晶体结构

晶体结构
晶体结构

晶体结构

知识要点:

1、分类(微粒、结合力)

2、物理性质(熔、沸点,导电性等)

3、结构:①微粒关系;②化学式;③原子环

4、计算(密度)

一、四种晶体结构、性质的比较

例1.关于晶体的下列说法正确的是()

A、在晶体中只要有阴离子就一定有阳离子

B、在晶体中只要有阳离子就一定有阴离子

C、原子晶体的熔点一定比金属晶体的高

D、分子晶体的熔点一定比金属晶体的低

[解析]只有认识四类晶体物理性质差异的本质原因才能对此题进行正确判断。在四类晶体中,金属晶体的结构及物理性质最特殊,应予重视。金属晶体中,构成晶体的微粒既有金属原子,又有金属阳离子,且二者不断转换,晶体中自由电子与金属离子间的电性作用形成了金属键。因此晶体中有阳离子,不一定有阴离子,如金属晶体。金属键强弱相差很大(主要由阳离子半径大小决定),因此金属晶体的熔、沸点、硬度等物理性质相差极大,它与其他类晶体相比很特殊,有的晶体熔沸点很低,甚至小于分子晶体如金属汞、碱金属等;有的金属熔沸点很高,甚至高于原子晶体如金属钨。

答案:A

二、物质熔沸点比较及规律

物质的熔沸点取决于晶体中微粒间的作用力大小。作用力越大,熔沸点越高。不同晶体中微粒间作用力不同,影响作用力的因素不同,所以比较物质熔沸点,首先要分清晶体类型。

对于不同种类晶体:一般情况下,微粒间作用力大小排序是共价键>离子键>范德华力,所以熔沸点高低排序是:原子晶体>离子晶体>分子晶体。

对于同类晶体:

离子晶体:微粒间作用力是离子键,影响离子键强弱的因素很多,主要是离子半径和离子电荷数。例如NaCl和KCl,因Na+半径小于K+半径,所以NaCl中离子键比KCl中离子键强,NaCl 的熔沸点高于KCl。

原子晶体:微粒间作用力是共价键,影响共价键强弱的因素是原子半径,原子半径越小、键长越短,键能越大,共价键越强,晶体熔沸点越高。例如比较原子晶体金刚石,碳化硅(SiC)和晶体硅的熔点。碳原子半径小于硅原子半径,所以键长长短顺序为:C—C < C—Si < Si—Si,共价键强弱顺序为C—C > C—Si > Si—Si。所以,熔点顺序是:金刚石>碳化硅>硅晶体。

分子晶体:微粒间作用力是范德华力,影响范德华力大小的因素很多,对于组成和结构相似的分子来说主要是分子量。例如比较分子晶体F2、Cl2、Br2、I2的熔点。因为它们是分子晶体,微粒间作用力是范德华力,又由于它们在组成和结构相似,所以分子量越大范德华力越大,熔点越高。熔点高低排序为:F2

综上所述,比较物质熔沸点时一定要先分清晶体类型,以免张冠李戴,因果错判。

对于分子晶体来说,范德华力(分子间力)影响其物理性质,共价键影响其化学性质。所以,对于分子晶体来说物理变化破坏范德华力(分子间力),化学变化破坏共价键。

例如,I2 的升华,破坏碘分子间作用力。I2的分解,破坏了碘分子内I—I共价键。对于离子晶体和原子晶体不管物理变化还是化学变化,都破坏了化学键。

例题分析:晶体类型物理性质

例2.描述下列各组物质的熔、沸点变化规律,并说明其原因。

A.CH3CH2CH3、CH3CH2CH2CH3、CH3CH2CH2CH2CH3(升高,分子量增大,分子间作用力增大。)

B.CH3CH2CH2CH2CH3、(CH3)2 CHCH2CH3、C(CH3)4(降低,支链多,分子间作用力减弱。)C.HCl、HBr、HI(升高,分子量增大,分子间作用力增大。)

D.NaF、MgF2、MgO(升高,离子间作用力增强。)

E.Na、Mg、Al (升高,金属阳离子与自由电子之间作用力增大。)

F.C、SiC、Si(降低,共价键键能逐渐减小。)

三、几种常见的晶体结构

(一)离子晶体

1、氯化钠晶体

NaCl晶体是一种简单立方结构——Na+和Cl-交替占据立方体的顶点而向空间延伸。在每个Na+周围最近的且距离相等的Cl—有6个(上、下、左、右、前、后),在每个Cl—周围最近的且距离相等Na+也有6个;在每个Na+周围最近的且距离相等的Na+有12个(同层4个,上层4个,下层4个),在每个Cl—周围最近的且距离相等的Cl—亦有12个。如下图所示:

2、氯化铯晶体

CsCl晶体是一种体心立方结构——每8个Cs+和8个Cl-各自构成立方体,在每个立方体的中心有一个异种离子(Cs+或Cl-)。在每个Cs+周围最近的且距离相等的Cl—有8个,在每个Cl—周围最近的且距离相等Cs+也有8个;在每个Cs+周围最近的且距离相等的Cs+有6个(上、下、左、右、前、后),在每个Cl—周围最近的且距离相等的Cl—亦有6个。如下图所示:

(二)原子晶体

1、金刚石晶体

金刚石晶体是一种立体的空间网状结构——每个C原子与另外4个相邻的C原子以共价键结合,构成一个正四面体结构单元,前者位于正四面体中心,后四者位于正四面体的四个顶点。晶体中所有C—C键长相等,键角相等(均为109°28′);晶体中最小碳环由6个C原子组成且六者不在同一平面内,形成立体的六元环状结构。晶体中每个C原子参与了4条C—C键的形成,而在每条键中的贡献只有一半,故原子个数与C—C键数之比为1∶(4×1/2)=1∶2。

2、二氧化硅晶体

每个Si原子与相邻的4个O原子以共价键相结合,前者在正四面体的中心,后四者在正四面体的四个顶点。如图:正四面体内Si—O键角为109°28′。每个正四面体占有一个完整的Si原子、四个“半O原子”,故晶体中Si原子与O原子个数比为1:(4×1/2)=1∶2。

二氧化硅晶体相当于金刚石晶体中的C原子换成Si原子,同时在每两个Si原子中心连线上的中间加上一个O原子。二氧化硅晶体中最小的封闭环上有12个原子(6个Si原子和6个O

原子)。

(三)混合型晶体——石墨晶体

石墨晶体是一种混合型晶体——层内存在共价键,层间以范德华力结合,兼具有原子晶体、金属晶体、分子晶体的特征和特性。在层内,每个C原子与3个C原子形成C—C键,构成平面正六边形,键长相等,键角相等(均为1200);在晶体中,每个C原子参与了3条C—C键的形成,而在每条键中的贡献只有一半,故每个正六边形平均只占有6×1/3=2个C原子,C原子个数与C—C键数之比为1∶(3×1/2)=2∶3。

(四)分子晶体

1、二氧化碳晶体——干冰

干冰晶体是一种立方面心结构——每8个CO2分子构成立方体且在6个面的中心又各有1

个CO2分子,如下图。在每个CO2周围等距离且最近的CO2有12个(同层4个、上层4个、下层4个)。

2、C60

C60是以60个碳原子作为顶点,组成的一个32面体。其中12个面是正五边形,20个面是正六边形。是一个像足球一样的多边形体,如图1与图3所示。在这样的分子中,每个碳原子与其它三个相邻的碳原子直接相连,等价地组成一个五元环和两个六元环。由于它具有这种特殊结构,因此现在更形象地称它为足球烯(footballene,soccerballene)。C60与金刚石、石墨互为同素异形体。C60分子间通过范德华力形成分子晶体,熔、沸点较低,硬度较小,易溶于苯、酒精等有机溶剂。C60本身有着无数优异的性质,它本身就是半导体,掺杂后可变成临界温度很高的超导体,由它所衍生出来的碳微管比相同直径的金属强度高100万倍。现实世界中的足球以其无尽的魅力倾倒了无数人,而小小的“足球烯”也正以另一种形式影响和改变着这个世界。

图1图2图3

和C60分子有关的“碗烯”(corranulene)分子,C20H10,具有一个由五个正六边形环绕的正五边形结构,如图2所示。它的分子构型像一个碗,很稳定。而足球烯分子的表面,就存在着这样的12个正五角形单元。

(五)金属晶体

金属原子结构的共同特征是:①最外层电子数较少,一般在4个以下;②原子半径较大。这种结构特点使其原子易失去价电子而变成金属阳离子,释放出的价电子在整个晶体中可以自由运动,被称为“自由电子”。它不再属于哪个或哪几个指定的金属离子,而是整块金属的“集体财富”,

它们在整个晶体内自由运动,所以有人描述金属内部的实际情况是“金属离子沉浸在自由电子的海洋中”,这种描述正是自由电子的特征决定的。金属阳离子与自由电子之间存在着较强的作用,因而使金属离子相互结合在一起,形成金属晶体。

金属晶体的结构也可看作是等径的小球层状紧密堆积。如下图所示:

例3、下列有关金属元素特征的叙述正确的是

A、金属元素的原子只有还原性,离子只有氧化性

B、金属元素在一般化合物中只显正价

C、金属元素在不同的化合物中的化合价均不同

D、金属元素的单质在常温下均为金属晶体

解析:A、对于变价金属中,较低价态的金属离子既有氧化性,又有还原性,如Fe2+。B、金属元素的原子只具有还原性,故在化合物中只显正价。C、金属元素有的有变价,有的无变价,如Na+。D、金属汞常温下为液体。故正确答案为选项B。

例4.现有甲、乙、丙三种晶体的晶胞:(甲中x处于体心,乙中a处于体心)可推知:甲晶体中x与y的个数比是,乙中a与b的个数比是,丙晶体的一个晶胞中有个C离子,有个d离子。

解析:求离子晶体的晶胞中阴阳离子个数比的方法:顶点微粒数×,棱心微粒数×,

面心微粒数×,体心微粒数×1,则:

甲中:x∶y=1∶(4×)=2∶1;乙中:a∶b=1∶(8×)=1∶1

丙中:C离子:12×+1=4个;d离子:8×+6×=4个

例5BGO是我国研制的一种闪烁晶体材料,曾用于诺贝尔奖获得者丁肇中的著名实验,它是锗酸铋的简称。若知:①在BGO中,锗处于其最高价态;②在BGO中,铋的价态与铋跟氯形成某种共价氯化物时所呈的价态相同,在此氯化物中铋具有最外层8电子稳定结构;③BGO 可看成由锗和铋两种元素的氧化物所形成的复杂氧化物,且在BGO晶体的化学式中,这两种氧化物所含氧的总质量相同。请填空:

⑴锗和铋的元素符号分别是和。

⑵BGO晶体的化学式是。

⑶BGO晶体中所含铋氧化物的化学式是。

解析本题为考查物质结构的综合试题。从化学键的高度认识化合价实质至关重要。⑴必须熟练掌握主族元素的名称和元素符号,越是不常见的元素,越要格外重视。⑵BGO晶体化学式的确定要从两个方面突破。一是Bi的价态,因为铋为变价金属元素;二是氧化锗与氧化铋

物质的量之比。由已知①确定为+4价;由已知②确定铋的氯化物为BiCl3,铋才满足最外层

8电子的稳定结构,氧化物与氯化物中铋的化合价相同,则晶体BGO中铋为+3价;由条件③中可知两种氧化物中含氧元素质量相同,应迅速转化为氧化物中氧原子数相同,由此可确定两种氧化物的物质的量之比,化学式可知。注意:含氧酸盐从组成上可看成是酸性氧化物与碱性氧化物所形成,注意只是从化合价上可以这样看,与其结构真实性无关,不要误解,更不能由此将含氧酸盐看成混合物。

解答⑴Ge、Bi⑵2Bi2O3·3GeO2或Bi4(GeO4)3⑶Bi2O3

参考练习

1.下列晶体熔化时化学键没有被破坏的是()

(A)NaCl(B)冰(C)白磷(D)SiO2

2.下列各组物质的熔点皆由高到低排列,其原因是键能渐小排列的一组是()

(A)MgO、NaF、HF(B) HI、HBr、HCl

(C)Al 、Na、干冰(D) 金刚石、碳化硅、晶体硅

3.下列叙述正确的是

A 同主族金属的原子半径越大,熔点越高

B 稀有气体原子序数越大,沸点越高

C 分子间作用力越弱,分子晶体的熔点越低

D 同周期元素的原子半径越小,越容易失去电子

4.下列物质中属于分子晶体的是

A 氯化铵

B 白磷

C 铝

D 二氧化硅

5.已知氢化锂(LiH)属于离子晶体,LiH跟水反应可以放出氢气,下列叙述正确的是

A LiH的水溶液显碱性

B LiH是一种强氧化剂

C LiH中的氢离子可以被还原成氢气

D LiH中氢离子与锂离子的核外电子排布相同

6.下列各组物质中,按熔点由低到高排列正确的是

A O2I2Hg

B CO2KCl SiO2

C Na K Rb

D SiC NaCl SO2

7.下列关于晶体的叙述不正确的是

A在NaCl晶体中每个Na+(或Cl-)周围紧邻有6个Cl-(或Na+)

B在CsCl晶体中每个Cs+周围紧邻有8个Cl-,而和每个Cs+周围紧邻也有8个Cs+

C金刚石网状结构中共价键形成的碳原子环,最小的环上有6个碳原子

D石墨晶体中每一层都由无数正六边形组成,平均每个正六边形占有2个碳原子

8.根据离子晶体的晶胞(晶体中最小重复单位),求阴、阳离子个数比的方法是:

(1)处于顶点的离子,同时为8个晶胞共有,每个离子有1/8属于晶胞;(2)处于棱上的离子,同时为4个晶胞共有,每个离子有1/4属于晶胞;(3)处于面上的离子,同时为2个晶胞共有,每个离子有1/2属于晶胞。现有甲、乙、丙、丁四种晶体,离子排列方式如图所示,其中化学式不正确的是

9、2001年报道硼和镁形成的化合物刷新了金属化合物超导温度的最高记录。下左图示意的是该化合物的晶体结构单元:镁原子间形成正六棱柱,且棱柱的上下底面还各有一个镁原子;6个硼原子位于棱柱内。则该化合物的化学式可表示为

A.MgB B.MgB2C.Mg2B D.Mg3B2

10.已知药剂乌洛托品是一种有机生物碱,该共价化合物含C、H、N三种元素;每个分子内有四个N原子,且四个N原子排列成内空的四面体(如白磷分子);每2个N原子间都镶嵌着一个C原子,又知其分子内没有C-C单键和C=C不饱和键,则

⑴该化合物的分子式_______;

⑵已知其分子结构如上右图所示,请在图上用“○”表示C原子,用“●” 表示N原子。该化

合物分子中共有________个六元环。

11.如图:晶体硼的基本结构单元都是由硼原子组成的正二十面体的原子晶体,其中含有20个等边三角形和一定数目的顶角,每个顶角上各有1个原子,试观察右边图形,回答:

这个基本结构单元由________个硼原子组成,键角是____,

共含有____个B-B键。

12、石墨的片层结构由正六边形组成(如右图所示),平均每个六边形所含碳原子数为______个,所含边数为_______条,右图是石墨平面层状结构的一个片断,图中这七个六边形共拥有________个碳原子,______条边。

13、下图为高温超导领域中的一种化合物——钙钛矿(氧化物)晶体结构中具有代表性的最小重复单元。

(1)在该物质的晶体中,每个钛离子周围与它最接近且距离相等的钛离子共有______个。

(2)该晶体结构中,氧、钛、钙的离子个数比是____________。

14.中学教学上图示了NaCl晶体结构,它向三维空间延伸得到完美晶体。NiO(氧化镍)晶体的结构与NaCl相同,Ni2+与最邻近O2-的核间距离为a×10-8cm,计算NiO晶体的密度(已知NiO的摩尔质量为74.7g/mol)

15.在某种NiO晶体中就存在如右图所示的缺陷:一个Ni2+空缺,另有两个Ni2+被两个Ni3+所取代。其结果晶体仍呈电中性,但化合物中Ni和O的比值却发生了变化。某氧化镍样品组成为Ni0.97O,试计算该晶体中

Ni3+与Ni2+的离子数之比。

参考练习答案

1、B、C

2、D

3、B、C

4、B

5、A、D

6、B

7、B

8、A9、B10、C6H12N4;411、12;60°;30

12、2;3;14;2113、6;3∶1∶1

14、

15、Ni3+∶Ni2+ == 6∶91

晶体结构分析的历史发展

晶体结构分析的历史发展 (一)X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线。自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能。根据狭缝的衍射实验,索末菲(Som-merfeld)教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成。当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿伏伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1—2埃。1912年,劳厄(Laue)是索末菲手下的一个讲师,他对光的干涉现象很感兴趣。刚巧厄瓦耳(P.Ewald)正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体可以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具。刚从伦琴那里取得博士学位的弗里德里克(W.Friedrich)和尼平(P.Knipping)亦在索末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验。他们使用了伦琴提供的X射线管和范克罗斯(Von.Groth)提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得到了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程。劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子(W.H.Bragg,W.L.Bragg)、莫塞莱(Moseley)、达尔文(Darwin)完成了主要的工作,通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W·L·布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线。他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式,W·L·布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射线的晶体衍射效应也在1914年获得了诺贝尔物理奖。 (二)X射线晶体结构分析促进了化学发展 W·L·布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的Na+离子和Cl-离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。 从1934年起,帕特孙(Patterson)法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。1940年后计算机的使用,使X射线晶体结构分析能测定含重原子的复杂的化合物的结构。X射线晶体结构分析不但印证了有机物的经典结构化学,也为有机物积累了丰富的立体化学数据,

镁铝水滑石的合成组成分析及其晶体结构表征市场应用2

镁铝水滑石的合成、组成分析及其晶体 结构表征、市场应用 一、实验目的 1.本实验采用共沉淀法制备镁铝水滑石; 2.利用EDTA络合滴定法测定镁铝水滑石样品中Mg2+和Al3+的含 量; 3.热分析法确定镁铝水滑石样品中的结构水含量; 4.并通过红外、X粉末衍射表征晶体结构。 二、实验原理 1、合成材料 水滑石是一种层柱状双金属氢氧化物,是一类近年来发展迅速的阴离子型粘土因为具有特殊的结构和物理化学性质,如带电性质阴离子可交换性吸附性能催化性能等,其在催化剂催化剂载体污水处理剂医药医药载体等众多领域具有广泛的应用典型的水滑石Mg6Al2(OH)16CO3 4H2O是一种天然存在的矿物,天然存在的水滑石大都是镁铝水滑石,且其层间阴离子主要局限为CO32-但天然镁铝水滑石在世界范围内很有限,因而人工合成镁铝水滑石的研究和应用引起了人们的高度重视和关注 层状双金属氢氧化物(Layered double hydroxides,简称LDHs)是一类阴离子型粘土,又称类水滑石组成通式为:[M(II)1-xM(III)x(OH)2]x+Ax/nn-mH2O,M(II):二价金属离子,M(III):

三价金属离子,An-:阴离子,x=M(III)/[M(II)+ M(III)],0.2≤x≤0.33。 本实验采用共沉淀法制备镁铝水滑石;利用EDTA络合滴定法测定镁铝水滑石样品中Mg2+和Al3+的含量;热分析法确定镁铝水滑石样品中的结构水含量;并通过红外、X粉末衍射表征晶体结构。 2、共沉淀法 共沉淀法是制备水滑石的基本方法, 即以可溶性铝盐和镁盐与沉淀剂反应生成沉淀物,经过滤、洗涤、干燥后制得水滑石。根据投料方式不同可分为单滴法和双滴法。根据沉淀方式不同衍生出低过饱和沉淀法和高过饱和沉淀法。共沉淀法合成温度低,过程简单,制得的水滑石具有较高的均匀性、颗粒尺寸分布较窄且具有一定形貌。但由于反应各组分的沉淀速度和沉淀平衡浓度积不可避免地存在着差异,所以导致产品组成的局部不均匀性,而且沉淀物还需反复洗涤过滤, 才能除去混入的杂质离子。研究发现,共沉淀工艺条件与水滑石晶体的形貌、组成和粒径密切相关。老化温度过低, 晶体的形成

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

浅谈有关晶体结构的分析和计算

浅谈有关晶体结构的分 析和计算 Revised as of 23 November 2020

浅谈有关晶体结构的分析和计算 摘要:晶体结构的分析和计算是历年全国高考化学试卷中三个选做题之一,本文从晶体结构的粒子数和化学式的确定,晶体中化学键数的确定和晶体的空间结构的计算等方面,探讨有关晶体结构的分析和计算的必要性。 关键词:晶体、结构、计算、晶胞 在全国统一高考化学试卷中,有三个题目是现行中学化学教材中选学内容,它们分别《化学与生活》、《有机化学基础》和《物质结构与性质》。虽然三个题目在高考时只需选做一题,由于是选学内容,学生对选学内容往往重视不够,所以在高考时学生对这部分题目得分不够理想。笔者对有关晶体结构的分析和计算进行简单的归纳总结,或许对学生学习有关晶体结构分析和计算有所帮助,若有不妥这处,敬请同仁批评指正。 一、有关晶体结构的粒子数和化学式确定 (一)、常见晶体结构的类型 1、原子晶体 (1)金刚石晶体中微粒分布: ①、每个碳原子与4个碳原子以共价键结合,形成正四面体结构。 ②、键角均为109°28′。 ③、最小碳环由6个碳组成并且六个碳原子不在同一平面内。 ④、每个碳原子参与4条C-C 键的形成,碳原子与C-C 键之比为1:2。 (2)二氧化硅晶体中微粒分布 ①、每个硅原子与4个氧原子以共价键结合,形成正四面体结构。 ②、每个正四面体占有1个Si ,4个“2 1氧”,n(Si):n(O)=1:2。 ③、最小环上有12个原子,即:6个氧原子和6个硅原子.

2、分子晶体:干冰(CO 2)晶体中微粒分布 ①、8个CO 2分子构成立方体并且在6个面心又各占据1个CO 2分子。 ②、每个CO 2分子周围等距离紧邻的CO 2分子有12个。 3、离子晶体 (1)、NaCl 型晶体中微粒分布 ①、每个Na +(Cl -)周围等距离且紧邻的Cl -(Na +)有6个。每 个Na +周围等距离紧邻的Na +有12个。 ②、每个晶胞中含4个Na +和4个Cl -。 (2)、CsCl 型晶体中微粒分布 ①、每个Cs +周围等距离且紧邻的Cl -有8个,每个Cs +(Cl -) 周围等距离且紧邻的Cs +(Cl -)有6个。 ②、如图为8个晶胞,每个晶胞中含有1个Cs +和1个Cl - 。 3、金属晶体 (1)、简单立方晶胞:典型代表Po ,空间利用率52%,配位数为6 (2)、体心立方晶胞(钾型):典型代表Na 、K 、Fe ,空间利用率60%,配位数为8。 (3)、六方最密堆积(镁型):典型代表Mg 、Zn 、Ti ,空间利用率74%,配位数为12。 (4)、面心立方晶胞(铜型):典型代表Cu 、Ag 、Au ,空间利用率74%,配位数为12。 (二)、晶胞中微粒的计算方法——均摊法 1、概念:均摊法是指每个图形平均拥有的粒子数目,如某个粒子为n 个晶胞所共有,则 该粒子有n 1属于一个晶胞。 2、解题思路:首先应分析晶胞的结构(该晶胞属于那种类型),然后利用“均摊法”解题。

水合2_苯甲酰基苯甲酸的合成及其晶体结构

第28卷第4期2006年7月 南 京 工 业 大 学 学 报 JOURNAL OF NANJ I N G UN I V ERSI TY OF TECHNOLOGY Vol .28No .4 July 2006 水合22苯甲酰基苯甲酸的合成及其晶体结构 刘 山1 ,曹展梅 1,2 ,王丹丹1,王克乐1,朱红军 1 (1.南京工业大学理学院,江苏南京210009;2.扬州教育学院生化系,江苏扬州225002) 摘 要:水合2苯甲酰基苯甲酸的晶体结构中一个不对称单元包含1分子2苯甲酰基苯甲酸和1分子水,分子式为C 14H 10O 3(H 2O )。具体测定结果如下:该晶体属于三斜晶系,P 21空间群,a =017751(2)n m,b =018377(2) n m,c =110037(2)n m,α=75157(3)°,β=83105(3)°,γ=86108(3)°,D c =11296g/c m 3 ,Z =2,F (000)=256,μ=01095mm -1 ,最终偏差因子分别为R =010545,wR =011460。X 射线衍射分析表明,分子之间通过相邻分子间形 成的O —H …O 氢键相连。水分子中的氧原子由于分子间的氢键作用,稳定性增加。关键词:2苯甲酰基苯甲酸;水合;合成;晶体结构3 中图分类号:O621 文献标识码:A 文章编号:1671-7643(2006)04-0057-04 22苯甲酰基苯甲酸是一类具有特殊结构单元 (延展性格子)的化合物的重要合成原料[1-4],同时 也是一些导电材料的重要合成原料[5-7] 。笔者将邻苯二甲酸酐与苯在无水氯化铝的作用下反应得到了 22苯甲酰基苯甲酸[8] ,并且得到了它的水合物的单晶(代码CCDC 273728)。然后用X 2射线衍射法对单晶结构进行了测定,测定结果为:其单晶结构是由1分子22苯甲酰基苯甲酸和1分子水构成,分子之间通过22苯甲酰基苯甲酸与水分子形成的分子间氢键(O —H …O )相连。水分子中的氧原子由于分 子间的氢键作用,稳定性增加。有文献报道[9] 该晶体属于三斜晶系,PT 空间群,而本实验中X 2射线衍射法测定结果表明该晶体属于三斜晶系,P 21空间群。 1 实验部分 1.1 仪器和药品 Ele mentar Vari o El Ⅲ型元素分析仪,Nonius CAD4型X 射线衍射仪; 邻苯二甲酸酐(AR ),K OH (AR ),A l Cl 3(AR ), 浓HCl (AR ),苯(AR )。 1.2 水合2苯甲酰基苯甲酸(Ⅰ)的合成及其单晶培养 在250mL 四口圆底烧瓶中加入邻苯二甲酸酐 910g 、无水A l Cl 3粉末15g 、苯150mL,在65~70℃ 范围加热搅拌3h 。然后将混合物倒入150mL 稀盐 酸溶液(浓盐酸与水体积比为1∶14)中。通过蒸汽蒸馏除去过量的苯,将粗产物溶于稀K OH 溶液中。过滤除去少量不溶杂质,再用盐酸使产物沉淀析出。最后过滤、干燥,收集白色沉淀,即为(Ⅰ)的粗产物。 将产物溶于水,静置3d 后,溶液中出现白色针状沉淀。将该沉淀溶于苯溶液中,置于室温下缓慢挥发,得到(Ⅰ)的单晶,合成路线见图1。水合2苯甲酰基苯甲酸C 14H 10O 3(H 2O )元素分析结果,计算值(质量分数):C,68185%;H,4195%;实验值(质量分数):C,68179%;H,4197%。 图1 化合物(Ⅰ)的合成路线 Fig .1 Synthesis r outine for compound (Ⅰ) 1.3 晶体结构测定 取约0140mm ×0130mm ×0120mm 大小的单晶放入毛细管中。使用Enraft Nonius CAD4型X 射 线衍射仪(Mo 靶,K α:λ=711073×10-3 n m )进行晶胞单元测定和数据收集。收集数据的条件为293 3收稿日期:2005-11-29 作者简介:刘 山(1980-),男,江苏江都人,硕士生,主要研究方向为精细有机合成; 朱红军(联系人),教授,E 2mail:zhuhj@njut .edu .cn

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

高中化学选修三——晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元,即晶体中无限重复的部分 一个晶胞平均占有的原子数=×晶胞顶角上的原子数+×晶胞棱上的原子+×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图,它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图,其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中,分子内的原子间以共价键结合,相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体,熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂,极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇,冰醋酸,蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例,可说明氢键具有方向性 ④笼状化合物--天然气水合物

几种典型晶体结构的特点分析(精)

几种典型晶体结构的特点分析 徐寿坤 有关晶体结构的知识是高中化学中的一个难点,它能很好地考查同学们的观察能力和三维想像能力,而且又很容易与数学、物理特别是立体几何知识相结合,是近年高考的热点之一。熟练掌握NaCl 、CsCl 、CO 2、SiO 2、金刚石、石墨、C 60等晶体结构特点,理解和掌握一些重要的分析方法与原则,就能顺利地解答此类问题。 通常采用均摊法来分析这些晶体的结构特点。均摊法的根本原则是:晶胞任意位置上的原子如果是被n 个晶胞所共有,则每个晶胞只能分得这个原子的1/n 。 1. 氯化钠晶体 由下图氯化钠晶体结构模型可得:每个Na +紧邻6个- Cl ,每个- Cl 紧邻6个+ Na (上、下、左、右、前、后),这6个离子构成一个正八面体。设紧邻的Na +-a ,每个Na +与12个Na +等距离紧邻(同层4个、上层4个、下层4个),距离为a 2。由均摊法可得:该晶胞中所拥有的Na +数为4216818=?+? ,-Cl 数为44 1 121=?+,晶体中Na +数与Cl -数之比为1:1 2. 氯化铯晶体 每个Cs +紧邻8个-Cl -紧邻8个Cs +,这8个离子构成一个正立方体。设紧邻 的Cs +与Cs +间的距离为 a 2 3 ,则每个Cs +与6个Cs +等距离紧邻(上、下、左、右、前、后)。在如下图的晶胞中Cs +数为812 164112818=+?+?+?,- Cl 在晶胞内其数目为8, 晶体中的+Cs 数与- Cl 数之比为1:1,则此晶胞中含有8个CsCl 结构单元。

3. 干冰 每个CO 2分子紧邻12个CO 2分子(同层4个、上层4个、下层4个),则此晶胞中的CO 2分子数为42 1 6818=?+? 。 4. 金刚石晶体 每个C 原子与4个C 原子紧邻成键,由5个C 原子形成正四面体结构单元,C-C 键的夹角为'28109?。晶体中的最小环为六元环,每个C 原子被12个六元环共有,每个C-C 键被6个六元环共有,每个环所拥有的C 原子数为211216=?,拥有的C-C 键数为16 1 6=?,则C 原子数与C-C 键数之比为 2:11:2 1 =。 5. 二氧化硅晶体 每个Si 原子与4个O 原子紧邻成键,每个O 原子与2个Si 原子紧邻成键。晶体中的

几种常见晶体结构分析.

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话::: 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞) 中,处于不同位置的微粒在该单元中所占的份额也有 所不同,一般的规律是:顶点上的微粒属于该单元中 所占的份额为18 ,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12 ,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的 Cl -围成的空间构型为正八面体。每个N a +周围与其最近且距离相等的Na + 有12个。见图1。 晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14 = 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。 2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与 一个Cs +距离最近且相等的Cs +有6个。晶胞中平均Cs +个数:1;晶胞中平 均Cl -个数:8×18 = 1。 因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4 个C 原子紧邻,因而整个晶体中无单个分子存在。由共价键构成的最小 环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环 共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6× 112 = 12 ,平均C —C 键数为6×16 = 1。 C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。 2.二氧化硅晶体结构与金刚石相似,C 被Si 代替,C 与C 之间插氧,即为SiO 2晶体,则SiO 2晶体中最小环为12环(6个Si ,6个O ), 最小环的平均Si 原子个数:6×112 = 12;平均O 原子个数:6×16 = 1。 即Si : O = 1 : 2,用SiO 2表示。 在SiO 2晶体中每个Si 原子周围有4个氧原子,同时每个氧原子结合2个硅原子。一个Si 原子可形 图 1 图 2 NaCl 晶体 图3 CsCl 晶体 图4 金刚石晶体

常见典型晶体晶胞结构.doc

典型晶体晶胞结构1.原子晶体 (金刚石 ) 2.分子晶体

3.离子晶体 + Na - Cl

4.金属晶体 堆积模型简单立方钾型镁型铜型典型代表Po Na K Fe Mg Zn Ti Cu Ag Au 配位数 6 8 12 12 晶胞 5.混合型晶体——石墨 1.元素是Cu 的一种氯化物晶体的晶胞结构如图 13 所示,该氯化物的化学 式,它可与浓盐酸发生非氧化还原反应,生成配合物H n WCl 3,反应的化 学方程式为。 2.( 2011 山东高考)CaO 与NaCl 的晶胞同为面心立方结构,已知CaO 晶体密度为ag·cm-3,N A表示阿伏加德罗常数,则CaO 晶胞体积为cm3。 2.( 2011 新课标全国)六方氮化硼BN 在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似,硬度与金刚 石相当,晶苞边长为361.5pm ,立方氮化硼晶胞中含有______各氮原子、 ________各硼原子,立方氮化硼的密度是_______g ·cm-3(只要求列算式,不必计算出数值,阿伏伽德罗常数为N A)。

解析:描述晶体结构的基本单元叫做晶胞,金刚石晶胞是立方体,其中8 个顶点有8 个碳原子, 6 个面各有 6 个碳 原子,立方体内部还有 4 个碳原子,如图所示。所以金刚石的一个晶胞中含有的碳原子数= 8×1/8+6 ×1/2+4=8 ,因此立方氮化硼晶胞中应该含有 4 个 N 和 4 个 B 原子。由于立方氮化硼的一个晶胞中含有 4 个 4 25g 是,立方体的体积是(361.5cm)3,因此立方氮化硼的密度是 N 和 4 个 B 原子,其质量是 1023 6.02 g·cm-3。 3.( 4)元素金( Au )处于周期表中的第六周期,与Cu 同族, Au 原子最外层电子排布式为______;一种铜合金晶体具有立方最密堆积的结构,在晶胞中Cu 原子处于面心, Au 原子处于顶点位置,则该合金中Cu 原子与 Au 原子数量之比为 _______;该晶体中,原子之间的作用力是________; ( 5)上述晶体具有储氢功能,氢原子可进入到由Cu 原子与 Au 原子构成的四面体空隙中。若将Cu原子与Au原子等同看待,该晶体储氢后的晶胞结构为CaF2的结构相似,该晶体储氢后的化学式应为_____。 4.( 2010 山东卷)铅、钡、氧形成的某化合物的晶胞结构是:Pb4+处于立方晶胞顶点,Ba2+处于晶胞中心, O2-处于晶胞棱边中心,该化合物化学式为,每个 Ba2+与个 O2-配位。 5.(4) CaC2晶体的晶胞结构与NaCl晶体的相似(如右图所示),但 CaC2晶体中含有的中哑 铃形 C 22 的存在,使晶胞沿一个方向拉长。CaC 2晶体中1个 Ca 2 周围距离最近的 C 22 数目 为。 6.( 09 江苏卷 21 A )③在 1 个 Cu2O 晶胞中(结构如图所示),所包含的Cu 原子数目 为。

高中化学选修三——晶体结构与性质.doc

晶体结构与性质 一、晶体的常识1.晶体与非晶体 晶体与非晶体的本质差异 晶体非晶体 自范性 有(能自发呈现多面体外形)无(不能自发呈现多面体外形) 微观结构 原子在三维空间里呈周期性有序排列 原子排列相对无序 晶体呈现自范性的条件:晶体生长的速率适当 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出特性:①自范性;②各向异性(强度、导热性、光学性质等)③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法)2.晶胞--描述晶体结构的基本单元,即晶体中无限重复的部分 一个晶胞平均占有的原子数=8×晶胞顶角上的原子数+4×晶胞棱上的原子+2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I2)、金刚石(C)晶胞的示意图,它们分别平均含几个原子? 1 1 1

eg:1.晶体具有各向异性。如蓝晶(Al2O3·SiO2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在() ①硬度②导热性③导电性④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是() A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO2一定是晶体 3.下图是CO2分子晶体的晶胞结构示意图,其中有多少个原子? 二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体注意:a.构成分子晶体的粒子是分子 b.分子晶体中,分子内的原子间以共价键结合,相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体,熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂,极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H2O、H2S、NH3、CH4、HX等 b.酸:H2SO4 、HNO3、

晶体结构与性质知识总结(完善)

3-1、晶体的常识 一、晶体和非晶体 1、概述——自然界中绝大多数物质是固体,固体分为和两大类。 * 自范性——晶体能自发地呈现多面体外形的性质。本质上,晶体的自范性是晶体中粒子在微观空间里呈现周期性有序排列的宏观表象。 * 晶体不因颗粒大小而改变,许多固体粉末用肉眼看不到规则的晶体外形,但在显微镜下仍可看到。 * 晶体呈现自范性的条件之一是晶体生长的速率适当,熔融态物质凝固速率过快常得到粉末或没有规则外形的块状物。 * 各向异性——晶体的许多物理性质如强度、热导性和光导性等存在各向异性即在各个方向上的性质是不同的 二、晶胞 1、定义——描述晶体结构的基本单元。 2、特征—— (1)习惯采用的晶胞都是体,同种晶体所有的晶胞大小形状及内部的原子种类、个数和几何排列完全相同。 (2)整个晶体可以看作是数量巨大的晶胞“无隙并置”而成。 <1> 所谓“无隙”是指相邻晶胞之间没有任何间隙; <2> 所谓“并置”是指所有晶胞都是平行排列的,取向相同。 3、确定晶胞所含粒子数和晶体的化学式——均摊法分析晶胞与粒子数值的关系 (1)处于内部的粒子,属于晶胞,有几个算几个均属于某一晶胞。 (2)处于面上的粒子,同时为个晶胞共有,每个粒子有属于晶胞。 (3)处于90度棱上的粒子,同时为个晶胞共有,每个粒子有属于晶胞。 (4)处于90度顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于60度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于120度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞。 4、例举 三、分类

晶体根据组成粒子和粒子之间的作用分为分子晶体、原子晶体、金属晶体和离子晶体四种类型。 3-2、分子晶体和原子晶体 一、分子晶体 1、定义——只含分子的晶体。 2、组成粒子——。 3、存在作用——组成粒子间的作用为(),多原子分子内部原子间的作用为。 * 分子晶体中定含有分子间作用力,定含有共价键。 * 分子间作用力于化学键。 4、物理性质 (1)熔沸点与硬度——融化和变形只需要克服,所以熔沸点、硬度,部分分子晶体还可以升华。熔融一定破坏分子间的和可能存在的键,绝不会破坏分子内部的。 同为分子晶体的不同物质,一般来说尤其对于结构组成相似的分子,相对分子质量越大,熔沸点越;相对分子质量相差不大的分子,极性越大熔沸点越;含氢键的熔沸点会特殊的些。 例如: (2)溶解性——遵循同性互溶原理(或说相似相溶原理):即极性分子易溶于性溶剂(多为),如卤化氢(HX)、低级醇和低级羧酸易溶于极性溶剂水;非极性分子易溶于非极性(有机)溶剂,如硫、磷和卤素单质(X2)不易溶于极性溶剂水而易溶于非极性溶剂CS2、苯等。同含氢键的溶解性会更,如乙醇、氨气与水。 5、类别范畴 (1)除C、Si、B外的非金属单质,如卤素、氧气和臭氧、硫(S8)、白磷(P4)、足球烯(C60)、稀有气体等。 (2)除铵盐、SiO2、SiC、Si3N4、BN等外的非金属互化物,包括非金属氢化物和氧化物,如氨(NH3)、冰(H2O)、干冰(CO2)、三氧化硫(SO3)等。 (3)所有的酸分子(纯酸而非溶液)。 (4)大多有机物。 (5)除汞外常温下为液态和气态的物质。 (6)能升华的物质。如干冰、碘、等。 6、结构例析 如果分子间作用力只有范德华力,其分子占晶胞六面体的个顶角和个面心,若以一个分子为中心,其周围通常有个紧邻分子,这一特征称为分子密堆积,如O2、C60、CO2、I2等。 (1)干冰 固态的,色透明晶体,外形像冰,分子间作用力只有,熔点较,常压能升华,常作制冷剂或人工降雨。 二氧化碳分子占据立方体晶胞的个面心和个顶角,与每个二氧化碳分子距离最近且相等的二氧化碳分子有个,若正方体棱长为a,则这两个相邻的CO2的距离为。 (2)冰 固态的,色透明晶体,水分子间作用力除外,还有,氢键虽远小于共价键,但明显大于范德华力,所以冰的硬度较,熔点相对较。 每个水分子与周围距离最近且相等的水分子有个,这几个水分子形成一个的空间构型,晶体中水分子与氢键的个数之比为。这一排列使冰中水分子的空间利用率不高,留有相当大的空隙,所以冰的密度于液体水(4C的水密度最大,通常认为是1)。 (3)天然气水合物 ——可燃冰·海底储存的潜在能源,甲烷分子处于水分子形成笼子里,形式多样。 二、原子晶体 1、定义——相邻间以键结合而成空间网状的晶体。整块晶体是一个三维的共价键网状结构的

高中化学选修3第三章《晶体结构与性质》单元测试题

黄石二中2011年化学选修3第三章《晶体结构与性质》单元测试题时间:110分钟满分:120分2011.2.25 命题人:高存勇 选择题(每小题只有一个正确答案。每小题3分,共45分) 1.下列有关金属晶体的判断正确的是 A.简单立方、配位数6、空间利用率68% B.钾型、配位数6、空间利用率68% C.镁型、配位数8、空间利用率74% D.铜型、配位数12、空间利用率74% 2.有关晶格能的叙述正确的是 A.晶格能是气态离子形成1摩离子晶体释放的能量 B.晶格能通常取正值,但是有时也取负值 C.晶格能越大,形成的离子晶体越不稳定 D.晶格能越大,物质的硬度反而越小 3.下列排列方式是镁型堆积方式的是 A.ABCABCABC B.ABABABABAB C.ABBAABBA D.ABCCBAABCCBA 4.下列关于粒子结构的描述不正确的是 A.H2S和NH3均是价电子总数为8的极性分子 B.HS-和HCl均是含一个极性键的18电子粒子 C.CH2Cl2和CCl4均是四面体构型的非极性分子 D.1 mol D162O中含中子、质子、电子各10 N A(N A代表阿伏加德罗常数) 5.现代无机化学对硫-氮化合物的研究是最为活跃的领域之一。其 中如图所示是已经合成的最著名的硫-氮化合物的分子结构。 下列说法正确的是 A.该物质的分子式为SN B.该物质的分子中既有极性键又有非极性键 C.该物质具有很高的熔沸点 D.该物质与化合物S2N2互为同素异形体 6.某物质的实验式为PtCl4·2NH3,其水溶液不导电,加入AgNO3溶液反应也不产生沉淀,以强碱处理并没有NH3放出,则关于此化合物的说法中正确的是 A.配合物中中心原子的电荷数和配位数均为6 B.该配合物可能是平面正方形结构 C.Cl—和NH3分子均与Pt4+配位 D.配合物中Cl—与Pt4+配位,而NH3分子不配 7.石墨能与熔融金属钾作用,形成石墨间隙化合物,钾原 子填充在石墨各层谈原子中。比较常见的石墨间隙化合物 是青铜色的化合物,其化学式可写作CxK,其平面图形见下图,则x值为: A . 8 B. 12 C.24 D.60 8.金属键具有的性质是 A.饱和性B.方向性C.无饱和性和方向性D.既有饱和性又有方向性9.下列说法正确的是 A.124g P4含有的P-P键的个数为6N A B.12g石墨中含有的C-C键的个数为2N A C.12g金刚石中含有的C-C键的个数为1.5N A D.60gSiO2中含Si-O键的个数为2N A 10.长式周期表共有18个纵行,从左到右排为1-18列,即碱金属为第一列,稀有气体元素

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为, 并更名为文件; 对CCD收录的数据, 检查是否有同名的p4p和hkl(设为文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从 total reflections项中,记下总点数;从R merge项中,记下Rint=. % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRAVAIS和SYMM项中,记下BRAVAIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如,单击Project Open,最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP C)。(单位已设为

晶体结构及其性质

晶体结构及其性质 高考热点: 晶体类型的判断;各类晶体物理性质的比较;根据粒子排列空间推断化学式 [知识要点] 【问题讨论】如何比较CF4、CCl4、CBr4、CI4的熔沸点? 三、氢键: 【问题讨论】H2O的熔沸点为什么反常?类似物质你还知道哪些? 四、晶体空间结构:见P88 【问题讨论】 ⑴NaCl晶体中Na+周围Cl-的数目?CsCl晶体中Cs+周围Cl-的数目? ⑵金刚石中每个碳原子与几个碳原子相连?最小碳环为几元环?键角多大? 例1、能够用键能大小解释的是 A、氮气的化学性质比氧气稳定 B、常温常压下,溴呈液态,碘呈固态 C、稀有气体一般很难发生化学反应 D、硝酸易挥发,而硫酸难挥发 例2、氮化硅是一种新合成的结构材料,它是一种超硬、耐磨、耐高温的物质。下列各组物质熔化时,所克服的微粒间的作用力与氮化硅熔化所克服的微粒间的作用力都相同的是 A、硝石和金刚石 B、晶体硅和水晶 C、冰和干冰 D、萘和蒽 例3 (1)__ 有关随着增大,熔点依次降低. (2)硅的卤化物及硅、锗、锡、铅的氯化物熔点与有关,随着增大, 增强,熔点依次升高. (3)钠的卤化物的熔点比相应的硅的卤化物的熔点高得多,这与有关,因为一般比熔点高. 例4下列过程中,共价键被破坏的是( )

A. 碘晶体升华 B.溴蒸气被木炭吸附 C.酒精溶于水 D.HCl气体溶于水 【课堂精练】 1、(01上海)下列物质属于分子晶体的化合物是 A. 石英 B. 硫磺 C. 干冰 D. 食盐 2、(01上海)碱金属与卤素所形成的化合物大都具有的性质是 ①高沸点②能溶于水②水溶液能导电④低熔点⑤熔融状态不导电 A. ①②③ B. ③④⑤ C. ①④⑤ D. ②③⑤ 3、CH3+是反应性很强的正离子,其结构式和电子式分别为_____________和___________,若已知CH3+的四个原子处于同一平面上,则C—H键间的夹角是__________。若(CH3)2CH+在NaOH的水溶液中反应将生成电中性的有机分子,其结构简式是:_____________________。若(CH3)3C+去掉H+后将生成电中性的有机分子,其结构简式是_____________。 4、下列各组物质中,按熔点由低到高排列正确的是 A、O2、I2、Hg B、CO2、KCl、SiO2 C、Na、K、Rb D、SiC、NaCl、SO2 5、碳化硅(SiC)的一种晶体具有类似金刚石的结构,其中碳原子和硅原子的位置是交替的。在下列三种晶体①金刚石②晶体硅③碳化硅中,它们的熔点从高到低的顺序是 A、①③② B、②③① C、③①② D、②①③ 4、下列各组物质的晶体中,化学键类型相同,晶体类型也相同的是 A、SO2和SiO2 B、CO2和H2O C、NaCl和HCl D、CCl4和KCl 5、关于晶体的下列说法正确的是 A、在晶体中只要有阴离子就一定有阳离子 B、在晶体中只要有阳离子就一定有阴离子 C、原子晶体的熔点一定比金属晶体的高 D、分子晶体的熔点一定比金属晶体的低 6、在金刚石的晶体结构中,含有由共价键形成的碳原子环,其中最小的环上有碳原子,每个碳原子上的任意两个C-C键的夹角都是(填角度) 9、有八种晶体:A.水晶B.冰醋酸C.氧化镁D.白磷E.晶体氩F.氯化铵G.铝H.金刚石 (1)属于原子晶体的化合物是,直接由原子构成的晶体是,直接由原子构成的分子晶体是。 (2)在一定条件下能导电而不发生化学变化的是,受热熔化后化学键不发生变化的是,需克服共价键的是。 10、碳正离子[例如:CH3+、CH5+、(CH3)3C+等]是有机反应中的重要中间体,碳正离子CH5+可以通过CH4在超强酸中再获得一个H+而得到,而CH5+失去H2可得到CH3+ (1)CH3+是反应性很强的正离子,是缺电子的,其电子式为。 (2)CH3+中四个原子是共平面的,三个键角相等,键角应为(填角度)。 (3)(CH3)2CH+在NaCl的水溶液中反应将得到电中性的有机分子,其结构简式为。 (4)(CH3)3C+去掉H+后将生成电中性的有机分子,其结构简式为。 六、重要经验规律及特殊规律 1、物质中有阴离子必有阳离子,但有阳离子不一定有阴离子(如合金及金属)。 2、共价化合物中一定无离子键,离子化合物中不一定无共价键。 3、离子、原子晶体中一定无分子存在,亦无范德华力,只有分子晶体中存在范德华力,唯一无共价键的是稀有气体晶体。 4、非金属元素间一般不能形成离子化合物,但铵盐却是离子化合物。 5、构成分子的稳定性与范德华力无关,由共价键强弱决定。分子的熔沸点才与范德华力有关,且随着分子间作用力增强而增高。 6、原子晶体的熔沸点不一定比金属高,金属的熔沸点也不一定比分子晶体高。 7、由同种非金属元素的原子间形成的化学键为非极性键,由不同种非金属元素的原子间形成的化学键为

相关文档
最新文档