无线传感器网络汇聚节点的设计与实现

无线传感器网络汇聚节点的设计与实现
无线传感器网络汇聚节点的设计与实现

无线传感器网络汇聚节点的设计与实现

由于传统的传感器采用的是电缆形式,它不仅使系统成本增加,而且也产生了许多不同信号之间的干扰。文章采用无线传感器网络(WSN)方法,大大减少了连接的规模,而且安装更容易,信号更稳定。与传统传感器相比,无线传感器网络具有预防性维护方便、成本低、适合恶劣环境应用等优点。文章对无线传感器网络中汇聚节点的重要性进行了分析和讨论,并给出了硬件平台和软件平台的详细设计。在硬件平台上,设计了LPC2214处理器和CC2530模块的无线通信装置。为了确保传感器节点的网络灵活性,ZigBee作为无线通信协议。通过μμC/OS-II实时操作系统提供设计软件系统。该设计满足水槽节点的要求,并成功应用于大型油船温度监测系统

标签:无线传感器网络;ZigBee;sink节点;μc/OS-II;温度监测

引言

无线传感器网络的节点安装过程较为灵活,布线相对简单,通常情况下,通过电池等设备进行供电,对于远程设备可以实时监测,本文介绍了一种无线传感器网络汇聚节点的设计。其采用ARM处理器和CC2530作为硬件平台,以Zigbee 作为无线通信协议,μC/OS-II为操作系统,完成了汇聚节点应具备的功能,并成功运用于大型油船的温度监控系统。

1 无线传感器网络汇聚节点介绍

无线传感器网络一般通过三个部分组合而成,分别是传感器节点、汇聚节点以及远程客户端三级网络系统,对特定环境的物理量进行检测和感知是通过传感节点完成的,通过把这些物理量转化成电量,以供整个系统进行判断和处理。汇聚节点在整个网络中有两部分作用,其一是对传感器节点传输过来的数据进行处理,其二是把远程控制中心的命令发送到每一个传感器节点。所以,汇聚节点同时和远程终端以及传感器节点进行通信。

2 汇聚节点的总体设计

2.1 硬件平台的设计

根据汇聚节点的工作特性,硬件平台选用LPC2214芯片作为中央处理器,其采用ARM7TDMI-S為内核,是ARM体系中的一款高端芯片。内含多个定时器和计数器;LPC2214集成多种通信接口,能较好地满足通信领域的要求。硬件连接图如图1所示。

汇聚节点不仅需要与远程终端进行通信,而且还需与传感器节点进行通信,其计算能力较强,速度较快,所以对系统进行通讯接口的扩展。在汇聚节点与传感器节点之间采用无线通讯方式满足无线传感器节点数目庞大、分布较广,且工

智能家居系统中无线传感器网络的设计

智能家居系统中无线传感器网络的设计 智能家居系统中无线传感器网络的设计 随着时代的发展,人们将更多的注意力放在了生活环境的安全性、舒适性和便利性上,从而 出现了智能家居的概念。智能家居控制系统使人们可以对家居内的任意电器进行数字化控制,利用计算机技术、网络通讯技术将与家居生活有关的各种设备有机地结合在一起,进行集中管理,让家居生活更加舒适、安全、有效。本文以ZigBee技术对智能家居内部进行无线网络组网,通 过ZigBee无线传感器网络节点的设计,实现节点对各种传感器信息的采集、传输和控制功能。1Zigbee技术ZigBee技术是一种强调极低耗电、极低成本的短距离无线网络技术,遵循IEEE802.15.4标准。它专注于低速率传输控制,网络容量大,时延短,提供数据完整性检查, 加密算法采用AES-128,网络扩充性强,有效覆盖范围为10~75m,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭环境,通信频率采用2.4GHz 免执照频段。ZigBee是一组基于IEEE802.15.4无线标准研制开发的,有关组网、安全和应用软件方面的技术标准。IEEE802.15.4仅定义了MAC层和物理层协议,而ZigBee联盟则对其网络层和应用层进行了标准化。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其他节点获得。2系统结构设计无线传感器网络系统主要由传感器、CC2430无线模块构成,结构图。 无线传感器网络采用树状结构,网络中有一个协调器,负责整个网络中数据的处理、转发以及网络的管理。终端节点(传感器节点)上电复位后,会搜索协调器节点,当能够搜索到协调器时,直接申请加入网络。当终端节点搜索不到协调器时,这时就会通过路由器节点找到协调器来加入网络。加入网络后保持待机状态,当有数据需要发送时,按照组网时的路径来收发数据信息。协调器通过串口与PC机相连,利用超级终端实现发送命令或者显示数据。3硬件电路设计本文设计的无线传感器网络系统的硬件结构主要由协调器模块,路由器模块,传感器模块,串口转换模块,供电模块以及PC机等组成。其中协调器、路由器、传感器3个模块作为主要的无线通信模块,由主控芯片CC2430作为数据处理以及无线收发器。其系统硬件电路结构示意图。3.1主控芯片选用CC2430芯片作为无线收发器和数据处理及控制器。CC2430在单个芯片上整合了ZigBee射频前端、内存和微控制器。它采用增强型8051MCU、32/64/128kB 闪存、8kBSRAM等高性能模块,还包含模拟数字转换器、几个定时器、AES-128协同处理器、看门狗定时器。32kHz晶振的休眠模式定时器、上电复位电路、掉电检测电路以及21个可编程I/O引脚。3.2无线模块设计1)协调器模块协调器节点由电压转换模块、按键模块、LCD模块、LED指示灯、时钟、处理器CC2430、天线等部分组成。CC2430的工作电压为3~3.3V,所以要用电压转换模块把电压从5V降低到3.3V左右;LED指示灯用来显示协调器节点网络状态信息(如是否组网成功);LCD模块是用户和传感器网络的交互界面,用来显示功最长能菜单,用户通过按键来选择功能菜单。其电路图。 2)传感器模块与路由器模块传感器模块亦即是终端节点模块,由传感器、处理器CC2430、天线、LED指示灯、时钟等部分组成。LED指示灯由P1.0、P1.1口控制。传感器模块就是在协调器模块的基础上去掉了LCD,而加入了传感器。传感器选用了DHT11温湿度传感器,与P0.0口相连,来负责数据采集。路由器模块与传感器模块的硬件电路相同,只是在编程实现功能上有所不同。4无线网络系统软件设计在ZigBee网络中,只有那些可以成为ZigBee协调器的设备才能建立新网络。协调器首先执行信道扫描,如果发现了一个合适的

传感器电路设计毕业论文范文

毕业设计 设计题目:传感器电路设计

目录 1. 引言 1 2. 溶解氧传感器简介 1 3.信号输入部分电路 4 3.1 电源滤波电路图 4 3.2 信号放大电路 5 3.2.1信号放大电路图 5 3.3 AD623放大器简介 6 3.3.1AD623放大器的特点 6 3.3.2AD623放大器的工作原理 6 4 单片机电路7 4.1 单片机电源电路图8 4.2 89LPC925芯片简介8 4.2.1 P89PLC925芯片主要功能8 4.2.2 P89PLC925的低功耗选择11 4.2.3 P89PLC925的极限参数11 4.2.4 P89PLC925芯片管脚图11 5.MiniICP下载线的电路连接13 6.PCB板的绘制13 7.程序流程14 8. 总结16 参考文献16

传感器电路设计 摘要:溶解氧数字化传感器是应用单片机控制的智能化传感器,它可以对液体中溶解氧 的含量进行准确的测量。本设计从总体上介绍了溶解氧数字化传感器的工作原理,着重介 绍了电路元器件的选取以及输入信号的放大和P89LPC925芯片的工作原理,利用P89LPC925 芯片实现对溶解氧浓度的准确测量。 关键词:溶解氧传感器;P89LPC925;AD623 The design of the dissolved oxygen sensor (College of Physics and Electronic Engineering, Electrical Engineering and Its Automation, Class2 Grade2003, 0323110235) Abstract:Dissolved oxygen digital sensor is a king of intelligent sensor which use single-chip computer to control, it could measure the oxygen dissolved in liquid accurately. This design introduces the work principle of dissolved oxygen digital sensor, it introduces the selection of the circuit components and amplification of input signals and the work principle of P89LPC925 chip, P89LPC925 chip using the dissolved oxygen concentration on the measurement accuracy. Key Words: dissolved oxygen sensor; P89LPC925; AD623 1 引言 氧是维持人类生命活动必不可少的物质,它与人类的生存息息相关。氧也是与化学、生化反应、物理现象最密切的一种化学元素,无论是在工业、农业、能源、交通、医疗、生态环境等各个方面都有重要作用。特别是在水产养殖中,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响。缺溶氧(溶解氧低于4mg/L)时将导致水生物窒息死亡;低溶氧导致水生物生长缓慢,增重率低而饵料系数高,对疾病的抵抗能力发病率高,生物的生长受到限制;高溶氧时某些鱼类幼体可能会出现气泡病。因此溶解氧浓度的精确测量显得尤为重要。 2 溶解氧传感器简介 溶解氧是溶解在水中的分子态氧,该定义是可查资料[1]-[4],随着科技和经济的发展,溶解氧测量已从水介质延伸到了非水液体介质,如丙酮、苯、氯苯、环乙烷、甲醇、正辛烷。分布方式有水平分布和垂直分布两种.溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。

无线传感器网络的特点

无线传感器网络的特点 大规模网络 为了获取精确信息,在监测区域通常部署大量传感器节点,传感器节点数量可能达到成千上万,甚至更多。传感器网络的大规模性包括两方面的含义:一方面是传感器节点分布在很大的地理区域内,如在原始大森林采用传感器网络进行森林防火和环境监测,需要部署大量的传感器节点;另一方面,传感器节点部署很密集,在一个面积不是很大的空间内,密集部署了大量的传感器节点。 传感器网络的大规模性具有如下优点:通过不同空间视角获得的信息具有更大的信噪比;通过分布式处理大量的采集信息能够提高监测的精确度,降低对单个节点传感器的精度要求;大量冗余节点的存在,使得系统具有很强的容错性能;大量节点能够增大覆盖的监测区域,减少洞穴或者盲区。 自组织网络在 传感器网络应用中,通常情况下传感器节点被放置在没有基础结构的地方。传感器节点的位置不能预先精确设定,节点之间的相互邻居关系预先也不知道,如通过飞机播撒大量传感器节点到面积广阔的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。在传

感器网络使用过程中,部分传感器节点由于能量耗尽或环境因素造成失效,也有一些节点为了弥补失效节点、增加监测精度而补充到网络中,这样在传感器网络中的节点个数就动态地增加或减少,

从而使网络的拓扑结构随之动态地变化。传感器网络的自组织性要能够适应这种网络拓扑结构的动态变化。动态性网络传感器网络的拓扑结构可能因为下列因素而改变:①环境因素或电能耗尽造成的传感器节点出现故障或失效;②环境条件变化可能造成无线通信链路带宽变化,甚至时断时通;③传感器网络的传感器、感知对象和观察者这三要素都可能具有移动性;④新节点的加入。这就要求传感器网络系统要能够适应这种变化,具有动态的系统可重构性。 可靠的网络 传感器网络特别适合部署在恶劣环境或人类不宜到达的区域,传感器节点可能工作在露天环境中,遭受太阳的暴晒或风吹雨淋,甚至遭到无关人员或动物的破坏。传感器节点往往采用随机部署,如通过飞机撒播或发射炮弹到指定区域进行部署。这些都要求传感器节点非常坚固,不易损坏,适应各种恶劣环境条件。由于监测区域环境的限制以及传感器节点数目巨大,不可能人工“照顾每个传感器节点,网络的维护十分困难甚至不可维护。传感器网络的通信保密性和安全性也十分重要,要防止监测数据被盗取和获取伪造的监测信息。因此,传感器网络的软硬件必须具有鲁棒性和容错性。

无线传感器网络系统的设计思路

无线传感器网络系统的设计思路 一、无线传感器网络技术应用广泛,百花齐放 无线传感器和传感器网络,是具有非常广泛的市场前景,将会给人类的生活和生产的各个领域带来深远影响的新技术。美国的《技术评论》杂志在论述未来新兴十大技术时,更是将无线传感器网络列为第一项未来新兴技术,《商业周刊》预测的未来四大新技术中,无线传感器网络也列入其中。 无线传感器网络有着十分广泛的应用前景,在工业、农业、军事、环境、医疗,数字家庭,绿色节能,智慧交通等传统和新兴领域有具有巨大的运用价值,无线传感器网络将无处不在,将完全融入我们的生活。图一是无线传感器应用示意。 由于无线传感器和无线传感器网络巨大的市场和应用前景,所以目前全世界许多公司都推出了各自的无线传感器网络。这些技术百花齐放,各有千秋,但是这些技术之间,几乎不能相互兼容和互通。 目前正在开发中的各种无线传感器技术,从这个图我们可以看到,不同的无线传感器网络,最终都是希望实现和互联网的通讯,这可能是这些传感器网络最终交汇的通道。 二、如何选择合适的无线传感器技术 无线传感器网络系统的基本架构包括三部分,第一部分是无线收发芯片,其职责是将数字信息转换为高频无线信号传送出去和将接收到的高频无线信号恢复成数字信息。无线传感器收发芯片而言,IEEE 802.15.4能为无线传感器应用提供最佳方案,这是因为IEEE 802.15.4规范可能是主要且可能唯一的实用标准。目前全球有多家公司提供这方面的收发芯片。像TI 公司的CC2420/CC2520等芯片都特别适用于钮扣电池和低电能应用的低功耗特性。 实现一个典型的无线传感器网络节点和路由器,可以采用多芯片方案,,由一个无线收发芯片和一个微控制器(单片机)组成,微处理器可以采用低功耗的MSP430,无线芯片可以采用CC2520/CC2420等。 随着技术不断发展,已经有越来越多的公司,将无线收发器芯片和微控制器和无线收发器做成了一个片上系统(SoC),例如TI公司采用8051内核的CC2430/CC2431等ZigBee无线单片机,随着无线传感器网络对计算能力提高要求,最近Freescale公司也推出了ARM内核的32位ZigBee无线单片机。使用这些SoC无线单片机设计无线传感器网络,将使无线传感器节点具有更小的体积,更低的功耗和更低的价格;TI公司在国内的技术合作伙伴无线龙科技公司等,也同时提供这些芯片,开发工具的相关技术支持。 无线传感器网络构架第二部分是运行于单片机或者无线单片机内部的嵌入式软件,也称软件协议栈(network stack),网络堆栈有两个职责。首先它必须要处理节点间的无线链接通信质量的频繁变化和环境因数对无线通讯造成的干扰,具有对网络自组织,自恢复的能力;网络堆栈的第二个职能是要具有很强的路由算法能力,确保信息可靠高效地通过各种网络拓扑(星状/网状等等)从源节点(如果现有,可以通过成百上千路由节点)发送到目标节点。确保通讯的实时性要求。 ZigBee联盟是由众多技术供应商和开发商组成的独立标准组织。也是目前世界是最大的,基于IEEE 802.15.4平台的网络软件协议栈标准提供联盟。 该组织从ZigBee2004、ZigBee2006、ZigBee2007不断发展,目前提供的两个网络栈是:ZigBee和ZigBee PRO。从使用角度看ZigBee堆栈很适合一般包含十到几百个节点的小型网络。而ZigBee PRO是ZigBee超集,它增加了一些功能,可对网络进行扩展并更好地应对来自其他技术的无线干扰,而且可以适应更大型的网络和具有更加可靠的路由通讯算法和无线通讯可靠性。 无线传感器网络构架第三部分应用软件,这部分包括各种根据用户现有开发的软件代码,

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

无线传感器网络课程设计报告

无线传感器网络 课程设计报告 (2018-2019学年第一学期) 题目安全的无线传感器网络数据传输系统的设计指导老师 班级

目录1需求分析 2传感器网络概述 2.1传感器网络体系结构 2.2传感器网络协议栈 3数据传输方式 4设计 4.1主要数据结构 4.2 课程设计的条件 5测试 6使用说明 6.1应用程序功能的详细说明 6.2应用程序运行环境要求 6.3输入数据类型、格式和内容限制 6.4各模块程序段说明 7总结提高 7.1课程设计总结 7.2课程设计评价

1 需求分析 1.1 功能与技术需求 随着信息时代的逐渐来临,物联网的建设也越来越完善,为信息的存储和传输提供了完善的路径,而无线传感网是物联网的重要组成部分,它的建设成为物联网建设的关键。无线传感器网络是由大量微型传感器节点以自组织和多跳的方式构成的网络。它具有资源非常受限、无线通信链路质量不稳定和网络拓扑动态变化等诸多显著特点,与现有的互联网和其它无线网络存在较大差别,向可靠数据传输提出新的挑战和要求。在数据传输可靠性保障方面,采用了加密算法保证在传输过程中的安全性。 2 传感器网络概述 2.1传感器网络体系结构 典型的传感器网络结构包括传感器节点、汇聚节点和管理节点。随即部署在监测区域内的大量传感器节点通过自组织方式构成网络。传感器节点的监测数据沿着其他节点逐跳传输,监测数据可能被多个节点处理,经过多跳后被路由到汇聚节点,最后通过互联网或者卫星到达管理节点和用户。管理节点对传感器网络进行配置和管理。传感器网络体系结构如图所示

2.2传感器网络协议栈 与互联网协议栈(TCP/IP)的五层相对应,传感器网络协议栈包括:物理层、数据链路层、网络层、传输层和应用层。另外协议栈还包括时间同步、节点定位、网络管理、QoS保障、移动管理、任务管理、能量管理和安全机制等。物理层提供信号调制、无线收发和相应的密码服务:数据链路层负责信道接入、拓扑生成、差错控制、介质访何控制、数据成帧以及数据帧监测等;网络层主要负责路由生成,路由选择和拓扑管理等;传输层负责数据流的传输控制,网络的协同工作等:时间同步、节点定位、网络管理、QoS 保障、移动管理、任务管理、能量管理和安全机制等通常跨越多个网络协议栈层次

无线传感器网络节点硬件

1 系统结构概述 本文设计的WSN硬件平台,由若干传感器节点,具有无线接收功能的汇聚节点,以及一台PC机组成。 根据无线传感器网络的应用需求以及功能要求,节点的设计主要包括如下几个基本部分:传感器单元、处理器单元、A/D单元、射频单元、供电单元以及扩展接口单元。节点的硬件体系结构框架如图1-1 所示。 图1-1 传感器单元负责对所关心的物理量进行测量并采集数据,提供给处理器单元进行处理;处理器单元负责数据处理及控制整个节点的正常工作;射频天线单元负责与其他节点进行无线通信,交换控制信息和相关数据;供电单元负责为节点提供运行所需的能量;扩展接口可以实现节点平台的功能拓展,以适应不同的应用需求。 2 节点核心模块设计: 2-1电源模块设计: 电源是设计中的关键部分,电源稳定工作是整个节点正常工作的保证,设计合理的电源电路至关重要。节点包含模拟器件和数字器件,模拟器件的抗干扰能力较差,且数字器件常常为模拟器件的噪声源,故为了 图2-1-1 提高电路的抗干扰能力,模拟器件接模拟地并采用数字地与模拟地单点共地。电源可选用电池或干电池,电源芯片可选用XC6209、XC6221系列的LDO电源芯片,分别提供3.3V和1.8V的数字与模拟电压,电路如图2-1-1所示。 2-2传感器 模块设计: 温度传感器设 计:本设计采用 LM75DM-33R2串行 可编程温度传感 器,这种传感器在 环境温度超出用户 变成设置时通知主 控制器。滞后也是 可以编程解决。它 采用2线总线方式,允许读入当前温度,并可配置器件。它是数字型温度传感器,直接从

寄存器读出温度参数,并可实现编程设置INT/CMPTR输出极性。 图2-2-1是其功能图,因为设计中只是简单的监测环境的温度,故只需一片 LM75,所以地址线A0、A1、A2置地,INT/CMPTR悬空,设计的接口电路如图2-2-2所示。 图2-2-1 图2-2-2 因为cc2431本身带有A/D模块,也可采用温度传感器AD590测量温度,其接口电路如图2-2-3。

智能家居系统中无线传感器网络的设计

智能家居系统中无线传感器网络的设计 摘要:本文主要介绍ZigBee无线传感器网络,将ZigBee技术应用到智能家居系统中。提出了一种以ZigBee技术为基础的智能家居系统设计方案。阐述了无线传感器网络的总体构成,CC2430无线芯片为棱心,选取了合适的ZigBee模块进行了硬件电路设计。研究并分析了ZigBe技术。设计并实现了串口收发程序,传感器程序,以及节点间的无线通信程序,并根据ZigBee协议,使节点组成树状网络,最终实现系统的监测与控制。结果表明,本系统运行稳定,达到了设计目的,有着广泛的应用前景。 关键词:智能家居;无线传感器网络;ZigBee;CC2430 随着时代的发展,人们将更多的注意力放在了生活环境的安全性、舒适性和便利性上,从而出现了智能家居的概念。智能家居控制系统使人们可以对家居内的任意电器进行数字化控制,利用计算机技术、网络通讯技术将与家居生活有关的各种设备有机地结合在一起,进行集中管理,让家居生活更加舒适、安全、有效。本文以ZigBee技术对智能家居内部进行无线网络组网,通过ZigBee无线传感器网络节点的设计,实现节点对各种传感器信息的采集、传输和控制功能。 1 Zigbee技术 ZigBee技术是一种强调极低耗电、极低成本的短距离无线网络技术,遵循 IEEE802.15.4标准。它专注于低速率传输控制,网络容量大,时延短,提供数据完整性检查,加密算法采用AES-128,网络扩充性强,有效覆盖X围为10~75 m,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭环境,通信频率采用2.4 GHz免执照频段。

ZigBee是一组基于IEEE802.15.4无线标准研制开发的,有关组网、安全和应用软件方面的技术标准。IEEE802.15.4仅定义了MAC层和物理层协议,而ZigBee联盟则对其网络层和应用层进行了标准化。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其他节点获得。 2 系统结构设计 无线传感器网络系统主要由传感器、CC2430无线模块构成,结构图如图1所示。 无线传感器网络采用树状结构,网络中有一个协调器,负责整个网络中数据的处理、转发以及网络的管理。终端节点(传感器节点)上电复位后,会搜索协调器节点,当能够搜索到协调器时,直接申请加入网络。当终端节点搜索不到协调器时,这时就会通过路由器节点找到协调器来加入网络。 加入网络后保持待机状态,当有数据需要发送时,按照组网时的路径来收发数据信息。协调器通过串口与PC机相连,利用超级终端实现发送命令或者显示数据。 3 硬件电路设计

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

无线传感器网络课程设计

无线传感器网络课程设计 ------远程数据采集系统设计 学生姓名: 指导教师:峰斌 专业:电子信息工程 班级:D0745 学号: 设计时间:2011年1月3日至 2011年1月20日 实验地点:新实验楼524

随着无线网络技术的飞速发展和同益普及,低速、低功耗、低成本的ZigBee 无线网络技术,己成为当前传感器网络及自动化控制领域中的一个重要研究课题。本论文对ZigBee技术进行广泛深入的分析和研究,使用ZigBee协议设计应用程序并结合硬件进行实验,主要研究工作如下: (1)介绍了ZigBee相关概念、应用前景和研究现状、体系结构、优缺点以及网络拓扑、设备类型、ZigBee网络的基本框架、功能、特点等内容。 (2)对ZigBee网络层、应用层及ZigBee应用程序框架结构、功能进行了研究。分析了ZigBee协议栈的总体功能结构,着重讨论网络建立、路由机制、数据帧结构和数据传输模式、数据处理模式以及编程接口,展示了整个系统的应用程序编写过程。 (3)分析了ZigBee设备组成结构及硬件设计思路。在具体介绍JN5121处理器模块、电源模块、时钟模块、存储器模块以及各个接口模块的基础上给出了硬件设计的整体方案及硬件原理图。 (4)讨论了ZigBee网络与因特网的互联及数据交换方式。研究了https://www.360docs.net/doc/e710740693.html,嵌入式操作的定制及嵌入式数据库的应用。 (5)组建基于ZigBee技术的无线数据采集系统,以JN5121单片机和数字式温湿度传感器SHT10设计出了传感器网络节点,S3C2440控制器作为ZigBee网关。传感器节点通过无线通信方式将数据发送到ZigBee网关。ZigBee网关通过以太网网络将数据传输给监测中心主机,并对实验结果进行分析。 该系统具有良好的人机交互界面和远程访问功能,良好的可移植性和扩展性,可以根据具体要求方便地在数据采集模块上进行传感器的扩充以实现更多功能。 关键词:ZigBee技术,IEEE802.15.4,无线网络,https://www.360docs.net/doc/e710740693.html,

《无线传感器网络》试题.

《无线传感器网络》试题 一、填空题(每题4分,共计60分) 1、传感器网络的三个基本要素:传感器,感知对象,观察者 2、传感器网络的基本功能:协作地感知、采集、处理和发布感知信息 3、无线传感器节点的基本功能:采集、处理、控制和通信等 4、传感器网络常见的时间同步机制有: 5、无线通信物理层的主要技术包括:介质的选择、频段的选择、调制技术和扩频技术 6扩频技术按照工作方式的不同,可以分为以下四种: :直接序列扩频、跳频、跳时、宽带线性调频扩频 7、定向扩散路由机制可以分为三个阶段:周期性的兴趣扩散、梯度建立和路径加强 8、无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 9、无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术等 10、IEEE 802.15.4标准主要包括:物理层和MAC层的标准 11、简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成。 12、数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13、无线传感器网络可以选择的频段有:868MHZ、915MHZ、2.4GHZ 5GHZ 14、传感器网络的电源节能方法:休眠机制、数据融合等, 15、传感器网络的安全问题:(1) 机密性问题。 (2) 点到点的消息认证问题。 (3) 完整性鉴别问题。 16、802.11规定三种帧间间隔:短帧间间隔SIFS,长度为 28 μs 、点协调功能帧间间隔PIFS长度是 SIFS 加一个时隙(slot)长度,即78 μs 分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为128 μs

传感器与测控电路设计说明书

传感器与测控电路课程设计 说明书 设计题目电感式(螺管型)位移传感器的设计 学校湖南科技大学学院机电工程学院 班级 07级测控一班学号 0703030116 设计人李广 指导教师余以道杨书仪 完成日期 2010 年 6 月 22 日

目录 一、设计题目与要求 (2) 二、基本原理简述 (2) 三、设计总体方案拟定 (7) 四、传感器的结构设计 (8) 五、结构设计CAD图 (12) 六、测控电路的设计与计算 (12) 七、电路框图及电路CAD图 (14) 八、精度误差分析 (14) 九、参考文献 (16)

一、设计题目与要求 1、设计题目:电感式(螺管型)位移传感器的设计 2、设计要求: 采用差动变压器原理设计一个测量位移的传感器,并设计一测控电路对传感器的输出量进行处理,使信号能输入到A/D 转换器,进行一系列的测量与控制。 二、基本原理简述 电感式传感器是利用被测量的变化引起线圈自感或互感系数的变化,从而导致线圈电感量改变这一物理现象来实现测量的。因此根据转换原理,电感式传感器可以分为自感式和互感式两大类。 自感式电感传感器可分为变间隙型、变面积型和螺管型三种类型。 一、 螺管型自感传感器 有单线圈和差动式两种结构形式。 单线圈螺管型传感器的主要元件为一只螺管线圈和一根圆柱形铁芯。传感器工作时,因铁芯在线圈中伸入长度的变化,引起螺管线圈自感值的变化。当用恒流源激励时,则线圈的输出电压与铁芯的位移量有关。 铁芯在开始插入(x =0)或几乎离开线圈时的灵敏度,比铁芯插入线圈的1/2长度时的灵敏度小得多。这说明只有在线圈中段才有可能获得较高的灵敏度,并且有较好的线性特性。 1、工作原理 设线圈长度为l 、线圈的平均半径为r 、线圈的匝数为N 、衔铁进入线圈的长度la 、衔铁的半径为ra 、铁心的有效磁导率为μm ,则线圈的电感量L 与衔铁进入线圈的长度la 的关系可表示为 [] 2222 2)1(4a a m r l lr l N L -+=μπ

无线传感网络技术课程设计报告模板

辽宁工业大学无线传感网络技术课程设计(论文)题目:加速度传感器数据采集系统 院(系):电子与信息工程学院 专业班级:物联网 学号: 学生姓名: 指导教师: 教师职称: 起止时间:14-06-23至14-07-11

辽宁工业大学课程设计说明书(论文) 课程设计(论文)任务及评语院(系):电子与信息工程学院教研室:

目录 第1章加速度数据采集系统设计方案 (1) 1.1 引言 (1) 1.2 总体方案论述 (1) 第2章加速度数据采集系统的硬件设计 (2) 2.1 系统所需的硬件 (2) 2.2 硬件系统各部分实现的功能 (4) 2.3系统整体实现的功能简介 (5) 第3章加速度传感器数据采集系统的软件设计 (6) 3.1 系统软件的功能说明 (6) 3.2 系统程序流程图 (6) 3.3 系统主要代码 (7) 第4章课程设计总结 (15) 参考文献 (16)

第1章加速度数据采集系统设计方案 1.1 引言 随着智能化脚步的到来,人们已经发明出了很多用于测量的高智能产品,其中就有加速度传感器,加速度传感器是通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的移动速度,通过分析动态加速度,你可以分析出设备移动的方式。加速度传感器不仅可以测量牵引力产生的加速度,甚至可以用来分析发动机的振动。其应用非常广泛,例如加速度传感器可应用于地震波的检测,车祸报警的应用,还可用于高压电线的摆动监测,应用十分的广泛。 1.2 总体方案论述 加速度数据采集系统的总体结构如图1所示。系统主要由三部分组成,包括加速度传感器节点,协调器,PC。首先我们将编写好的协调器代码通过IAR环境烧写到协调器中,然后修改协调器中各节点ID,此时协调器将会组建一个小范围的网络来控制各个节点协调工作。加速度传感器节点将采集到的数据通过无线的方式传给协调器,协调器通过串口将数据上传到上位机的显示屏。本次的系统设计在原有的基础上增加了难度,不仅通过串口通信输出到 PC 机上实时显示,而且同过无线的方式用加速度传感器采集到的信息来控电机,通过转动与停止来检测是否产生加速度。 其系统组成框图如图1.1所示 图1.1 系统总体框图

无线传感器网络中的同步算法

WWW.cismag.com.cn 54 引 言 无线传感器网络(WSNs)是当前的一个研究热点,被称为是21世纪最重要的技术之一。一般来说,无线传感器网络是由大量的传感器节点组成,这些节点能够感知周围的环境,具有数据采集、处理、无线通信和自动组网的能力,能协作完成大型或复杂的监测任务。无线传感器网络有监测精度高、容错性好、覆盖区域大等显著优点,在军事、环境监测、工业控制和城市交通等方面有着广泛的应用前景,特别适合部署在恶劣环境和人不宜到达的场所。时间同步是WSNs中的一项关键技术,无线传感器网络的许多应用和关键技术中都离不开时间同步,例如,在多传感器数据融合技术中,网络中的节点必须以一定的精度保持时间同步,否则根本无法实现数据融合。在低能耗MAC协议的设计中,为减少能量的消耗,通常是通过调节占空比来实现TMDA调度算法的,但需要参与通信的双方首先实现时间同步,并且同步精度越高,防护频带越小,相应的功耗也越低。定位技术也依赖于时间同步,在声波测距定位中,如果网络中的节点保持时间同步,则声波在节点间的传输时间很容易被确定,反之亦然。节点间的数据处理也离不开时间同步,通信是无线传感器网络中最主要的能 耗单元,传统分布式系统中的集中式 数据处理模式需要频繁交换原始数据,不适合无线传感器网络;利用节点上的独立处理能力,发挥节点间的协同作用,对原始采样数据进行加工与萃取,以减小网络传输开销是延长网络生命周期的有效途径。另外,进行数据压缩和剔除冗余数据等也是减小网络传输的手段,但进行这些处理需要目标附近的节点具有统一的时标来判定不同的原始监测数据是对同一事件的刻画,还是不同事件的描述。更重要的是,无线传感器网络的一些独特的特性:对于能量、带宽等的限制等,使得现有网络的同步技术不再适合于这种新型的网络,因而有必要研究WSN中的时间同步。 同步算法分析 1. 时间同步的基本原理要设计网络中的时间同步算法,必须要了解同步的原理。图1通过一对节点的双向信息交换,介绍了两个节点是如何同步的。 如图1所示,在T1时刻,节点A向节点B发送一个包含A的标识和T1值的synchronization_pulse信息包,要求与节点B同步;在T2时刻,节点B收到节点A发送的包,此时T2=T1+dr+de,其中dr表示时钟漂移,de表示传播时延;在T3时刻,节点B向节点A返回一个acknowl-edgment信息包,该包包含B的标识以及T1、T2、T3的值;在T4时刻,节点A接收到节点B返回的ac-knowledgment信息包,此时T4=T3-dr+de。 假定,在T1到T4这么短的时间内,时钟漂移和传播时延不会发生变化,则可以算出时钟漂移dr=[(T2-T1)-(T4-T3)]/2,传播时延de=[(T2-T1)+(T4-T3)]/2。 知道了时钟漂移,则节点A就能纠正其时钟,从而与节点B的时钟达到同步,即发送方把其时钟与接收方的时钟同步,这就是发送方-接收方同步的基本原理。 在传统计算机网络中,时间同步 基本上都是采用这种发送方-接收方的同步算法,那么在传感器网络中能不能采用这种方法 呢? 通信技术 无线传感器网络中的同步算法 摘 要:无线传感器网络由于其自身的独特性,使得传统网络的时间同步算法不适合于这种网络。本文分析了当前传感器网络中两种典型的同步算法,提出了一种新的设想。 韩翠红 李立宏 赵尔沅/ 文 图1 节点间双向消息交换的时间线

传感器设计和计算题

设计题(20分,每个10分) 1.依据已学知识设计一光纤位移传感器(要求画出框架图,并解释位移与输出信号的关系) 2.依据已学知识设计一种加速度传感器(要求画出结构图并注明所用的敏感元件) 3.用所学知识设计出一种压力传感器,说明他的工作原理? P103 图4.10 光纤测压传感器或者P151 图6.26 对中套管 光纤 厚的膜片 0.254 mm 膜片管 2 . 7 6 9 3 . 9 3 7 4 . 8 2 6 4.光纤干涉仪有较高的灵敏度,具有非常大的动态范围等优势。利用集成

电路技术和目前的电光技术起来,请画出集成的迈克尔逊(Michelson)干涉仪,并写出具体部件。 激光器光探测器3 dB耦合器 反射的光纤端面 换能器 5.依据已学知识设计一硒蒸发膜湿度传感器(标明电极) 图见书本P187 页 6.用热释电传感器设计一个热释电报警器? 7.CCD图像传感器的工作原理? 8.依据已学知识设计一容器内液体重量传感器 9.依据已学知识设计一种热释电传感器(要求画出结构图并注明所用的敏感元件)

10. 画出你所认知的一种光电式传感器,要求注明结构 如图是光电管 11. 设计微弯光纤传感器104页 12. 依据已学知识设计一种筒式压力传感器(要求画出结构图并注明所用的敏感元件) 13. 依据已学知识设计一应变式感器(要求画出结构图并注明所用的敏感元件) 补偿片 工作片

应变电阻1和4沉积在杆的凹面处 应变电阻2和3沉积在杆的凸面处 14.依据已学知识,设计一个用差动变压式加速度传感器来测量某测试台平台振动的加速度(只画出原理图) 15.依据所学知识,设计一种实现自相关检测传感器(只画出原理图) 16.依据已学知识设计一种零差法检测的光纤相位传感器(要求只画出框架图)

无线传感器网络的时间同步问题

无线传感器网络的时间同步问题 摘要 时间同步对任何分布式系统都是一个关键的基础问题。分布式无线传感器网络广泛使用的同步时间,往往在范围,寿命和精度同步实现等方面有特殊要求,以及实现同步所需的时间和所需的能源。现有的时间同步方法需要扩展,以满足这些新的需求。我们列举了传感器网络未来的同步要求,并提出了我们自己的低能耗同步方案,事后同步。我们还描述了一个实验,其性能特点是使用很少的能量创造短暂的,局部的,但高精度的同步。 1.介绍 最近的发展小型化和低成本,低能耗设计导致积极研究在大规模,高度分散的小系统,无线,低功耗,无人值守传感器和致动器[ 1,7, 4 ] 。许多研究人员提出了创造传感器丰富的“聪明环境”的设想。通过有计划或临时部署数千个传感器,每一个短距离无线通信通道,并能够检测环境条件如温度,运动,声,光,或存在某些物体。 时间同步对任何分布式系统都是一个关键的基础设施。分布式,无线传感器网络使特别是广泛使用的同步时间:例如,将时间序列的接近侦测到的速度估计[ 3 ] ;测量声音的运行时间定位其来源[ 5 ] ;分发波束阵列[ 13 ] ;或制止重复邮件,由认识到他们所描述重复检测同一事件不同的传感器[ 6 ] 。传感器网络也有许多相同的要求,传统的分布式系统:精确的时间戳,往往需要在加密计划,以协调活动定于今后,供订购记录的事件在系统调试,等等。传感器网络应用的广泛性导致时间要求的范围,寿命和精度不同于传统的系统。此外,许多节点新兴的传感器系统将非系留,因此有小型的能源储备。所有通讯,甚至被动的听,将产生重大的影响,这些储备时间同步方法的传感器网络 因此,必须也考虑到他们消费的时间和精力。 在本文中,我们认为,非均质性要求在传感器网络应用的需要能源效率和其他方面的限制没有发现在常规分布式系统,甚至是各种硬件而传感器网络将部署,使目前的同步计划不足以完成这项任务。传感器网络,现有的计划将需要扩大和合并后新的方式,以便提供服务,以满足应用的需要与可能的最低能量支出。 在此框架内,我们提出我们的想法事后同步,极低功耗同步方法时钟在一个地方时,准确的时间戳记是需要具体的事件。我们还提出了实验这表明这个多式联运计划能够精确在1微秒。为了更好地级比的两种模式,它的组成。这些结果是令人鼓舞的,但仍是初步的,表现实验室条件下的理想化。 第2节中,我们提出了一些指标,可以用来区分两种类型所提供的服务同步 方法和要求的应用使用这些方法。第3节介绍我们的事后同步的想法,并介绍了实验的特点其表现。第4节描述今后的工作中,我们的结论在第5节。 2.时间同步的特征 许多不同的方法分配的时间同步在共同使用。如美国全球定位系统(GPS )[ 8 ]和WWV / WWVB广播电台由国家研究所标准与技术[ 2 ]提供参考美国时间和频率标准。网络时间协议,特别是在Mills的NTP [ 10 ] ,从这些主要来源的网络连接电脑分配时间。 在研究适用于传感器网络,我们已发现有用的特点是不同类型的时间沿线各轴同步。我们认为某些指标特别重要: 精密,无论是分散之间的一组同龄人,或最大误差对外部标准。 生命周期,这可以从持续同步持续只要网络运营,几乎瞬时(有益的,例如,如果节点要比

相关文档
最新文档