高考之平面向量与空间向量

高考之平面向量与空间向量
高考之平面向量与空间向量

十年高考之平面向量与空间向量

●考点阐释

1.向量是数学中的重要概念,并和数一样,也能运算.它是一种工具,用向量的有关知识能有效地解决数学、物理等学科中的很多问题.

向量法和坐标法是研究和解决向量问题的两种方法. 坐标表示,使平面中的向量与它的坐标建立了一一对应关系,用“数”的运算处理“形”的问题,在解析几何中有广泛的应用.向量法便于研究空间中涉及直线和平面的各种问题.

2.平移变换的价值在于可利用平移变换,使相应的函数解析式得到简化. ●试题类编 一、选择题 1.(2002上海春,13)若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定...

成立的是( ) A.(a +b )+c =a +(b +c ) B.(a +b )·c =a ·c +b ·c C.m (a +b )=m a +m b D.(a ·b )c =a (b ·c )

2.(2002天津文12,理10)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),

B (-1,3),若点

C 满足OB OA OC βα+=,其中α、β∈R ,且α+β=1,则点C 的轨

迹方程为( )

A.3x +2y -11=0

B.(x -1)2+(y -2)2

=5 C.2x -y =0 D.x +2y -5=0 3.(2001江西、山西、天津文)若向量a =(3,2),b =(0,-1),则向量2b -a 的坐标是( )

A.(3,-4)

B.(-3,4)

C.(3,4)

D.(-3,-4)

4.(2001江西、山西、天津)设坐标原点为O ,抛物线y 2

=2x 与过焦点的直线交于A 、B 两点,则OB OA ?等于( )

A.

4

3

B.-

4

3 C.3 D.-3

5.(2001上海)如图5—1,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b ,A A 1=c .则下列向量中与

M B 1相等的向量是( )

A.-

21a +2

1

b +

c B.

21a +21b +c C.

21a -2

1

b +

c D.-

21a -2

1b +c 图5—1

6.(2001江西、山西、天津理,5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )

A.-21a +2

3

b

B.2

1

a -23b

C.

23a -2

1

b

D.-

23a +2

1

b 7.(2000江西、山西、天津理,4)设a 、b 、

c 是任意的非零平面向量,且相互不共线,则 ①(a ·b )c -(c ·a )b =0 ②|a |-|b |<|a -b | ③(b ·c )a -(c ·a )b 不与c 垂直

④(3a +2b )(3a -2b )=9|a |2

-4|b |2

中,是真命题的有( )

A.①②

B.②③

C.③④

D.②④

8.(1997全国,5)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率为( )

A.-

3

1 B.-3 C.

3

1 D.3

二、填空题

9.(2002上海文,理2)已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =_____.

10.(2001上海春,8)若非零向量α、β满足|α+β|=|α-β|,则α与β所成角的大小为_____.

11.(2000上海,1)已知向量OA =(-1,2),OB =(3,m ),若OA ⊥AB ,则m = . 12.(1999上海理,8)若将向量a =(2,1)围绕原点按逆时针方向旋转

4

π

得到向量b ,

则向量b 的坐标为_____.

13.(1997上海,14)设a =(m +1)i -3j ,b =i +(m -1)j ,(a +b )⊥(a -b ),则m =_____. 14.(1996上海,15)已知a +b =2i -8j ,a -b =-8i +16j ,那么a ·b =_____.

15.(1996上海,15)已知O (0,0)和A (6,3)两点,若点P 在直线OA 上,且2

1

=PA OP ,又P 是线段OB 的中点,则点B 的坐标是_____. 三、解答题

16.(2003上海春,19)已知三棱柱ABC —A 1B 1C 1,在某个空间直角坐标系中,1},0,0,{},0,2

3,2{

AA m AC m AB =-=={0,0,n }.(其中m 、n >0).如图5—2.

图5—2

(1)证明:三棱柱ABC —A 1B 1C 1是正三棱柱; (2)若m =

2n ,求直线CA 1与平面A 1ABB 1所成角的大小.

17.(2002上海春,19)如图5—3,三棱柱OAB —O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠

O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3.求:

(1)二面角O 1—AB —O 的大小;

(2)异面直线A 1B 与AO 1所成角的大小. (上述结果用反三角函数值表示)

18.(2002上海,17)如图5—4,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OA =4,OB =3,∠AOB =90°,D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点,若OP ⊥BD ,求OP 与底面AOB 所成角的大小.(结果用反三角函数值表示)

图5—3 图5—4 图5—5

19.(2002天津文9,理18)如图5—5,正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为

2a .

(1)建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角.

20.(2002天津文22,理21)已知两点M (-1,0),N (1,0),且点P 使,MN MP ?

,PN PM ?NP NM ?成公差小于零的等差数列.

(1)点P 的轨迹是什么曲线?

(2)若点P 坐标为(x 0,y 0),θ为PM 与PN 的夹角,求tan θ.

21.(2001江西、山西、天津理)如图5—6,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空间直角坐标系O —xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,正四棱锥底面边长为2a ,高为h .

(1)求cos

(2)记面BCV 为α,面DCV 为β,若∠BED 是二面角α—VC —β的平面角,求∠BED .

图5—6 图5—7 图5—8

22.(2001上海春)在长方体ABCD —A 1B 1C 1D 1中,点E 、F 分别在BB 1、DD 1上,且AE ⊥A 1B ,AF ⊥A 1D.

(1)求证:A 1C ⊥平面AEF ;

(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角).则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.

试根据上述定理,在AB =4,AD =3,AA 1=5时,求平面AEF 与平面D 1B 1BD 所成角的大小.(用反三角函数值表示)

23.(2001上海)在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .如图5—8.

(1)求证:A ′F ⊥C ′E .

(2)当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小(结果用反三角函数表示)

24.(2000上海春,21)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形,AB ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.

(1)求证:PA ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;

(3)对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算: (a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(

AB ×

AD )·AP 的绝对值的几何意义.

25.(2000上海,18)如图5—9所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且

AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角的大小为arccos

10

10

,求四面体ABCD 的体积.

图5—9 图5—10 图5—11

26.(2000天津、江西、山西)如图5—10所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.

(1)求的长;

(2)求cos<11,CB BA >的值;

(3)求证:A 1B ⊥C 1M .

27.(2000全国理,18)如图5—11,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.

(1)证明:C 1C ⊥BD ;

(2)假定CD =2,CC 1=2

3

,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;

(3)当

1

CC CD

的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 28.(1999上海,20)如图5—12,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角.

(1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的大小.

29.(1995上海,21)如图5—13在空间直角坐标系中BC =2,原点O 是BC 的中

点,点A 的坐标是(2

1

,23,

0),点D 在平面yOz 上,且∠BDC =90°, ∠DCB =30°。

(1)求向量OD 的坐标;

(2)设向量AD 和BC 的夹角为θ,求cos θ的值.

图5—12 图5—13

答案解析

1.答案:D

解析:因为(a ·b )c =|a |·|b |·cos θ·c 而a (b ·c )=|b |·|c |·cos α·a 而c 方向与a 方向不一定同向.

评述:向量的积运算不满足结合律. 2.答案:D

解析:设OC =(x ,y ),OA =(3,1),OB =(-1,3),αOA =(3α,α),

βOB =(-β,3β)

又α+β=(3α-β,α+3β) ∴(x ,y )=(3α-β,α+3β),∴??

?+=-=β

αβ

α33y x

又α+β=1 因此可得x +2y =5

评述:本题主要考查向量法和坐标法的相互关系及转换方法. 3.答案:D

解析:设(x ,y )=2b -a =2(0,-1)-(3,2)=(-3,-4). 评述:考查向量的坐标表示法.

4.答案:B

解法一:设A (x 1,y 1),B (x 2,y 2),AB 所在直线方程为y =k (x -

2

1

),则OB OA ?=x 1x 2+y 1y 2.又??

???

=-=x y x k y 2)21(2,得k 2x 2-(k 2

+2)x +42k =0,∴x 1·x 2=41,而y 1y 2=k (x 1-21)k (x 2-21)

=k 2

(x 1-21)(x 2-21)=-1.∴x 1x 2+y 1y 2=4

1

-1=-43.

解法二:因为直线AB 是过焦点的弦,所以y 1·y 2=-p 2

=-1.x 1·x 2同上.

评述:本题考查向量的坐标运算,及数形结合的数学思想.

5.答案:A

解析:)(2

1

111A B B ++=+==c +21(-a +b )=-21a +21b +c

评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是

基本的向量相等,与向量的加法.考查学生的空间想象能力.

6.答案:B

解析:设c =m a +n b ,则(-1,2)=m (1,1)+n (1,-1)=(m +n ,m -n ).

∴???=--=+21n m n m ∴???????-==2

3

2

1n m 评述:本题考查平面向量的表示及运算.

7.答案:D

解析:①平面向量的数量积不满足结合律.故①假;

②由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;

③因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,所以垂直.故③假;

④(3a +2b )(3a -2b )=9·a ·a -4b ·b =9|a |2-4|b |2

成立.故④真. 评述:本题考查平面向量的数量积及运算律. 8.答案:A

解析:设直线l 的方程为y =kx +b (此题k 必存在),则直线向左平移3个单位,向上平移1个单位后,直线方程应为y =k (x +3)+b +1即y =kx +3k +b +1

因为此直线与原直线重合,所以两方程相同.比较常数项得3k +b +1=b .∴k =-3

1. 评述:本题考查平移变换与函数解析式的相互关系. 9.答案:13

解析:∵(2a -b )·a =2a 2

-b ·a =2|a |2

-|a |·|b |·cos120°=2·4-2·5(-2

1

)=13. 评述:本题考查向量的运算关系. 10.答案:90°

解析:由|α+β|=|α-β|,可画出几何图形,如图5—14. |α-β|表示的是线段AB 的长度,|α+β|表示线段OC 的长度,由|AB |=|OC |

∴平行四边形OACB 为矩形,故向量α与β所成的角为90° 评述:本题考查向量的概念,向量的几何意义,向量的运算.这些知识不只在学习向量时用到,而且在复数、物理学中也是一些最基本的知识.

11.答案:4

解析:∵OA ={-1,2},OB ={3,m },OA OB AB

-=={4,m -2},又OA ⊥AB ,

∴-1×4+2(m -2)=0,∴m =4.

评述:本题考查向量的概念,向量的运算,向量的数量积及两向量垂直的充要条件. 12.答案:(

22

3

,22) 解析:设a =OA =2+i ,b =OB ,由已知OA 、OB 的夹角为

4

π,由复数乘法的几何意

义,得OB =OA (cos

4

π+isin

4

π)=(2+i )i i 22

322)2222(

+=+. ∴b =(

22

3

,22) 评述:本题考查向量的概念,向量与复数一一对应关系,考查变通、变换等数学方法,以及运用数学知识解决问题的能力.

13.答案:-2

∵(a +b )⊥(a -b ),∴(m +2)×m +(m -4)(-m -2)=0,∴m =-2. 评述:本题考查平面向量的加、减法,平面向量的数量积及运算,两向量垂直的充要条件. 14.答案:-63

解析:解方程组

得图5—14

a +

b =(m +2)i +(m -4)j =(m +2,m -4) a -b =m i +(-m -2)j =(m ,-m -2) a +b =2i -8j

a -

b =-8i +16j

a =-3i +4j =(-3,4)

b =5i -12j =(5,-12)

高考文科数学真题汇编平面向量高考题老师版

【解析】设AC BD O =I ,则2()AC AB BO =+u u u v u u u v u u u v ,AP AC u u u v u u u v g = 2()AP AB BO +=u u u v u u u v u u u v g 22AP AB AP BO +u u u v u u u v u u u v u u u v g g 222()2AP AB AP AP PB AP ==+=u u u v u u u v u u u v u u u v u u u v u u u v g 18=. 23.(2012江苏)如图,在矩形ABCD 中,AB= ,BC=2,点E 为BC 的中点,点F 在边CD 上,若=, 则的值是 . 24.(2014江苏)如图,在□ABCD 中,已知,85AB AD ==,,32CP PD AP BP =?=u u u r u u u r u u u r u u u r , ,则AB AD ?u u u r u u u r 的值是 . 【简解】AP AC -u u u r u u u r =3(AD AP -u u u r u u u r ),14AP AD AB =+u u u r u u u r u u u r ;34 BP AD AB =-u u u r u u u r u u u r ;列式解得结果22 25.(2015北京文)设a r ,b r 是非零向量,“a b a b ?=r r r r ”是“//a b r r ”的( A ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 26.(2015年广东文)在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-u u u r , ()D 2,1A =u u u r ,则D C A ?A =u u u r u u u r ( D ) A .2 B .3 C .4 D .5 27.(2015年安徽文)ABC ?是边长为2的等边三角形,已知向量b a ρρ、满足a AB ρ2=→,b a AC ρρ+=→2, 则下列结论中正确的是 ①④⑤ 。(写出所有正确结论得序号) ①a ρ为单位向量;②b ρ为单位向量;③b a ρρ⊥;④→BC b //ρ;⑤→⊥+BC b a )4(ρρ。 28.(2013天津)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长 为________. 【简解】如图建系: 由题意AD=1,ο60=∠DAB ,得)0,21(-A ,),23,0(D 设DE=x,)23,(x E ,)0,2 12(-x B , 13(2,)22AC x =+u u u r ,13(,)22BE x =-u u u r 由题意 .1AD BE =u u u r u u u r 得:14 3)21)(212(=+-+x x ,得41=x ,∴AB 的长为2 1。 29.(2012福建文)已知向量)2,1(-=→ x a ,)1,2(=→b ,则→→⊥b a 的充要条件是( D ) A .2 1-=x B .1-=x C .5=x D .0=x 30.(2012陕西文)设向量a r =(1.cos θ)与b r =(-1, 2cos θ)垂直,则cos2θ等于 ( C )

2019高考数学真题汇编平面向量

考点1 平面向量的概念及其线性运算 1.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹 角,则m =( ) A .-2 B .-1 C . 1 D .2 2. 在下列向量组中,能够把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 考点2 平面向量基本定理及向量坐标运算 3.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152 4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 考点3 平面向量的数量积及应用 5.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=___. 6.设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=___. 7.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的 夹角为β,则cos β=________. 8.若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=______. 9.设向量a ,b 满足|a +b |=10,|a -b |=6,则=______. 10.在△ABC 中,已知AB →·AC →=tan A ,当A =π6 时,△ABC 的面积为______. 考点4 单元综合 11.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足 |CD →|=1,则|OA →+OB →+OD →|的最大值是________. 练习: 1.已知A ,B ,C 是圆O 上的三点,若1()2 AO AB AC =+,则AB 与AC 的夹角为 .

平面向量基本定理教案(区公开课)

仁爱/诚信/勤奋/创新 授课教师:蒋金凤 课程名称:平面向量基本定理授课地点:高一(12)班

授课日期: 3 月 15 日星期四序号课题 2.3.1平面向量基本定理共 1 课时第 1 课时 教学目标1.了解平面向量基本定理,会运用它来解决一些简单的问题. 2.通过观察、猜想、验证、概括得到平面向量基本定理,使学生体会研究问题的过程与方法. 3.通过定理的推导使学生感受到数学思维的严谨性,体会化归转化的方法和数与形的完美结合. 重 点 平面向量基本定理 难点在平面向量基本定理探究过程中“不共线”和 “任意性”的验证 突破 方法 通过实例画图和类比平面直角 坐标系的象限归纳总结 教学模式讲授式、探究式 板书设计 平面向量基本定理 平面向量基本定理例题:定理说明:多媒体投影 小结: 教学过程 教学活动学生活动设计意图一、情景引入 两个小朋友在荡秋千,那么在所有条件都相同 的前提条件下,哪个秋千的绳子更容易断掉? 二、新课探究 1.给定向量 2 1 e,e请根据平面坐标的线性运算 (1)作出向量) e ( ) e ( 2 1 3 2+ 下面我们把刚刚的作图痕迹擦去,给定向量 2 1 e,e和 1 OC,你能将 1 OC用 2 1 e,e表示成 2 2 1 1 e eλ λ+的形式吗? 看图观察并 思考,说出自己 的判断和依据 学生口述,作图 过程得结果 独立完成,个别 展示 从实际生活 问题入手,贴近 学生的日常生 活,能很好地激 发学生的求知欲 望 复习向量的 线性运算和共线 向量定理,为后 续的向量的分解 和唯一性作铺垫 进入向量分解的 探究,刚刚作图 的过程还记忆犹 新,按照来的痕 迹寻找构造平行 四边形的方法

高考文科数学双向细目表

模块 知识点考查内容了解理解集合的含义、元素与集合的属于关系√列举法、描述法√包含于相等的含义√识别给定集合子集√全集于空集√并集于交集的含义与运算√补集的含义与运算√韦恩图表达集合的关系与运算√简单函数定义域和值域,了解映射√图像法、列表法、解析法表示函数√分段函数√函数单调性、最值及几何意义√函数奇偶性√函数图像研究函数性质指数函数模型背景√有理、实数指数幂、幂的运算指数函数概念、单调性√指数函数图像√对数的概念与运算√换底公式、自然对数、常用对数√对数函数的概念、单调性√对数函数的图像指数函数与对数函数互为反函数√幂函数的概念√幂函数的图像√二次函数、零点与方程的根√一元二次方程根的存在性及跟的个数√集合图像,用二分法求近似解指、对、幂函数的增长特征√函数模型的应用√柱、锥、台的结构特征√三视图√斜二测画法和直观图√平行、中心投影√三视图和直观图√球、柱、锥、台的表面积和体积公式√线面的位置关系定义√线面平行的判定 √面面平行的判定 √线面垂直的判定 √面面垂直的判定 √线面平行的性质 √面面平行的性质 √线面垂直的性质 √面面垂直的性质 √ 用已获结论证明空间几何体中的位置关系点、线、面位置关系集合的含义与表示集合间的基本关系集合的基本运算函数指数函数对数函数知识要求集合 函数概念 与基本初 等函数1 立体几何初步幂函数函数与方程函数模型及应用空间几何体

结合图形,确定直线位置关系的几何要素√直线倾斜角和斜率的概念√过两点的直线斜率计算公式√判定直线平行或垂直√点斜式、两点式、一般式√斜截式与一次函数的关系√两条相交直线的交点坐标√两点间的距离公式√ 点到直线的距离公式两条平行线间的距离公式√圆的几何要素,标准方程和一般方程判断直线与圆的位置关系应用直线与圆的方程√代数方法处理几何问题的思想√空间直角坐标表示点的位置√空间两点间的距离公式√算法的含义与思想√顺序、条件分支、循环逻辑结构√基本算法语句输入、输出、赋值、条件、循环语句√简单随机抽样√分层抽样和系统抽样√样本频率分布表、频率分布直方图、折线图√茎叶图√标准差的意义和作用√平均数和标准差√用样本估计总体的思想√会画散点图,认识变量间的相关关系√最小二乘法,线性回归方程√频率和概率的意义√互斥事件的概率加法公式√古典概型古典概型及其计算公式√随机事件所含的基本事件数及发生的概率√随机数的意义,运用模拟方法估计概率√几何概型的意义√任意角的概念√弧度制的概念、弧度与角度的互化√正弦、余弦、正切的定义√单位圆的三角函数线√诱导公式√三角函数的图像√ 三角函数的周期性√ 正余弦函数的单调性、最值、对称 中心 √正切函数性质 √同角三角函数的基本关系式 √正弦型函数的参数对图像变化的影响√向量的实际背景√ 平面向量的概念√ 向量的实际背景用样本估计总体变量的相关性事件与概率几何概型任意角的概念、弧度制三角函数直线与方程 圆的方程空间直角坐标系算法的含义、程序框图随机抽样统计 基本初等函数2平面解析几何初步算法初步

高考数学平面向量专题卷(附答案)

高考数学平面向量专题卷(附答案) 一、单选题(共10题;共20分) 1.已知向量,则=() A. B. C. 4 D. 5 2.若向量,,若,则 A. B. 12 C. D. 3 3.已知平面向量,,且,则=() A. B. C. D. 4.已知平面向量、,满足,若,则向量、的夹角为() A. B. C. D. 5.在中,的中点为,的中点为,则() A. B. C. D. 6.已知平面向量不共线,且,,记与的夹角是,则最大时, () A. B. C. D. 7.在中,,AD是BC边上的高,则等于() A. 0 B. C. 2 D. 1 8.已知,则的取值范围是() A. [0,1] B. C. [1,2] D. [0,2] 9.已知向量,的夹角为,且,则的最小值为() A. B. C. 5 D. 10.已知椭圆:上的三点,,,斜率为负数的直线与轴交于,若原点是的重心,且与的面积之比为,则直线的斜率为()

A. B. C. D. 二、填空题(共8题;共8分) 11.在平面直角坐标系xOy中,已知A(0,﹣1),B(﹣3,﹣4)两点,若点C在∠AOB的平分线上,且 ,则点C的坐标是________. 12.已知单位圆上两点满足,点是单位圆上的动点,且,则 的取值范围为________. 13.已知正方形的边长为1,,,,则________. 14.在平面直角坐标系中,设是函数()的图象上任意一点,过点向直线 和轴作垂线,垂足分别是,,则________. 15.已知为锐角三角形,满足,外接圆的圆心为,半径为1,则的取值范围是________. 16.设是边长为的正六边形的边上的任意一点,长度为的线段是该正六边形外接圆的一条动弦,则的取值范围为________. 17.设的外接圆的圆心为,半径为2,且满足,则 的最小值为________. 18.如图,在中,,点,分别为的中点,若,,则 ________. 三、解答题(共6题;共60分) 19.的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求; (Ⅱ)若,求的面积. 20.在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

2.3.1平面向量基本定理教案(人教A必修4)

2.3平面向量的基本定理及坐标表示 第4课时 §2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决 实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时 λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b = λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;

(4) 基底给定时,分解形式惟一. λ1,λ 2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量-2.51e +32e . 例 2 如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任 意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用, 表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实 数,d a b λμλμ=+ 、使与c 共线. 四、课堂练习: 1.设e 1、e 2是同一平面内的两个向量,则有( ) A.e 1、e 2一定平行 B .e 1、e 2的模相等 C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R ) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系 A.不共线 B .共线 C.相等 D.无法确定 3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A.3 B .-3 C.0 D.2 4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= . 5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填 共线或不共线). 五、小结(略)

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

高考文科数学:平面向量

2013年全国各地高考文科数学试题分类汇编4:平面向量 一、选择题 1 .(2013年高考辽宁卷(文))已知点()()1,3,4,1,A B AB - 则与向量同方向的单位向量为 ( ) A .3 455?? ??? ,- B .4355?? ??? ,- C .3455??- ??? , D .4355??- ??? , 2 .(2013年高考湖北卷(文))已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投 影为 ( ) A B C .D . 3 .(2013年高考大纲卷(文))已知向量 ()()()()1,1,2,2,,= m n m n m n λλλ =+=++⊥-若则 ( ) A .4- B .3- C .-2 D .-1 4 .(2013年高考湖南(文))已知a,b 是单位向量,a·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为____ C .____ ( ) A 1- B C 1 D 2 5 .(2013年高考广东卷(文))设 a 是已知的平面向量且≠0 a ,关于向量 a 的分解,有如下四个命题: ①给定向量 b ,总存在向量 c ,使=+ a b c ; ②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+ a b c ; ③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+ a b c ; ④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+ a b c ; 上述命题中的向量 b , c 和 a 在同一平面内且两两不共线,则真命题的个数是 ( ) A .1 B .2 C .3 D .4 6 .(2013年高考陕西卷(文))已知向量 (1,),(,2)a m b m ==, 若a //b , 则实数m 等于 ( ) A . B C . D .0 7 .(2013年高考福建卷(文))在四边形 ABCD 中,)2,4(),2,1(-==BD AC ,则该四边形的面积为 ( ) A .5 B .52 C .5 D .10

高考数学平面向量试题汇编

高考数学平面向量试题汇编 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r ,那么 ( A ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r (辽宁3) 若向量a 与b 不共线,0≠g a b ,且?? ??? g g a a c =a -b a b ,则向量a 与c 的夹角为( D ) A .0 B . π6 C . π3 D . π2 (辽宁6) 若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--, B .(12)-, C .(12)-, D .(12), (宁夏,海南4) 已知平面向量(11) (11)==-,,,a b ,则向量13 22 -=a b ( D ) A.(21)--, B.(21)-, C.(10)-, D.(12), (福建4) 对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若2 2 =a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c (湖北2)

将π2cos 36x y ??=+ ???的图象按向量π24?? =-- ??? ,a 平移,则平移后所得图象的解析式为 ( A ) A.π2cos 234x y ?? =+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? (湖北文9) 设(43)=,a , a 在 b 上的投影为2 ,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214), B .227? ?- ???, C .227??- ??? , D .(28), (湖南4) 设,a b 是非零向量,若函数()()()f x x x =+-g a b a b 的图象是一条直线,则必有( A ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b (湖南文2) 若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+u u u r u u u r u u u r B .EF OF OE =-u u u r u u u r u u u r C .EF OF OE =-+u u u r u u u r u u u r D .EF OF O E =--u u u r u u u r u u u r (四川7) 设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向 在与→ →→OC OB OA 上的投影相同,则a 与b 满足的关系式为 ( A ) (A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a (天津10) 设两个向量22 (2cos )λλα=+-,a 和sin 2 m m α? ?=+ ?? ? ,b ,其中m λα,,为实数.若2=a b ,则 m λ 的取值范围是( A ) A.[-6,1] B.[48], C.(-6,1] D.[-1,6] (浙江7)

2.3.1平面向量基本定理(教学设计)

2.3.1平面向量基本定理(教学设计) [教学目标] 一、知识与能力: 1.掌握平面向量基本定理; 2.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 二、过程与方法: 体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、师生互动,新课讲解: 思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?. 在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式. 1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

2.3.1平面向量基本定理教案

2.3.1 平面向量的基本定理 教学目的: 要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量. 教学重点: 平面向量的基本定理及其应用. 教学难点: 平面向量的基本定理. 教学过程: 一、复习提问: 1.向量的加法运算(平行四边形法则); 2.向量的减法运算; 3.实数与向量的积; 4.向量共线定理。 二、新课: 1.提出问题:由平行四边形想到: (1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一? (2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 2.新课 1e ,2e 是不共线向量,a 是平面内任一向量, =1e ,=λ1 2e ,=a =+=λ1 1e +λ2 2e , =2e ,=λ 2 2e . 1e 2e a C

得平面向量基本定理: 如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ 1 ,λ2使a =λ 1 1e +λ2 2e . 注意几个问题: (1)1e ,2e 必须不共线,且它是这一平面内所有向量的一组基底; (2)这个定理也叫共面向量定理; (3)λ1,λ2是被a ,1e ,2e 唯一确定的数量. 例1 已知向量1e ,2e ,求作向量-2.51e +32e . 作法:(1)取点O ,作=-2.51e ,=32e , (2)作平行四边形OACB ,即为所求. 已知两个非零向量a 、b ,作OA = a ,OB = b ,则∠AOB =θ(0°≤θ≤180°),叫做向量a 与b 的夹角. 当θ=0°,a 与b 同向;当θ=180°时,a 与b 反向,如果a 与b 的夹角为90°,我们说a 与b 垂直,记作:a ⊥b . 三、小结: 平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合. 1 e 2e

最新平面向量-文科数学高考试题

三年高考(2014-2016)数学(文)试题分项版解析 第五章 平面向量 一、选择题 1. 【2014高考北京文第3题】已知向量()2,4a =r ,()1,1b =-r ,则2a b -=r r ( ) A.()5,7 B.()5,9 C.()3,7 D.()3,9 2. 【2015高考北京,文6】设a r ,b r 是非零向量,“a b a b ?=r r r r ”是“//a b r r ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3. 【2014高考广东卷.文.3】已知向量()1,2a =r ,()3,1b =r ,则b a -=r r ( ) A .()2,1- B .()2,1- C .()2,0 D .()4,3 4. 【2015高考广东,文9】在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-u u u r , ()D 2,1A =u u u r ,则D C A ?A =u u u r u u u r ( ) A .2 B .3 C .4 D .5 5. 【2014山东.文7】已知向量(3a =r ,()3,b m =r .若向量,a b r r 的夹角为π6 ,则实数m =( ) (A )23(B 3 (C )0 (D )36. 【2015高考陕西,文8】对任意向量,a b r r ,下列关系式中不恒成立的是( ) A .||||||a b a b ?≤r r r r B .||||||||a b a b -≤-r r r r C .22()||a b a b +=+r r r r D .22 ()()a b a b a b +-=-r r r r r r 7. 【2014全国2,文4】设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρρ,则=?b a ρ ρ( ) A. 1 B. 2 C. 3 D. 5 8.【2015高考新课标1,文2】已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r ( ) (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4) 9. 【2014全国1,文6】设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+ A.AD B. AD 21 C. BC 2 1 D. BC

20高考数学平面向量的解题技巧

20高考数学平面向量 的解题技巧 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件.

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(2006年安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12 AM a b =+,所 以,3111()()4 2 4 4 MN a b a b a b =+-+=-+. 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=CD ( ) (A )BA BC 2 1+- (B ) BA BC 21-- (C ) BA BC 21- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a =71,,22b ? ?= ??? ? ? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ???- ??53,54 (B) ???- ??53,54或?? ? ??-53,54 (C )???- ??31,322 (D )???- ??31,322或??? ? ?-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问 题. 解:设所求平面向量为,c 由433,,, 1. 555c c ???? =-= ? ?????4或-时5

高中数学优质课比赛 平面向量基本定理教案

《平面向量基本定理》教学教案 ----新余一中蒋小林 一、背景分析 1.教材分析 函向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。此前的教学内容主要研究了向量的的概念和线性运算,集中反映了向量的几何特征。本节课要讲解“平面向量基本定理”的概念和应用,是研究向量的正交分解和向量的坐标运算基础,向量的坐标运算正是向量的代数形态。通过平面向量基本定理,平面中的向量与它的坐标建立起了一一对应的关系,即“数”的运算处理“形”的问题完美结合,在整个向量知识体系中处于承上启下的核心地位。本节课教学重点是“平面向量基本定理探究过程和利用平面向量基本定理进行向量的分解”。 2.学情分析 从学生知识层面看:本节课之前已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的认识。 从学生能力层面看:通过以前的学习,已经初步具备类比归纳概括的能力,能在教师的引导下解决问题。 教学中引入生活实例类比出向量的分解,让学生通过课件的直观感受和动手探索总结归纳出平面向量基本定理,尤其是将图形语言转化为文字语言,对学生的能力要求比较高.因此,我认为平面向量的分解及对这种分解唯一性的理解是本节课的教学难点. 二.学习目标 1)知识与技能目标 1、了解平面向量基本定理及其意义,会选择基底来表示平面中的任一向量。 2、能用平面向量基本定理进行简单的应用。 2)过程与方法目标 1、通过平面向量基本定理的探究,让学生体验数学定理的产生、形成过程,培

养学生观察发现问题、由特殊到一般的归纳总结问题能力。 2、通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生 进一步体会向量是处理几何问题强有力的工具之一。 3)情感、态度与价值观目标 1、用现实的实例,激发学生的学习兴趣,培养学生不断发现、探索新知的精神, 发展学生的数学应用意识; 2、经历定理的产生过程,让学生体验由特殊到一般的数学思想方法,在探究活 动中形成锲而不舍的钻研精神和科学态度。 [设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现 了培养学生核心素养的要求. 三.教学过程设计 教学过程 1.创设问题、引出新课 (一)通过击鼓传花游戏复习的向量的运算及平行向量基本定理,我们知道可以用(0)a a λ≠表示任意和a 共线的向量,那么再随便画一个方向的向量b ,你还可以用a 表示出来吗?一个向量不够那么需要几个向量来表示呢?za 此问题激发了学生的学习兴趣,蕴含着本节课设计主线,即从共线定理的一维关系转向研究平面向量基本定理的二维关系。(二)情景1:火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度;情景2:斜坡上物体所受的重力G ,课分解为力沿斜坡向下的力和垂直于斜坡的力;让学生对数学中的任意向量也可以用两个不共线的向量表示,有了充分的事实根据和感性认识。总之,整个引入,是从学生熟知的数学基础知识和物理基础知识为入手点,让学生轻松接受本节课的内容,让本节课的内容新而不新,难而不难了。 [设计意图]:两个生活常景抓住学生的兴趣,完成从生活到数学的建模过程,培养了学生,在生活中感知和发现数学,即知识问题化,问题情景化,情景生活化,生活学科化。体现了数学与生活密不可分的关系,为探究定理作好铺垫。 2.问题驱动、探究新知 问题(1)给定平面内任意两个向量21,e e 请你做出2121223e e e e -+和两个向量。 [设计意图]:利用向量的加减法和数乘向量,利用平行四边形法则可以表示

相关文档
最新文档