硫化橡胶和热塑性橡胶拉伸性能的测定

硫化橡胶和热塑性橡胶拉伸性能的测定
硫化橡胶和热塑性橡胶拉伸性能的测定

拉伸性能的测定

拉伸性能的测定 一.准备工作 (一)测量原始截面积So 测量试样原始截面尺寸时,应按照表选取量具。根据所测得的试样尺寸,(厚度在0.1mm 至小于3 mm 准确到±2%,其它试样准确到±1%)计算横截面积So 并至少保留4位有效数字或保留两位小数点。 量具或测量装置的分辩率 试样横截面尺寸 分辩率不大于 0.1~0.5 0.001 >0.5~2.0 0.005 >2.0~10.0 0.01 >10.0 0.05 圆形截面试样应在试样工作段的两端及中间处两个相互垂直的方向上各测1次直径,取其算术平均值,先用3处测得横截面积的最小值。横截面积So 按下式计算: 214 So d π= 矩形截面试样应在试样工作段的两端及中间处测量其宽度和厚度,选用3处测得横截面积中的最小值。横截面积So 按下式计算: So ab = 圆管纵向弧形试样在试样工作段的两端及中间处测量,选用3处测得横截面

积中的最小值。有关标准或协议无规定时,横截面积So 按下式计算: 当/b D <0.25 时 2 [1]6(2) b So ab D D a =+- 当/b D <0.17时 So ab = 计算时,管外径D 取标称值。 圆管截面试样应在管的一端两个相互垂直的方向各测1次外径,取其算术平均值。在同一管端圆周上相互垂直的方向测量4处管壁厚度,取其算术平均值。用平均外径和平均管壁厚度计算得到的横截面积作为标距内的原始横截面积。原始横截面积 So 按下式计算:()So a D a π=- (二)标记原始标距Lo 试样的原始标距所在位置一般应在平行长度居中对称的位置上。应采用不损伤试样或不影响试验结果的方法标记试样标距。例如采用打点机打的小冲点、细划线或细墨线等标记。标记应清晰,对于脆性试样,应可能采用不损伤表面的方法标记。比例试样的原始标距值,取计算结果最接近5mm 或10mm 的倍数,中间值向大的一方取值,标距的长度应精确到取值数值的±1%。 (三)选取试验机和引伸计 根据试样选取合适的夹持装置以及试验机合适的量程。一般是在量程80%左右。检定过的拉力试验机应满足1级或优于1级的准确度。引伸计标距应不小于试样标距的一半(即Le ≥1/2Lo )。 (四)确定试验速率 如仅测定上屈服强度时试验时的弹性应力速率应在标准的表4规定的范围内尽可能保持恒定的速率如仅测定下屈服强度,平行长度屈服期间应变速率应在0.00025/s ~0.0025/s 范围内尽可能保持恒定。。当不能直接调节这一应变速率,允许调节屈服即将开始前的应力速率,不超过标准的表4规定的最大速率,直至屈服阶段完成之前不再改变试验机的控制。 若仅测定抗拉强度,在弹、塑性范围内,试样工作段的应变速率可达到0.008/s 。 材料弹性模量E/(N/mm 2) 应力速率(N/mm 2)。s 1- 最小 最大 <150 000 2 20 ≥150 000 6 60

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

橡胶材料种类性能表

橡胶材料种类性能表 序 号 橡胶种类主要材料优点劣势适用范围使用温度 1 天然橡胶 (NR)异戊二烯聚合 物 优良的回弹性,拉 伸强度、伸长率、 耐磨性,撕裂和压 缩永久变形性能 不耐油,耐 天候、臭 氧、氧的性 能较差 制作轮胎、减 震零件、缓冲 绳和密封零件 -60~100℃ 2 丁苯橡胶 (SBR)丁二烯与苯乙 烯的共聚物 含10%苯乙烯的 丁苯-10有良好寒 性,含30%苯乙 烯的丁苯-30耐磨 性优良 耐油、耐老 化性能较差 制作轮胎和密 封零件 -60~120℃ 3 丁二烯橡 胶(BR)丁二烯聚合物常用的顺丁二烯橡 胶,耐寒、耐磨及 回弹性能较好 制品不耐 油,不耐老 化 适于制作轮 胎、密封零 件、减震零 件、胶带和胶 管等制品 -70~100℃ 4 氯丁橡胶 (CR)氯丁二烯聚合 物 耐天候,耐臭氧老 化,有自熄性,耐 油性能仅次于丁腈 橡胶,拉伸强度、 伸长率、回弹性优 良,与金属和织物 粘结性很好 制品不耐合 成双酯润滑 油及磷酸酯 液压油 适于制作密封 圈及密封型 材、胶管、涂 层、电线绝缘 层、胶布及配 制胶粘剂等 -35~130℃ 5 丁腈橡胶 (NBR)丁二烯丙烯腈 的共聚物 一般含丙烯腈 18%、26%或 40%,含量愈高, 耐油、耐热、耐磨 性能愈好,但耐寒 性则相反。含羧基 的丁腈橡胶,耐 磨、耐高温、耐油 性能优于丁腈橡胶 制品不耐天 候、不耐臭 氧老化、不 耐磷酸酯液 压油 丁腈橡胶适于 制作各种耐油 密封零件、膜 片、胶管和软 油箱 -55~130℃ 6 乙丙橡胶 (EPM、 EPDM )乙烯、丙烯的 二元共聚物 (EPM)或乙 烯、丙烯、二 烯类烯烃的三 元共聚 (EPDM) 耐天候、耐臭氧老 化,耐蒸汽、磷酸 酯液压油、酸、碱 以及火箭燃料和氧 化剂,电绝缘性能 优良 品不耐石油 基油类 适于制作磷酸 酯液压油系统 的密封零件、 胶管及飞机、 汽车门窗密封 型材、胶布和 电线绝缘层 -60~150℃ 7 丁基橡胶 (IIR)异丁烯和异戊 二烯的共聚物 耐天候、臭氧老 化,耐磷酸酯液压 油,耐酸、碱、火 箭燃料及氧化剂, 制品不耐石 油基油类 适于制作轮胎 内胎,门窗密 封条,磷酸酯 液压油系统的 -60~150℃

拉伸曲线分析

试验原理:拉伸曲线分析 拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。试验材料的全面性能反映在拉伸曲线上,因此为了对拉伸试验透彻了解,首先复习一下拉伸曲线,根据试验材料的特性,拉伸曲线可分为两种类型,典型的拉伸曲线(低碳钢)。 第1阶段:弹性变形阶段(oa) 两个特点: a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。 b 变形是完全可逆的。 加力时产生变形,卸力后变形完全恢复。从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。Oa段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。

由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是oa段的斜率,用公式求得: E=σ/ε oa线段的a点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过a点,应力-应变则不再呈直线关系,即不再符合虎克定律。比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。 第2阶段:滞弹性阶段(ab) 在此阶段,应力-应变出现了非直线关系,其特点是:当力加到b点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。这个阶段也称理论弹性阶段,当超过b点时,就会产生微塑性应变,可以用加力和卸力形成的闭合环确定此点,当加卸力环第1此形成开环时所对应的点为b点。 第3阶段:微塑性应变阶段(bc) 是材料在加力过程中屈服前的微塑性变形部分,从微观结构角度讲,就是多晶体材料中处于应力集中的晶粒内部,低能量易动位错的运动。塑性变形量很小,是不可回复的。大小仍与仪器分辨力有关。 第4阶段:屈服阶段(cde) 这个阶段是金属材料的不连续屈服的阶段,也称间断屈服阶段,其现象是当力加至c点时,突然产生塑性变形,由于试样变形速度非常快,以致试验机夹头的拉伸速度跟不上试样的变形速度,试验力不能完全有效的施加于试样上,在曲线这个阶段上表现出力不同程度的下降,而试样塑性变形急剧增加,直至达到e 点结束,当达到c点,在试样的外表面能观察到与试样轴线呈45度的明显的滑移带,这些带称为吕德斯带,开始是在局部位置产生,逐渐扩展至试样整个标距内,宏观上,一条吕德斯带包含大量滑移面,当作用在滑移面上的切应力达到临界值时,位错沿滑移方向运动。在此期间,应力相对稳定,试样不产生应变硬化。

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系 前言: 在橡胶制品过程中,一般必须测试的物性实验不外乎有: 拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏 6、弹性 7、扯断伸长率。 各种橡胶制品都有它特定的使用性能与工艺配方要求。为了满足它的物性要求需选择最适合的 聚合物与配合剂进行合理的配方设计。首先要了解配方设计与硫化橡胶物理性能的关系。硫化橡 胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差 异。 1、拉伸强度:就是制品能够抵抗拉伸破坏的根限能力。 它就是橡胶制品一个重要指标之一。许多橡胶制品的寿命都直接与拉伸强度有关。如输送带的 盖胶、橡胶减震器的持久性都就是随着拉伸强度的增加而提高的。 A:拉伸强度与橡胶的结构有关: 分了量较小时,分子间相互作用的次价健就较小。所以在外力大于分子间作用时、就会产生分子 间的滑动而使材料破坏。反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。凡影响分子间作用力的其它因素均对拉伸强度有影响。如 NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。也就 就是这些橡胶自补强性能好的主要原因之一。一般橡胶随着结晶度提高,拉伸强度增大。 B:拉伸强度还跟温度有关: 高温下拉伸强度远远低于室温下的拉伸强度。 C:拉伸强度跟交联密度有关: 随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。硫 化橡胶的拉伸强度随着交联键能增加而减小。能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。通过硫化体系,采用硫黄硫化,选择并用促进 剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。 D:拉伸强度与填充剂的关系:

抗拉强度与伸长率测试方法与设备介绍

抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率,是指材料在拉断前承受的最大应力值与断裂时的伸长率。通过检 测能够有效解决材料抗拉强度不足等问题。Labthink 兰光研发生产的智能电子拉力试验 机系列产品,可专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、医用敷料、 保护膜、金属箔片、隔膜、背板材料、无纺布、橡胶、纸张等产品的抗拉强度与伸长率指 标测试。 抗拉强度与伸长率方法: 试样制备:宽度15mm ,取样长度不小于 150mm ,确保标距100mm ;对材料变形率较大试样,标距不得少于50mm 。 试验速度:500±30mm/min 试样夹持:试样置于试验机两夹具中,使试样纵轴与上下夹具中心连线重合,夹具松 紧适宜。 抗拉强度(单位面积上的力)计算公式: 拉伸强度计算公式σ=F/(b×d) σ:抗拉强度(MPa ) F :力值(N ) Labthink 兰光|包装检测仪器优秀供应商山东省济南市无影山路144号 b :宽度(mm ) d :厚度(mm ) 抗拉强度检测用设备——XLW(EC)智能电子拉力试验机: Labthink 兰光XLW(EC)智能电子拉力试验机专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、金属箔、 隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、 穿刺力、开启力、低速解卷力、拨开力等性能测试。 XLW(EC) 是一款专业用于测试各种软包装材料拉伸性能等力学特性的电子拉力试验机;优于0.5级测试精度有效地保证了试验结果的准确性;系统支持拉压双向试验模式,试验 速度可自由设定;一台试验机集成拉伸、剥离、撕裂、热封等八种独立的测试程序,为用 户提供了多种试验项目选择;气动夹持试样,防止试样滑动,保证测试数据的准确性。 测试原理:

橡胶制品十五种常见试验测试项目和标准

橡胶制品十五种常见试验测试项目和标准 1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTMD2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性。 2.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JISK6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法。 3.未硫化橡胶门尼粘度 GB/T1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定ASTMD1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JISK6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法。 4.压缩永久变形性能 GB/T 7759-1996硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ISO815:1991硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ASTM D395-2003橡胶性能的试验方法压缩永久变形 JIS K6262:1997硫化橡胶及热塑性橡胶压缩永久变形试验方法。

常用橡胶的技术性能指标参数

常用橡胶的技术性能指标参数 本文介绍了天然橡胶(NR)异戊橡胶(IR)丁苯橡胶(SBR) 顺丁橡胶(BR)氯丁橡胶(CR)丁基橡胶(IIR)丁腈橡胶(NBR)乙丙橡胶(EPR)橡胶品种(简写符号)化学组成性能特点主要用途 1.天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易于其它材料粘合,在综合性能方面优于多数合成橡胶。缺点是耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,第抗酸碱的腐蚀能力低;耐热性不高。使用温度范围:约-60℃~+80℃。制作轮胎、胶鞋、胶管、胶带、电线电缆的绝缘层和护套以及其他通用制品。特别适用于制造扭振消除器、发动机减震器、机器支座、橡胶-金属悬挂元件、膜片、模压制品。 2.丁苯橡胶(SBR)丁二烯和苯乙烯的共聚体。性能接近天然橡胶,是目前产量最大的通用合成鸾海涮氐闶悄湍バ浴⒛屠匣湍腿刃猿烊幌鸾海实匾步咸烊幌鸾壕取H钡闶牵旱越系停骨印⒖顾毫研阅芙喜睿患庸ば阅懿睿乇鹗亲哉承圆睢⑸呵慷鹊汀J褂梦露确段В涸迹?0℃~+100℃。主要用以代替天然橡胶制作轮胎、胶板、胶管、胶鞋及其他通用制品。 3.顺丁橡胶(BR)是由丁二烯聚合而成的顺式结构橡胶。优点是:弹性与耐磨性优良,耐老化性好,耐低温性优异,在动态负荷下发热量小,易于金属粘合。缺点是强度较低,抗撕裂性差,加工性能与自粘性差。使用温度范围:约-60℃~+100℃。一般多和天然橡胶或丁苯橡胶并用,主要制作轮胎胎面、运输带和特殊耐寒制品。 4.异戊橡胶(IR)是由异戊二烯单体聚合而成的一种顺式结构橡胶。化学组成、立体结构与天然橡胶相似,性能也非常接近天然橡胶,故有合成天然橡胶之称。它具有天然橡胶的大部分优点,耐老化由于天然橡胶,弹性和强力比天然橡胶稍低,加工性能差,成本较高。使用温度范围:约-50℃~+100℃可代替天然橡胶制作轮胎、胶鞋、胶管、胶带以及其他通用制品。 5.氯丁橡胶(CR)是由氯丁二烯做单体乳液聚合而成的聚合体。这种橡胶分子中含有氯原子,所以与其他通用橡胶相比:它具有优良的抗氧、抗臭氧性,不易燃,着火后能自熄,耐油、耐溶剂、耐酸碱以及耐老化、气密性好等优点;其物理机械性能也比天然橡胶好,故可用作通用橡胶,也可用作特种橡胶。主要缺点是耐寒性较差,比重较大、相对成本高,电

聚乙烯拉伸性能试验影响因素的分析

聚乙烯拉伸性能试验影响因素的分析

聚乙烯拉伸性能试验影响因素的分析 摘要:本文分析了影响聚乙烯塑料拉伸实验结果的因素,包括实验仪器、试样制备与处理、实验环境、操作过程、数据处理和人员因素等。通过实验和分析,指出了这些外部因素对试验结果的影响原因和影响方式,并据此给出了聚乙烯拉伸性能的最佳测试条件。 关键词:聚乙烯压片拉伸强度断裂伸长率 1 引言 聚乙烯塑料是一种性能优良的材料,广泛应用于生产、生活的各个方面。在塑料的各项性能中,力学性能是影响塑料实际应用的一个最重要方面,包括拉伸强度、弯曲模量、冲击强度等。其中塑料的拉伸强度和断裂伸长率是决定塑料产品在使用过程中受外力作用下能否保持原有形状的主要因素,因此它们的测试有着非常重要的意义。 实际测试过程中,由于影响拉伸性能试验的因素很多,导致测试结果波动较大,从而影响聚乙烯产品等级的判定。于是厂里成立了技术攻关小组对生产工艺和试验部分加以改进,本人主要负责测试方面的工作。通过对影响整个试验过程的因素的分析,在遵循国家标准的基础上确定了各参测量参数,制定了新的操作规程,为工艺生产及顾客提供真实准确的产品数据。 2 试验部分 2.1 主要仪器和设备 4465型万能试验机(美国INSRON公司) 螺旋测微计可读度0.01mm PL-15型.压片机(西班牙IQAPLAP公司) 2.2 测试方法依从标准 拉伸断裂强度:GB1040-92

压片试验:GB/T9053-88 环境状态调节:GB/T2918-1982 2.3 试验材料 我厂生产的聚乙烯(PE)LLDPE-F-20D008(国家牌号)9085(厂内牌号)200610033(批号) 2.4 PE9085优级品控制指标 熔融指数:0.75±0.2g/10min 密度:0.920±0.002g/cm3 拉伸强度:≥17Mpa 断裂伸长率≥700% 2.5 样条形状 采用GB/1040-1992Ⅱ型(哑铃型)样条 3 结果与讨论:。 3.1 试样的制备对测定结果的影响 标准试样的制备是塑料各项性能测定的基础,对试验结果有决定性的影响。我厂的拉伸性能测试中采用GB/1040-1992Ⅱ型(哑铃型)样条,压片试验方法参考GB/T9053-88。 3.1.1 压片温度对测定结果的影响 图1. 压片温度对断裂伸长率和拉伸强度的影响

2020年(塑料橡胶材料)橡胶配方设计与性能的关系

(塑料橡胶材料)橡胶配方设计与性能的关系

橡胶配方设计和性能的关系 一、橡胶配方设计和硫化橡胶物理性能的关系 (一)拉伸强度 拉伸强度表征硫化橡胶能够抵抗拉伸破坏的极限能力。虽然绝大多数橡胶制品在使用条件下,不会发生比原来长度大几倍的形变,但许多橡胶制品的实际使用寿命和拉伸强度有较好的相关性。 研究高聚物断裂强度的结果表明,大分子的主价健、分子间的作用力(次价健)以及大分子链的柔性、松弛过程等是决定高聚物拉伸强度的内在因素。 下面从各个配合体系来讨论提高拉伸强度的方法。 1.橡胶结构和拉伸强度的关系 相对分子质量为(3.0~3.5)×105的生胶,对保证较高的拉伸强度有利。 主链上有极性取代基时,会使分子间的作用力增加,拉伸强度也随之提高。例如丁腈橡胶随丙烯腈含量增加,拉伸强度随之增大。 随结晶度提高,分子排列会更加紧密有序,使孔隙和微观缺陷减少,分子间作用力增强,大分子链段运动较为困难,从而使拉伸强度提高。橡胶分子链取向后,和分子链平行方向的拉伸强度增加。 2.硫化体系和拉伸强度的关系 欲获得较高的拉伸强度必须使交联密度适度,即交联剂的用量要适宜。 交联键类型和硫化橡胶拉伸强度的关系,按下列顺序递减:离子键>多硫键>双硫键>单硫键>碳-碳键。拉伸强度随交联键键能增加而减小,因为键能较小的弱键,在应力状态下能起到释放应力的作用,减轻应力集中的程度,使交联网链能均匀地承受较大的应力。 3.补强填充体系和拉伸强度的关系 补强剂的最佳用量和补强剂的性质、胶种以及配方中的其他组分有关:例如炭黑的粒径

越小,表面活性越大,达到最大拉伸强度时的用量趋于减少;软质橡胶的炭黑用量在40~60份时,硫化胶的拉伸强度较好。 4.增塑体系和拉伸强度的关系 总地来说,软化剂用量超过5份时,就会使硫化胶的拉伸强度降低。对非极性的不饱和橡胶(如NR、IR、SBR、BR),芳烃油对其硫化胶的拉伸强度影响较小;石蜡油对它则有不良的影响;环烷油的影响介于俩者之间。对不饱和度很低的非极性橡胶如EPDM、IIR,最好使用不饱和度低的石蜡油和环烷油。对极性不饱和橡胶(如NBR,CR),最好采用酯类和芳烃油软化剂。 为提高硫化胶的拉伸强度,选用古马隆树脂、苯乙烯-茚树脂、高分子低聚物以及高黏度的油更有利壹些。 5.提高硫化胶拉伸强度的其他方法 (1)橡胶和某些树脂共混改性例如NR/PE共混、NBR/PVC共混、EPDM/PP共混等均可提高共混胶的拉伸强度。 (2)橡胶的化学改性通过改性剂在橡胶分子之间或橡胶和填料之间生成化学键和吸附键,以提高硫化胶的拉伸强度。 (3)填料表面改性使用表面活性、偶联剂对填料表面进行处理,以改善填料和橡胶大分子间的界面亲和力,不仅有助于填料的分散,而且能够改善硫化胶的力学性能。 (二)定伸应力和硬度 定伸应力和硬度都是表征硫化橡胶刚度的重要指标,俩者均表征硫化胶产生壹定形变所需要的力。定伸应力和较大的拉伸形变有关,而硬度和较小的压缩形变有关。 1.橡胶分子结构和定伸应力的关系 橡胶分子量越大,游离末端越少,有效链数越多,定伸应力也越大。

实验4 聚合物拉伸强度和断 裂伸长率的测定

实验4 聚合物拉伸强度和断裂伸长率的测定 1. 实验目的 (1)熟悉高分子材料拉伸性能测试标准条件和测试原理。 (2)掌握测定聚合物拉伸强度和断裂伸长率的测定方法。 (3)考察拉伸速度对聚合物力学性能的影响。 2. 实验原理 拉伸试验是在规定的试验温度、试验速度和湿度条件下,对标准试样沿其纵轴方向施加拉伸载荷,直到试样被拉断为止。基本公式: (2-13) (2-14) (2-15) 式中,伸长率即应变;为应力;为样品某时刻的伸长;为初始长度;为初始横截面积;为拉伸力;为拉伸模量。 聚合物的拉伸性能可通过其应力-应变曲线来分析,典型的聚合物拉伸应力-应变曲线如图2-28(左)所示。在应力-应变曲线上,以屈服点为界划分为两个区域。屈服点之前是弹性区,即除去应力后材料能恢复原状,并在大部分该区域内符合虎克定律。屈服点之后是塑性区,即材料产生永久性变形,不再恢复原状。根据拉伸过程中屈服点的表现,伸长率的大小以及其断裂情况,应力-应变曲线大致可分为如图2-28(右)所示的五种类型:①软而弱;②硬而脆;③硬而强;④软而强;⑤硬而韧。

图2-28 五种典型聚合物拉伸应力-应变曲线1-软而弱;2-硬而脆;3-硬而强;4-软而强;5-硬而韧 本实验在不同应变速度下测定聚乙烯的应力-应变曲线。 将已知长度和横截面积的样品,夹在两个夹具之间,以恒速拉伸至断裂,测定应力随伸长的变化。分析在不同应变速度时测定的数据,可以了解材料的强度、韧性及极限性能。 有合适的样品架或可设法固定住的聚合物都可进行本实验。 均匀的样品重复性可优于±5%。但由于制各样品和实验操作中存在的一些不可避免的可变因素,使重复性比此数值要差些。 3. 实验设备和材料 (1)仪器设备 万能电子拉力机(日本岛津AG-lOKNA),游标卡尺、直尺。 万能电子拉力机测试主体结构示意图,如图2-29所示。

1胶料硫化特性

1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 2.未硫化橡胶门尼粘度 GB/T 1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定 ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法

JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样) ISO 34-1:2004硫化或热塑性橡胶—撕裂强度的测定-第一部分:裤形、直角形和新月形试片 ASTM D624-2000通用硫化橡胶及热塑性弹性体抗撕裂强度的试验方法 JIS K6252:2001硫化橡胶及热塑性橡胶撕裂强度的计算方法 5.橡胶硬度 GB/T 531—1999橡胶袖珍硬度计压入硬度试验方法GB/T6031—1998硫化橡胶或热塑性橡胶硬度的测定(10—100IRHD) ISO 7619-1:2004硫化或热塑性橡胶——压痕硬度的测定——第一部分:硬度计法(邵式硬度) ISO 7619-2:2004硫化或热塑性橡胶——压痕硬度的测定——第二部分:IRHD袖珍计法ASTM D2240-2004用硬度计测定橡胶硬度的试验方法 ASTM D1415-1988(2004)橡胶特性—国际硬度的试验方法 JIS K6253:1997硫化橡胶及热塑性橡胶的硬度试验方法 DIN 53505-2000橡胶试验邵式A和D的硬度试验 6.压缩永久变形性能 GB/T 7759—1996硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定

各种橡胶性能一览表

各种橡胶性能一览表 Prepared on 24 November 2020

注:芳香烃溶剂对硅橡胶有影响,采用氟硅橡胶可获得良好的耐芳香烃性。 材质 Material 物性 Physical 天然 橡胶 (NR) Natu ral Rubb er 丁 苯 橡 胶 (SB R) 丁 基 橡 胶 (II R) But yl 三 元 乙 丙 橡 胶 EP D M 氯丁橡胶 (CR) Neoprene 丁 腈 橡 胶 (N BR )Nit rile 聚氨 脂 (PU) Uret hane 硅 (硅) 胶 (SR) Silic one 氯 磺 化 聚 乙 烯 胶 ( C S M

) H y p al o n PHYSI CALPR OPERT IES一般物性 比重 Specific Gravity 硬度范围 Hardness Rang(Sho re A°) 30- 100 35- 100 30- 90 30- 90 35-95 30- 100 55- 100 20- 90 4 0- 9 0 最大搞张 强度 Tensile Strength Max(psi 4000 300 250 300 3000 300 3000 1500 3 0 最大延伸 率 Elongatio n Max(% 750 600 700 600 600 600 750 800 6 0 回复力 Resilience E G P- F G G-E F-G F-E F-G F - G 压缩变形 Compress ion Set G F P- G G F-G G G-E G-E F - G 不透气性 Impermea blity to Gases F F E F F- G G P-F P-F G 抗屈曲龟 裂Flex Cracking Resistanc e F G G G G F G-E F-E G 抗撕裂性 Tear Strength E F G F- G F-G F-G E P-F F - G 耐磨性 Abrasion Resistanc e E G-E G G- E G-E G- E E P-F G - E 抗冲击强 度Impact Strength E E G G G-E F-G G-E P-G G

影响材料拉伸性能试验的几大技术因素

影响材料拉伸性能试验的几大技术因素 屈服强度σs、抗拉强度σb等参数是金属材料最富代表性的力学性能指标,是工程设计、机械制造的主要依据,这类力学性能指标的分析和研究对于从事基础理论研究和分析工程事故具有非常重要的意义。 一、影响材料拉伸试验强度的因素: 1.温度效应 随着试验温度的升高, 金属材料的σs (σ0.2)显著降低。例如低碳钢材料,随着试验温度升高,其屈服强度σs相应降低且屈服平台的长度逐渐缩短,直至某一温度屈服平台消失,σs不复存在;由于温度升高使材料的晶界由硬、脆转变为软、弱,使其抗力降低,因此,材料的σb在宏观上也随试验温度的变化而改变。 2. 加载速率效应 材料的屈服点随加载速率的增大而提高;室温条件下,拉伸速度对强度较高的金属材料的σb 无影响,而对强度较低的、塑性好的金属材料有微小的影响。拉伸时加载速率增大,σb有增高的趋势。在高温下,拉伸加载速率对σb有显著的影响。 3.试验条件及试样工艺效应 金属材料处于有害的介质环境时,试样的屈服点降低。试样的表面粗糙度对屈服点也有影响,特别是对塑性较差的金属材料有较大的影响,有使屈服点降低的趋势。 4. 偏心效应 由于试验机的加载轴线与试样的几何中心不一致,所以严格的轴向荷载(图1(a))是很难获得的,这就造成了试验机偏心加载、产生弯曲而引入测试误差。考虑同轴度的影响,试样受。如图1(b)所示。其中,几何同轴度为e、力的同轴度为α 图1 5.试验刚度效应 在创恒实验室的材料的拉伸试验中,试验系统可视为试验机机身、夹具-加载系统和试样三部分构成的“可变形的试验系统”。显然,试验机机身的刚度、夹具-加载系统的刚度和受拉试样的抗拉刚度共同构成了“试验系统”的刚度。所以,试验机的弹性变形、夹具-加载系统的工作状态和试样本身的变形都会对试验产生影响,即试验刚度在一定程度上会影响试样的试验强度指标。在实践中,不同刚度的试验机实测对比结果也反映了试验刚度对材料试验强度的影响。

1高分子材料拉伸强度测定

实验1 高分子材料拉伸强度测定 一、实验目的 1、测定聚丙烯材料的屈服强度、断裂强度和断裂伸长,并画应力—应变曲线; 2、观察结晶性高聚物的拉伸特征; 3、掌握高聚物的静载拉伸实验方法。 二、实验原理 1、应力—应变曲线 本实验是在规定的实验温度、湿度及不同的拉伸速度下,在试样上沿轴向方向施加静态拉伸负荷,以测定塑料的力学性能。 拉伸实验是最常见的一种力学实验,由实验测定的应力—应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物,不同的测定条件,测得的应力—应变曲线是不同的。 结晶性高聚物的应力—应变曲线分三个区域,如图1所示。 (1)OA段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。即: σ=?ε 式中σ——应力,MPa; ε——应变,%; Ε——弹性模量,MP 。 A为屈服点,所对应力屈服应力或屈服强度。 (2)BC段到达屈服点后,试样突然在某处出现一个或几个“细颈”现象,出现细颈现象的本质是分子在该自发生取向的结晶,该处强度增大,拉伸时细颈不会变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎一变,而变形增加很大。 (3)CD段被均匀拉细后的试样,再长变细即分子进一步取向,应力随应变的增大而

增大,直到断裂点D,试样被拉断,D点的应力称为强度极限,即抗拉强度或断裂强度σ,是材料重要的质量指标,其计算公式为: σ=P/(b×d) (MPa) 式中P——最大破坏载荷,N; b——试样宽度,mm; d——试样厚度,mm; 断裂伸长率ε是试样断裂时的相对伸长率,ε按下式计算: ε=(F-G)/G×100% 式中 G——试样标线间的距离,mm; F——试样断裂时标线间的距离,mm。 三、实验设备、用具及试样 1、电子式万能材料试验机WDT-20KN。 2、游标卡尺一把 3、聚丙烯(PP)标准试样6条,拉伸样条的形状(双铲型)如图2所示。 L——总长度(最小),150mm; b——试样中间平行部分宽度,10±0.2mm; C——夹具间距离,115mm; d——试样厚度,2~10mm; G——试样标线间的距离,50±0.5mm; h——试样端部宽度,20±0.2mm; R——半径,60mm。 四、实验步骤 准备两组试样,每组三个样条,且用一种速度,A组25mm/min,B组5mm/min。 1、熟悉万能试验机的结构,操作规程和注意事项。 2、用游标卡尺量样条中部左、中、右三点的宽度和厚度,精确到0.02mm,取平均值。 3、实验参数设定 接通电源,启动试验机按钮,启动计算机; 双击桌面上“MCGS环境”进入系统主界面;分别点击“试验编号”、“试样设定”、“试样参数”、“测试项目”等按扭,设定参数。 设定试验编号;注意试验编号不能重复使用;

橡胶制品常用测试方法及标准

橡胶制品常用测试方法 及标准 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 2.未硫化橡胶门尼粘度 GB/T —2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定

ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定 ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)

橡胶物理性能测试标准

1.未硫化橡胶门尼粘度 GB/T 1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法2.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001) 橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)

如何分析拉伸曲线

如何分析拉伸曲线?拉伸曲线分析篇 时间:2012-11-16 15:19:29 来源:越联作者:越联点击数:核心提示:拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。试验材料的全面性能反映在拉伸曲线上。拉力曲线如此重要,如何根据拉伸曲线分析材料的各项性能呢?现在就给大家分析下拉伸曲线。 拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。试验材料的全面性能反映在拉伸曲线上。拉力曲线如此重要,如何根据拉伸曲线分析材料的各项性能呢?现在就给大家分析下拉伸曲线。 典型的拉伸曲线图(低碳钢) 第 1 阶段:弹性变形阶段(oa)两个特点 a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。 b 变形是完全可逆的。 加力时产生变形,卸力后变形完全恢复。从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。Oa 段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。 由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是 oa 段的斜率,用公式求得:

E=σ/ε oa 线段的 a 点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过 a 点,应力-应变则不再呈直线关系,即不再符合虎克定律。比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。 第 2 阶段:滞弹性阶段(ab) 在此阶段,应力-应变出现了非直线关系,其特点是:当力加到 b 点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。这个阶段也称理论弹性阶段,当超过 b 点时,就会产生微塑性应变,可以用加力和卸力形成的闭合环确定此点,当加卸力环第 1 此形成开环时所对应的点为 b 点。 第 3 阶段:微塑性应变阶段(bc) 是材料在加力过程中屈服前的微塑性变形部分,从微观结构角度讲,就是多晶体材料中处于应力集中的晶粒内部,低能量易动位错的运动。塑性变形量很小,是不可回复的。大小仍与仪器分辨力有关。 第 4 阶段:屈服阶段(cde)

相关文档
最新文档