大小进行调整为原来的一半,得到图像: 对图像分别进行均值滤波器模糊、拉普拉斯算子锐化处理,得到的结果如下图:

方图如下所示。

2、边缘检测,程序: I=imread('F:\研一\数字图像处理\作业\HW5\DSC00003.JPG'); I1=rgb2gray(I); I1=imresize(I1,0.5); J=double(I1); H=[0 1 0;1 -4 1;0 1 0]; J=conv2(J,H,'same'); J=I1-J; subplot(1,2,1); imshow(I1),title('灰度图像'); subplot(1,2,2); imshow(J),title('Laplace算子边缘检测'); G1 = [-1 -2 -1;0 0 0;1 2 1]; G2 = G1'; Iedge=I1; I2x = filter2(G1,Iedge); I2y = filter2(G2,Iedge); I2=abs(I2x+I2y); I22 = mat2gray(I2);

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案 第一章和第二章作业:1.简述数字图像处理的研究内容。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 3.列举并简述常用表色系。 1.简述数字图像处理的研究内容? 答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面, 将这几个方面展开,具体有以下的研究方向: 1.图像数字化, 2.图像增强, 3.图像几何变换, 4.图像恢复, 5.图像重建, 6.图像隐藏, 7.图像变换, 8.图像编码, 9.图像识别与理解。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。 根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。 图像处理着重强调在图像之间进行的变换。比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。图像处理主要在图像的像素级上进行处理,处理的数据量非常大。图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。 图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。 第三章图像基本概念

数字图像处理大作业报告

数字图像处理 实验报告 实验选题:选题二 组员: 学号: 班级: 指导老师: 实验日期:2019年5月22日

一、实验目的及原理 1.识别出芯片的引脚 2.熟悉并掌握opencv的某些函数的功能和使用方法 原理:通过滤波、形态学操作得到二值图,再在二值图中设置条件识别引脚部分。 二、实现方案 对图片滤波、调节阈值做边缘检测过滤掉一部分图片中干扰元素;然后通过膨胀、腐蚀操作来减少引脚的空心部分;再通过findContours()函数找到引脚的边缘并得到轮廓的点集,设置特定的长宽比和矩形面积识别引脚部分。 三、实验结果

四、源码 #include #include #include"opencv2/highgui/highgui.hpp" #include"opencv2/imgproc/imgproc.hpp" using namespace std; using namespace cv; int main(int argv, char **argc) { //载入图片 Mat srtImag = imread("2.jpg"); Mat G_blur = srtImag.clone(); //降噪 blur(G_blur, G_blur, Size(5, 5)); //imshow("降噪", G_blur); //Canny边缘检测 Mat Canny_Imag = G_blur; Canny_Imag = Canny_Imag > 176; Canny(G_blur, Canny_Imag, 300, 50, 3); //imshow("边缘检测", Canny_Imag); //膨胀 Mat element = getStructuringElement(MORPH_RECT, Size(10, 10)); dilate(Canny_Imag, Canny_Imag, element); //imshow("膨胀", Canny_Imag); //腐蚀 Mat element_1 = getStructuringElement(MORPH_RECT, Size(11, 11)); erode(Canny_Imag, Canny_Imag, element_1); //imshow("腐蚀", Canny_Imag); //查找轮廓 vector>contours; vectorhierarchy; findContours(Canny_Imag, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); vector> contour_s(contours.size());//该数组共有contours.size()个轮廓的点集 vector Rec_s(contours.size());//逼近多边形的点集数组

数字图像处理习题解答

第二章 (2.1、2.2略) 2.4 图像逼真度就是描述被评价图像与标准图像的偏离程度。 图像的可懂度就是表示它能向人或机器提供信息的能力。 2.5 所以第一副图像中的目标人眼观察时会觉得更亮些。 第三章 3.1 解:(a )??+-= y x dxdy vy ux j y x f v u F ,)](2exp[),(),(π (b ) 由(a )的结果可得: 根据旋转不变性可得: (注:本题由不同方法得到的最终表达式可能有所不同,但通过变形可以互换) 3.2 证:作以下代换: ?? ?==θθ s i n c o s r y r x ,a r ≤≤0,πθ20≤≤ 利用Jacobi 变换式,有: 3.3 二维离散傅立叶变换对的矩阵表达式为 当4N =时 3.4 以3.3 题的DFT 矩阵表达式求下列数字图像的 DFT: 解:(1) 当N=4 时 (2) 3.5解: 3.6 解: 3.11 求下列离散图像信号的二维 DFT , DWT,DHT 解: (1) (2) 第四章 4.1阐述哈夫曼编码和香农编码方法的理论依据,并扼要证明之。 答:哈夫曼编码依据的是可变长度最佳编码定理:在变长编码中,对出现概率大的信息符号赋予短码字,而对出现概率小的信息符号赋予长码字。如果码字长度严格按照所对应符号出现概率大小逆序排列,则编码结果平均码字长度一定小于其它排列方式。 香农编码依据是:可变长度最佳编码的平均码字长度。 证明:变长最佳编码定理 课本88页,第1行到第12行 变长最佳编码的平均码字长度 课本88页,第14行到第22行 4.2设某一幅图像共有8个灰度级,各灰度级出现的概率分别为

相关文档
最新文档