高中数学基本不等式及应用

高中数学基本不等式及应用
高中数学基本不等式及应用

基本不等式及应用

一、考纲要求:

1.理解基本不等式的证明过程.

2.会用基本不等式解决简单的最大(小)值问题. 3.了解证明不等式的基本方法——综合法.

(1)a 2+b 2

≥2ab (a ,b ∈R) (2)ab ≤(a +b 2)2(a ,b ∈R)

(3)a 2

+b 2

2≥(a +b 2)2(a ,b ∈R) (4)b a +a b ≥2(a ,b 同号且不为零)

上述四个不等式等号成立的条件都是a =b. 四、算术平均数与几何平均数

设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的

算术平均数不小于它们的几何平均数.

四个“平均数”的大小关系;a ,b ∈R+

: 当且仅当a =

b 时取等号.

五、利用基本不等式求最值:设x ,y 都是正数.

(1)如果积xy 是定值P ,那么当x =y 时和x +y 有最小值2P. (2)如果和x +y 是定值S ,那么当x =y 时积xy 有最大值

14

S 2

.

强调:1、在使用“和为常数,积有最大值”和“积为常数,和有最小值”这两个结论时,应把握三点:“一正、二定、三相等、四最值”.当条件不完全具备时,应创造条件. 正:两项必须都是正数;

定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。 等:等号成立的条件必须存在.

2、当利用基本不等式求最大(小)值等号取不到时,如何处理?(若最值取不到可考虑函数的单调性.)

想一想:错在哪里?

+≤≤2

a b

+2ab

a b 1.已知函数,求函数的

最小值和此时

x 的取值.x x x f 1)(+=1:()22112.

f x x x x x x =+≥===±解当且仅当即时函数取到最小

值2.已知函数,求函数的最小值.

)2(23)(>-+=x x x x f 3()222

3326f x x x x x x x =+≥->??

=?=?-?解:当且仅当即时,函数的最小值是2x =+大家把入看一看,会有

什么发现?用什么方法求该函数的

最小值?

3、已知两正数x ,y 满足x +y =1,则z =(x +1x )(y +1

y

)的最小值为________.

解一:因为对a>0,恒有a +1a ≥2,从而z =(x +1x )(y +1

y )≥4,所以z 的最小值是4.

解二:z =2+x 2y 2

-2xy xy =(2

xy

+xy)-2≥2

2

xy

·xy -2=2(2-1),所以z 的最小值是2(2-1). 【错因分析】 错解一和错解二的错误原因是等号成立的条件不具备,因此使用基本不等式一定要验证等号成立的条件,只有等号成立时,所求出的最值才是正确的.

【正确解答】 z =(x +1x )(y +1y )=xy +1xy +y x +x y =xy +1xy +x +y 2

-2xy xy =2

xy

+xy -2,

令t =xy ,则0

2

t 有最小值334,所以当x =y =12时z 有最小值25

4

.

误区警示:

(1)在利用基本不等式求最值(值域)时,过多地关注形式上的满足,极容易忽视符号和等号成立条件的满足,这是造成解题失误的重要原因.如函数y =1+2x +3

x (x<0)有最大值1-26而不是有最小值1+

2 6.

(2)当多次使用基本不等式时,一定要注意每次是否都能保证等号成立,并且要注意取等号条件的一致性,否则就会出错. 课堂纠错补练:

若0

sinx

的最小值为________.

解析:令sinx =t,0

t 在(0,1]单调递减,∴t =1时y min =5.

答案:5

考点1 利用基本不等式证明不等式

1.利用基本不等式证明不等式是综合法证明不等式的一种情况,其实质就是从已知的不等式入手,借助不等式性质和基本不等式,经过逐步的逻辑推理,最后推得所证问题,其特征是“由因导果”.

2.证明不等式时要注意灵活变形,多次利用基本不等式时,注意每次等号是否都成立.同时也要注意应用基本不等式的变形形式.

例1:(1)已知c b a ,,均为正数,求证:)(2

2

2

2

2

2

c b a abc a c c b b a ++≥++

(2)已知c b a ,,为不全相等的正数,求证:abc a c ac c b bc b a ab 6)()()(>+++++

(3)已知a>0,b>0,a +b =1,求证:1a +1

b

≥4.

【证明】 (1)∵a>0,b>0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2

b a ·a b =4(当且仅当a =b =1

2

时等号成立). ∴1a +1

b

≥4.∴原不等式成立. 练习:已知a 、b 、c 为正实数,且a +b +c =1,求证:(1a -1)(1b -1)(1

c

-1)≥8.

证明:∵a 、b 、c 均为正实数,且a +b +c =1, ∴(1a -1)(1b -1)(1

c -1) =1-a 1-b

1-c abc

b +c

a +c a +b

abc

≥2bc ·2ac ·2ab abc

=8.

当且仅当a =b =c =1

3

时取等号.

考点2 利用基本不等式求最值

(1)合理拆分项或配凑因式是常用的技巧,而拆与凑的目标在于使等号成立,且每项为正值,必要时需出现积为定值或和为定值.

(2)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,而且也是检验转换是否有误的一种方法.

例4: (1)设0

的最大值.

【分析】 由和或积为定值从而利用基本不等式求最值,然后确定取得最值的条件

【解】 (1)∵00,

∴y =x

4-2x =2·x 2-x

≤2·x +2-x

2

=2,

当且仅当x =2-x 即x =1时取等号, ∴当x =1时,函数y =x

4-2x 的最大值是 2.

(2) x>0,求f(x)=12

x +3x 的最小值;

(3)已知:x>0,y>0.且2x+5y=20,求 xy 的最大值.

(4)已知=

y 4

a -2

+a ,求y 的取值范围.

显然a ≠2,当a>2时,a -2>0,∴4a -2+a =4

a -2+(a -2)+2≥2

4a -2

·a -2+2=6,

当且仅当4

a -2=a -2,即a =4时取等号,

当a<2时,a -2<0, ∴

4a -2+a =4a -2+(a -2)+2=-[42-a

+(2-a)]+2 ≤-2

4

2-a

·2-a +2=-2,

当且仅当4

2-a =2-a ,即a =0时取等号,

∴4

a -2

+a 的取值范围是(-∞,-2]∪[6,+∞).

(5)已知x>0,y>0,且x +y =1,求3x +4

y 的最小值.

∵x>0,y>0,且x +y =1, ∴3x +4y =(3x +4

y )(x +y) =7+3y x +4x

y

≥7+2

3y x ·4x

y

=7+43, 当且仅当3y x =4x

y ,即2x =3y 时等号成立,

∴3x +4

y 的最小值为7+4 3.

练习:

求下列各题的最值.

(1)已知x>0,y>0,lgx +lgy =1,求z =2x +5

y 的最小值;

解:(1)由x>0,y>0,lgx +lgy =1,可得xy =10.

则2x +5y =2y +5x 10≥210xy 10=2.∴z min =2.当且仅当2y =5x ,即x =2,y =5时等号成立. (2)x 0,求f(x)=12

x +3x 的最大值;

∵x>0,∴f(x)=12

x +3x ≥2

12x ·3x =12,等号成立的条件是12

x

=3x ,即x =2, ∴f(x)的最小值是12.

(3)x<3,求f(x)=4

x -3

+x 的最大值.

∵x<3,∴x -3<0,∴3-x>0,∴f(x)=4x -3+x =4

x -3

+(x -3)+3

=-[4

3-x +(3-x)]+3≤-2

43-x

·3-x +3=-1,

当且仅当4

3-x =3-x ,即x =1时,等号成立.故f(x)的最大值为-1.

(4)14,0,0=+>>b a b a ,求ab 的最大值。

考点3 利用基本不等式求最值的解题技巧

1.代换:化复杂为简单,易于拼凑成定值形式。2.拆、拼、凑,目的只有一个,出现定值.

例3:(1)已知+

∈R b a ,,ab b a =++3,求ab 的最小值。

(4)求函数x x y 2512-+-=的最大值。

(5)设a>b>c>0,求2a 2

1

ab +1a

a -b

-10ac +25c 2

的最小值。 A .2 B .4 C .2 5 D .5

【分析】 通过拆、拼、凑创造条件,利用基本不等式求最值,但要注意等号成立时的条件.

【解析】 原式=(a 2-10ac +25c 2

)+1ab +ab +1a a -b

+a(a -b)

=(a -5c)2

+1ab +ab +

1

a a -b

+a(a -b) ≥0+2

1

ab

·ab +21

a

a -b

·a a -b =4, 当且仅当????

?

ab =1a a -b =1

a =5c

,即a =2,b =

22,c =2

5

时,等号成立.【答案】 B 练习:

(1)(2011年浙江)设x ,y 为实数,若4x 2+y 2

+xy =1,则2x +y 的最大值是________.

解析:4x 2+y 2+xy =1,∴4x 2+4xy +y 2

-3xy =1

∴(2x +y)2

-1=3xy =32·2x ·y ≤32·(2x +y 2)2

∵(2x +y)2-1≤38(2x +y)2 ∴(2x +y)2

≤85

即-2105≤2x +y ≤2105当且仅当2x =y 时取等号,∴(2x +y)最大值=2

510.

(2)已知45<

x ,求5

41

24-+-=x x y 的最大值。 (3)已知0>>y x ,1=xy ,求y

x y x -+2

2的最小值及相应的y x ,的值。

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

高中数学基本不等式专题复习

第11课:基本不等式与双√函数 一、双√函数 形如.0,0,>>+=q p x q px y 图像如右图所示: (1)0>x 时,当p q x =时取到pq y 2min =; (2)值域: (3)当0,0<-+=x x x y 正确解法: 两者联系: (1)基本不等式去等号时的值即为双勾函数的拐点,

(2)凡是利用“积定和最小”求最值的函数均可换元为双勾函数! 三、利用基本不等式求最值 类型一:形如()()0,1≠++ +=c a d cx b ax y 采取配积为定! 1、求??? ??>-+ =455434x x x y 的最小值 2、求??? ??<-+=455433x x x y 的最大值 3、求()π,0,sin 2sin ∈+ =x x x y 的最小值的值域 4、求()的最小值01 1>-+=x e e y x x 的最小值 类型二:形如()0,2≠+++=c a d cx c bx ax y 采取配凑——分离术! 1、求0,92>++=x x x x y 的最小值 2、求0,192>+++=x x x x y 的最小值 3、求?? ????-∈+++=1,31,12122x x x x y 的值域 4、求4,1822-<+++=x x x x y 的最值

高中数学基本不等式练习题

一.选择题 1.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为() A.B.2C.4 D.4 2.已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 5.若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 7.若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12 8.已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8 C.9 D.12 9.若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.已知x+3y=2,则3x+27y的最小值为() A. B.4 C. D.6 11.若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.已知a,b,c,是正实数,且a+b+c=1,则的最小值为() A.3 B.6 C.9 D.12 二.填空题 1.已知正数x,y满足x+y=1,则的最小值为. 2.已知a>0,b>0,且a+b=2,则的最小值为. 3.已知x>1,则函数的最小值为. 4.设2<x<5,则函数的最大值是. 5.函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为. 6.已知x>1,则函数y=2x+的最小值为.

高中数学基本不等式练习题

一.选择题 1.(2016?济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A. B.2C.4 D.4 2.(2016?乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.(2016?合肥二模)若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.(2016?宜宾模拟)下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2 B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2 D.若a<b<0,则> 5.(2016?金山区一模)若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.(2015?福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于 () A.2 B.3 C.4 D.5 7.(2015?红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为() A.6 B.8 C.10 D.12 8.(2015?江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线 mx+ny+1=0上,其中mn>0,则的最小值为() A.B.8 C.9 D.12 9.(2015?南市区校级模拟)若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.(2015?湖南模拟)已知x+3y=2,则3x+27y的最小值为() A.B.4 C.D.6 11.(2015?衡阳县校级模拟)若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.(2015春?哈尔滨校级期中)已知a,b,c,是正实数,且a+b+c=1,则的最小值 为() A.3 B.6 C.9 D.12 二.填空题 1.(2016?吉林三模)已知正数x,y满足x+y=1,则的最小值为. 2.(2016?抚顺一模)已知a>0,b>0,且a+b=2,则的最小值为. 3.(2016?丰台区一模)已知x>1,则函数的最小值为.4.(2016春?临沂校级月考)设2<x<5,则函数的最大值 是. 5.(2015?陕西校级二模)函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为.

专题复习:高中数学基本不等式经典例题

基本不等式 知识点: 1. (1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且 仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项,

高中数学基本不等式教案

《基本不等式》教学设计方案 人教版(A 版) 普通高中课程标准试验教科书必修第五册 【教学目标】 1、知识与技能目标 (12 a b +≤,认识其运算结构; (2)了解基本不等式的几何意义及代数意义; (3)能够利用基本不等式求简单的最值。 2、过程与方法目标 (1)经历由几何图形抽象出基本不等式的过程; (2)体验数形结合思想。 3、情感、态度和价值观目标 (1)感悟数学的发展过程,学会用数学的眼光观察、分析事物; (2)体会多角度探索、解决问题。 【能力培养】 培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。 【教学重点】 2 a b +≤的证明过程。 【教学难点】 2 a b +≤等号成立条件。 【教学方法】 教师启发引导与学生自主探索相结合 【教学工具】 课件辅助教学、实物演示实验 【教学过程设计】 一、 创设情景,引入新课 如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系? 赵爽弦图

1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。 设直角三角形的两条直角边长为a,b那么正方形 的边长为。这样,4个直角三角形的面积的和是2ab, 正方形的面积为。由于4个直角三角形的面积小于正 方形的面积,我们就得到了一个不等式:。 当直角三角形变为等腰直角三角形,即a=b时,正 方形EFGH缩为一个点,这时有。 2.得到结论:一般的,如果 3.思考证明:你能给出它的证明吗? 证明:因为 当 所以,,即 4.基本不等式 1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得,通常我们把上式写作:2)从不等式的性质推导基本不等式 用分析法证明: 要证 (1) 只要证≥ +b a ab 2 (2)要证(2),只要证 a+b-ab 20 (3)要证(3),只要证(a-b)0 ≥(4)显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。 3)理解基本不等式的几何意义 如图所示:AB是圆的直径,点C是AB上一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。 你能利用这个图形得出基本不等式的几何解释吗? 引导学生发现:表示圆的半经,表示半弦长CD,得到不等关系:≤() 易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB 即CD=. 这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立. 几何意义:半弦长不大于半径长。 我们称ab为正数b a,的几何平均数,称 2b a+ 为正数b a,的算术平均数。 代数意义:几何平均数小于等于算术平均数 5.随堂练习 已知a、b、c都是正数,求证:(a+b)(b+c)(c+a)≥8abc

高中数学基本不等式几大题型

题型1 基本不等式反用ab ≤ a +b 2 例1:(1)函数f (x )=x (1-x )(00, x (1-x )≤? ? ????x + 1-x 22=1 4 , ∴f (x ) 值域为? ? ???0,14. (2)∵00. x (1-2x )=12×2x (1-2x )≤12·?? ????2x + 1-2x 22=1 8 , ∴f (x ) 值域为? ? ???0,18. 答案:(1)? ????0,14 (2)? ? ???0,18 例2:(教材习题改编)已知00.

∴x (3-3x )=3x (1-x )≤3? ????x +1-x 22=3 4 . 当x =1-x ,即x =1 2 时取等号. 例5:已知x >0,a 为大于2x 的常数, 求函数y =x (a -2x )的最大值; 解:∵x >0,a >2x , ∴y =x (a -2x )=1 2×2x (a -2x ) ≤12×??????2x +a -2x 2 2=a 28 ,当且仅当x =a 4时取等号,故函数的最大值为a 2 8. 题型2 基本不等式正用a +b ≥2ab 例6:(1)函数f (x )=x +1 x (x >0)值域为________; 函数f (x )=x +1 x (x ∈R )值域为________; (2)函数f (x )=x 2+ 1 x 2 +1 的值域为________. 解析:(1)∵x >0,x +1 x ≥2 x ·1 x =2, ∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞);

高中数学基本不等式的解法十例

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b ab +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2 .a b +≥,其中[),0,a b ∈+∞,当且仅当a b =时等号成立。 3.常考不等式:2 222 a b a b ab ++??≥≥≥ ?,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 问题(1(2例题 例题解析2 1212 x x x += ?=-时取等号。 变式:已知2x >-,则1 2 x x + +的最小值为。 解析:由题意可得()1 20,212 x x x +>+? =+,明显,积为定,根据和定积最大法则可得:

1 22112x x x x +=?+= ?=-+时取等号,此时可 例题3:若对任意x >0, x x 2 +3x +1 ≤a 恒成立,则a 的取值范围是________. 解析:由题意可得141x y +=,左边乘以141x y +=可得:14441y x x y y x ??? ?++ ??? ???? +=,化简可得: 1441144y y x x x y x y ??? ?++=+++ ??????? ,很明显44y x x y +中积为定值,根据积定和最小的法则可得:

424y x x y +≥=, 当且仅当2418 4x y x y x y =?==??=?时取等号。故而可得1444y x x y ??? ?++≥ ???????。不等式234y x m m + -<有解,亦即2min 344y m m x ? ?->+= ?? ?,亦即2340m m -->,解得4m >或者1m <-,故而可得()(),14,m ∈-∞-?+∞。 4 x + 4x +2, 亦即问题例题仅当122b a a b =?=时取等号,化简后可得:ab =1 4 5 4 22a b ? =???=? 变式:若lg(3x )+lg y =lg(x +y +1),则xy 的最小值为__________. 解析:将题干条件化简可得:()()lg 3lg 131x y x y xy x y ?=++?=++,由题意需要求解xy ,故而可知利用不等式x y +≥31xy x y -=+≥x y =时等号成立,化

高中数学《基本不等式》公开课优秀教学设计

《§3.4.1基本不等式》的教学设计 教材:人教版高中数学必修5第三章 一、教学内容解析 本节选自人教版必修五的第三章第四节的第一课时,它是在学生学习完“不等式的性质”、“一元二次不等式及其解法”及“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究。在探究基本不等式内涵和证明的过程中,能够培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;在应用的过程中,通过对条件的转换和变式,有助于培养学生形成类比归纳的思想和习惯,进而形成严谨的思维方式。 二、教学目标设置 1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识; 2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。 3.通过例题让学生学会用基本不等式求最大值和最小值。 三、学生学情分析 对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。 四、教学策略分析 在教学过程中学生往往会直接应用不等式而忽略成立的条件,因此本节课的重点内容是对基本不等式的理解和运用。在运用过程中生成的规律,在学生做题时能灵活运用是难点,因此理解基本不等式和灵活应用基本不等式十本节课难点 五、教学过程: (一)情景引入 下图是2002年在北京召开的第24届国际数学家大会会议现场。

高中数学基本不等式证明

不等式证明基本方法 例 1 :求证:a2b2 1 a b ab 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明: a2b2 1 (a b ab) 1 [( a b) 2(a 1)2(b 1)2 ] 0 2 评注: 1.比较法之一(作差法)步骤:作差——变形——判断与0 的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选用。 例 2 :设a b c ,求证:bc2ca 2ab 2b2 c c2 a a2 b 分析:从不等式两边形式看,作差后可进行因式分解。 证明:bc2ca 2ab 2(b2 c c 2 a a 2 b) = bc(c b)ca(a c) ab(b a) = bc(c b)ca[( a b)(b c)]ab(b a) = (a b)(b c)(c a) a b c ,则a b 0, b c 0, c a 0, ∴ ( a b)(b c)(c a)0 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: 2 ca 2 ab 2(2 c c 2 a 2 )2 (b a)c(a b)(a b) ab(b a) ,这样容易发现规律。 bc b a b c 例 3 :已知a,b R , 求证: (a b)(a n b n )2(a n 1b n 1)证明: ( a b)( a n b n )2( a n1b n 1 ) a n b ab n a n 1b n 1 a n ( b a) b n (a b) (a b)(b n a n ) ⅰ)当 a b0 时,a b0, b n a n,则 (a b)(b n a n ) 0ⅱ)当 a b0 时,a b0, ,则 (a b)(b n a n )0

高中数学基本不等式精选讲解及归纳

高中数学基本不等式精选讲解及归纳

∵当x <2 3时,3-2x >0, ∴x x 238223-+-≥x x 2382232-?-=4,当且仅当x x 238223-=-,即x=-2 1时取等号. 于是y≤-4+23=25-,故函数有最大值2 5-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成. 图3-4-1 (1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小? 思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值. 解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18. 设每间虎笼的面积为S ,则S=xy. 方法一:由于2x +3y≥2y x 32?=2xy 6, ∴2xy 6≤18,得xy≤227,即S≤2 27. 当且仅当2x=3y 时等号成立. 由???=+=,1832,22y x y x 解得???==. 3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9- 23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=2 3 (6-y)y. ∵0<y <6,∴6-y >0. ∴S≤2 3[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大. (2)由条件知S=xy=24. 设钢筋网总长为l,则l=4x+6y. 方法一:∵2x+3y≥2y x 32?=2xy 6=24, ∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立. 由? ??==,24,32xy y x 解得???==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.

高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题 1.基本不等式:ab ≤ a + b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ????a +b 22 (a ,b ∈R ); (4) a 2+ b 22 ≥? ?? ??a +b 22 (a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2 ,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 2 4.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是 22 ?? ??a +b 22 (a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1) a 2+ b 22 ≥? ???a +b 22 ≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a + b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1 x 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数22 4 y x = +的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231 ,(0)x x y x x ++= > (2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x -.;3.2 03 x <<,求函数(23)y x x =-值. 条件求最值

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用 1.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a>0,b>0. (2)等号成立的条件:当且仅当a=b时取等号.2.几个重要的不等式 (1)a2+b2≥2ab(a,b∈R);(2)b a+ a b≥2(a,b同号);(3)ab≤? ? ? ? ? a+b 2 2(a,b∈R); (4)a2+b2 2≥? ? ? ? ? a+b 2 2(a,b∈R). 3.算术平均数与几何平均数 设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为ab,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x>0,y>0,则 (1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.(简记:积定和最小) (2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p2 4.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a2+b2≥2ab逆用就是 ab≤a2+b2 2; a+b 2≥ab(a,b>0)逆用就是ab≤? ? ? ? ? a+b 2 2(a,b>0)等.还要注意“添、拆项” 技巧和公式等号成立的条件等.两个变形 (1)a2+b2 2≥? ? ? ? ? a+b 2 2≥ab(a,b∈R,当且仅当a=b时取等号); (2) a2+b2 2≥ a+b 2≥ab≥ 2 1 a+ 1 b (a>0,b>0,当且仅当a=b时取等号). 这两个不等式链用处很大,注意掌握它们.三个注意

(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数22 54 x y x += +的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231 ,(0)x x y x x ++= > (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x =-的最大值.;3.2 03 x << ,求函数(23)y x x =-的最大值. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。

高中数学基本不等式教案

高中数学基本不等式教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《基本不等式》教学设计方案 人教版(A 版) 普通高中课程标准试验教科书必修第五册 【教学目标】 1、知识与技能目标 (1)掌握基本不等式2 a b ab +≤,认识其运算结构; (2)了解基本不等式的几何意义及代数意义; (3)能够利用基本不等式求简单的最值。 2、过程与方法目标 (1)经历由几何图形抽象出基本不等式的过程; (2)体验数形结合思想。 3、情感、态度和价值观目标 (1)感悟数学的发展过程,学会用数学的眼光观察、分析事物; (2)体会多角度探索、解决问题。 【能力培养】 培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。 【教学重点】 应用数形结合的思想理解不等式,并从不同角度探索不等式2 a b ab +≤的 证明过程。 【教学难点】 基本不等式2 a b ab +≤等号成立条件。 【教学方法】 教师启发引导与学生自主探索相结合 【教学工具】 课件辅助教学、实物演示实验 【教学过程设计】 一、 创设情景,引入新课 如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个

直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系 赵爽弦图 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。 设直角三角形的两条直角边长为a,b 那么正方 形的边长为22a b +。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有 222a b ab +=。 2 .得到结论:一般的,如果 )""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+ 当22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即.2)(22ab b a ≥+ 4.基本不等式 1)特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥,通常我

人教版高中数学,基本不等式(一)

人教版高中数学同步练习 §3.4 基本不等式:ab ≤ a + b 2(一) 课时目标 1.理解基本不等式的内容及其证明; 2.能利用基本不等式证明简单不等式. 1.如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”号). 2.若a ,b 都为正数,那么当且仅当a =b 时,等号成立),称上述不等式为基本不等式,其中a +b 2 称为a ,b 的算术平均数,ab 称为a ,b 的几何平均数. 3.基本不等式的常用推论 (1)ab ≤????a +b 22≤a 2+b 22 (a ,b ∈R ); (2)当x >0时,x +1x ≥2;当x <0时,x +1x ≤-2. (3)当ab >0时,b a +a b ≥2;当ab <0时,b a +a b ≤-2. (4)a 2+b 2+c 2≥ab +bc +ca ,(a ,b ,c ∈R ). 一、选择题 1.已知a >0,b >0,则a +b 2,ab , a 2+b 22,2ab a +b 中最小的是( ) A.a +b 2 B.ab C. a 2+b 22 D.2ab a +b 答案 D 解析 方法一 特殊值法. 令a =4,b =2,则a +b 2=3,ab =8, a 2+b 22=10,2ab a +b =83.∴2ab a +b 最小. 方法二 2ab a +b =21a +1b ,由21a +1b ≤ab ≤a +b 2≤ a 2+b 22,可知2ab a +b 最小. 2.已知m =a +1a -2 (a >2),n =????12x 2-2 (x <0),则m 、n 之间的大小关系是( ) A .m >n B .m n . 3.设a ,b ∈R ,且a ≠b ,a +b =2,则必有( ) A .1≤ab ≤a 2+b 22 B .ab <1

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(2 22222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >> ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =-- ⅰ)当0a b >>时,0,n n a b b a -><,则()()0n n a b b a --< ⅱ)当0a b =>时,0,a b -=,则()()0n n a b b a --=

相关文档
最新文档