实验七多元函数微分数学实验课件习题答案

实验七多元函数微分数学实验课件习题答案
实验七多元函数微分数学实验课件习题答案

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

一元函数微分学典型例题

一元函数微分学典型例题 1. 有关左右极限题 求极限??? ?????+++→x x sin e e lim x x x 41 012 ● 根据左右极限求极限, ● 极限x x e lim 1 →, x x sin lim x 0 →,x tan lim x 2 π→,x cot lim x 0→,x cot arc lim x 0→,x arctan lim x 1 0→都不存在, ● A )x (f lim A )x (f lim )x (f lim x x x =?==∞ →-∞ →+∞ → ● 【 1 】 2. 利用两个重要极限公式求1∞ 型极限 x sin x ) x (lim 20 31+→ ● 0→)x (?,e )) x (lim() x (=+??1 1 ● A )x (f lim =0→)x (?,A )x (f ) x (e ])) x (lim[(=+??11 ● 【 6e 】 3. 等价无穷小量及利用等价代换求极限 当0x + → (A) 1- (B) ln (C) 1. (D) 1-. ● 等价无穷小定义:如果1=α β lim ,则称β与α失等价无穷小,记为α∽β, ● 0→x 时,(1)n x x a x a x x x x x x x x x e x x x x x n x x ≈ -+≈-≈-+≈-≈---+≈-≈+≈≈≈≈111112 1 16111112 3 ln )(cos sin )ln(arctan tan sin αα

● 当0→)x (?时,)x (sin ?∽)x (?,11-+n )x (?∽ n ) x (?∽∽ ● 【 B 】 4. 利用单调有界准则求极限 设数列{}n x 满足n n x sin x ,x =<<+110π。证明:极限n n x lim ∞→存在,计算1 1n x n n n x x lim ??? ? ??+∞→ ● 利用单调有界准则球数列或者函数极限的步骤:1。证明数列或函数单调;2。证明 数列或函数是有界;3。等式取极限求出极限。 ● 定理单调有界数列必有极限还可以叙述为单调递减有下界数列必有极限,或单调递 增有上界数列必有极限。 ● 61 1 2 -→=?? ? ??e x x sin lim x x ● 【 0;6 1- e 】 5. 判断函数连续与否以及利用函数的连续性解题 设函数f (x )在x =0处连续,下列命题错误的是: (A) 若0()lim x f x x →存在,则f (0)=0. (B) 若0()() lim x f x f x x →+-存在,则f (0)=0. (C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()() lim x f x f x x →-- 存在,则(0)f '存 在 【 】 ● 若()()00 x f x f lim x x =→,则称函数()x f 在点0x 处连续。 ● 左连续右连续则连续。 ● 分段函数的分段点不一定是函数的间断点。 ● 判断函数在某点是否连续的步骤:求函数在该点的极限;求函数在该点的函数值;判断 二者是否相等,相等则连续,否则间断。 6.导数的定义式相关题目 设函数 ()x f 在 x=0某领域内有一阶连续导数,且 ()()0 000≠'≠f ,f 。若 ()()()02f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定a, b. ● 函数在某一点导数的定义: ()()()x x f x x f lim x y lim x f x x ??????000 00-+=='→→ ()()()()()0 0000 00 x x x f x f lim h x f h x f lim x f x x h --=-+='→→

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

函数微分的定义

函数微分的定义:设函数在某区间内有定义,x0及x0+△x在这区间内,若函数的增量可表示为,其中A是不依赖于△x 的常数,是△x的高阶无穷小,则称函数在点x0可微的。 叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:=。 通过上面的学习我们知道:微分是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。于是我们又得出:当△x→0时,△y≈dy.导数的记号为:,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为: 由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立。 导数的定义:设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量 ,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数对于区间(a,b)内的每一个确定的x值,都对

应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。 导数公式微分公式 函数和、差、积、商的求导法则函数和、差、积、商的微分法则 拉格朗日中值定理 如果函数在闭区间[a,b]上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使 成立。 这个定理的特殊情形,即:的情形,称为罗尔定理。描述如下: 若在闭区间[a,b]上连续,在开区间(a,b)内可导,且,那末在(a,b)内至少有一点c,使成立。 注:这个定理是罗尔在17世纪初,在微积分发明之前以几何的形式提出来的。 注:在此我们对这两个定理不加以证明,若有什么疑问,请参考相关书籍 下面我们在学习一条通过拉格朗日中值定理推广得来的定理——柯西中值定理柯西中值定理 如果函数,在闭区间[a,b]上连续,在开区间(a,b)内可导,且≠0,

数学考研:一元函数微分学的知识点和常考题型

数学考研:一元函数微分学的知识点和常考题型 【大纲内容】 导数和微分的概念 导数的几何意义和物理意义(数三经济意义) 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分、曲率的概念、曲率圆与曲率半径(数三不要求) 【大纲要求】 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。 6.掌握用洛必达法则求未定式极限的方法。 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。(数三不要求) 【常考题型】 1.导数概念; 2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导; 3.函数的单调性和极值; 4.曲线的凹凸性与拐点; 5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数; 6.利用洛必达法则求极限; 7.几何、物理、经济等方面的最大值、最小值应用题。解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

第二章 一元函数微分学

第二章 一元函数微分学 §2.1 导数与微分 (甲)内容要点 一、导数与微分概念 1、导数的定义 设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量)()(00x f x x f y -?+=?。如果极限 x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000 存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0 x x y =' , x x dx dy =, )(x x dx x df =等,并称函数)(x f y =在点0x 处可导。如果上面的极限不存在,则 称函数)(x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 000 ()() ()lim x x f x f x f x x x →-'=- 我们也引进单侧导数概念。 右导数:0 000000()()()() ()lim lim x x x f x f x f x x f x f x x x x + ++→?→-+?-'==-? 左导数:0 000000()()()()()lim lim x x x f x f x f x x f x f x x x x - --→?→-+?-'==-? 则有 )(x f 在点0x 处可导)(x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。 切线方程:000()()()y f x f x x x '-=-

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞∞或00型,) ()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

高等数学积分公式和微积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9. 2d ()x x ax b +? = 2 11ln ()ax b C b ax b b x +-++ 的积分 10. x C + 11.x ?=2 2(3215ax b C a - 12.x x ?=2223 2(15128105a x abx b C a -+ 13. x ? =22 (23ax b C a -

14 . 2x ? =2223 2 (34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>< 16 . ? 2a b - 17. d x x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -?=1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23. 2d x x ax b +?=2 1ln 2ax b C a ++

导数与微分导数概念

第二章 导数与微分 第一节 导数概念 1.x x x y = ,求y ' 2.求函数y =2tan x +sec x -1的导数y ' 3. x x y 1010 +=,求y ' 4. 求曲线y =cos x 上点)2 1 ,3(π处的切线方程和法线方程式. 5.3ln ln +=x e y ,求y ' 6.已知? ??<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 7.设????? =≠=0 ,00 ,1sin )(x x x x x f ,用定义证明)(x f 在点0=x 处连续,但不可导。

8. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 . 9.讨论函数y =|sin x |在x =0处的连续性与可导性: 10.设函数? ??>+≤=1 1 )(2x b ax x x x f ,为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 第二节 函数的求导法则 1.设()22arcsin x y =,求y ' 2.求函数y =sin x ?cos x 的导数y ' 3.求函数y =x 2ln x 的导数y '

4.求函数x x y ln =的导数y ' 5.求函数3ln 2+=x e y x 的导数y ' 6. )(cos )(sin 2 2x f x f y +=,求y ' 7. n b ax f y )]([+=,求y ' 8. ) ()(x f x e e f y =,求y ' 9. x x x y arcsin 12 +-=,求y ' 10.求函数y =x 2ln x cos x 的导数y ' 第三节 高阶导数 1. x x x y ln 1 arctan +=,求y ''

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求2 0)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22 )(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.函数)(x f 有任意阶导数,且[]2)()(x f x f =',求)()(x f n . 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.设函数???>+≤=1 ,1,)(2x b ax x x x f ,为了使函数)(x f 在1=x 处连续且可导,b a ,应取 什么值? 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.设()3,1是曲线23bx ax y +=的拐点,求b a ,. 12.设)(x y y =由x y y 223=+确定,求其在点)1,0(-处的切线方程和法线方程. 13.设函数x x x y ?? ? ??+=1,求其导数y '. 14.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 15.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 16.求椭圆124322=+y x 上点)2 3 ,1(的切线方程. 17.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy .

高等数学讲义 一元函数微分学

第二章一元函数微分学 S.1导数与微分 (甲)内容要点 一、导数与微分概念 1、导数的定义 设函数y f(x)在点x o的某领域内有定义,自变量x在x o处有增量x,相应地函数增量y f(x o x) f(x o)。如果极限 |im f(X o X) f(X o) x 0x 存在,则称此极限值为函数 f (x)在X o处的导数(也称微商),记作f(X。),或y x冷,d^|xx0,X X。等,并称函数y f(X)在点X o处可导。如果上面的极限不存在,则dx dx 称函数y f (x)在点x0处不可导。 导数定义的另一等价形式,令x x0X ,X X x0,则 f (X0) lim f(X) f(X0) x X0x x0 我们也引进单侧导数概念。 右导数: f (X0) lim f(x) f(X0)lim 仏x) f(x0) x ^0 XX)x 0x 左导数: f (x) f(X°) f (X0 x) f(x°) f (X)) lim lim x 冷x x0x 0X 则有 f (X)在点X。处可导f (X)在点X。处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数y f (X)在点X0处导数f(X0)存在,则在几何上f(X0)表示曲线y f (x)在点(X0, f(x°))处的切线的斜率 切线方程:y f (x0) f (X0)(X X0)

法线方程:y f(X0) (X X0) (f(X0) 0) f (X o) 设物体作直线运动时路程S与时间t的函数关系为S f (t),如果f (t0)存在,则f (t0) 表示物体在时刻t0时的瞬时速度。 3?函数的可导性与连续性之间的关系 如果函数y f (x)在点X0处可导,则f(x)在点X0处一定连续,反之不然,即函数 f (X)在点X。处连续,却不一定在点X。处可导。例如, f (X) | X |,在X0 0 处连续,却不可导。 4.微分的定义 设函数y f (X)在点X0处有增量X时,如果函数的增量y f(X0 X) f (X0)有下面的表达式 y A(x°) x o( x) ( x 0) 其中A(x°)为X为无关,0( X)是X 0时比X高阶的无穷小,则称f (X)在X0处可微, 并把y中的主要线性部分A(x0) X称为f (X)在x0处的微分,记以dy X x°或df (x) x x 我们定义自变量的微分dx就是x。 5 ?微分的几何意义 y f (X0 x) f (X0)是曲线y f (x)在点X0处相应 于自变量增量X的纵坐标f (x0)的增量,微分dy xx。是曲线 y f (x)在点M°(x°, f (X0))处切线的纵坐标相应的增量(见 图)。 6?可微与可导的关系 f (x)在x0处可微 f (x)在x0处可导。 且dy x X0 A(X°) x f (X0)dx 般地,y f(x)则dy f (x)dx

函数微分的定义

函数微分的定义:设函数在某区间内有定义,x0及x0+△x在这区间内,若函数的增量可表示为,其中A就是不依赖于△x的常数,就是△x的高阶无穷小,则称函数在点x0可微的。叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:=。 通过上面的学习我们知道:微分就是自变量改变量△x的线性函数,dy与△y的差就是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。于就是我们又得出:当△x→0时,△y≈dy、导数的记号为: ,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x瞧成dx,即:定义自变量的增量等于自变量的微分),还可表示为: 由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立。 导数的定义:设函数在点x0的某一邻域内有定义,当自变量x 在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量 ,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原

来函数的导函数。 导数公式微分公式 函数与、差、积、商的求导法则函数与、差、积、商的微分法则 拉格朗日中值定理 如果函数在闭区间[a,b]上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使 成立。 这个定理的特殊情形,即:的情形,称为罗尔定理。描述如下: 若在闭区间[a,b]上连续,在开区间(a,b)内可导,且,那末在(a,b)内至少有一点c,使成立。

高等数学讲义-- 一元函数微分学

24 第二章 一元函数微分学 §2.1 导数与微分 (甲)内容要点 一、导数与微分概念 1、导数的定义 设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量)()(00x f x x f y -?+=?。如果极限 x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000 存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0 x x y =' , x x dx dy =, )(x x dx x df =等,并称函数)(x f y =在点0x 处可导。如果上面的极限不存在,则 称函数)(x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 0000 ()() ()l i m x x f x f x f x x x →-'= - 我们也引进单侧导数概念。 右导数:0 000000()()()() ()lim lim x x x f x f x f x x f x f x x x x + + +→?→-+?-'==-? 左导数:0 000000()()()() ()lim lim x x x f x f x f x x f x f x x x x - - -→?→-+?-'==-? 则有 )(x f 在点0x 处可导)(x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。 切线方程:000()()()y f x f x x x '-=-

高数微积分公式大全

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '= ⑵1 x x μ μμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2 tan sec x x '= ⑹()2 cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿( )1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 三、高阶导数的运算法则 (1)()()() () () ()()n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() ()()()()0 n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π??+=++??? ??? ?? (5) ()()cos cos 2n n ax b a ax b n π??+=++??? ????? (6)() () () 1 1! 1n n n n a n ax b ax b +??? =- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0d c = ⑵()1 d x x dx μ μμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2 tan sec d x xdx = ⑹()2 cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-?

一元函数微分学

第二章 一元函数微分学 §2.1 导数与微分 一、主要内容 ㈠导数的概念 1.导数: )(x f y =在0x 的某个邻域内有定义, x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000 0)()(lim 0x x x f x f x x --=→ 0 0)(0x x x x dx dy x f y === '=' 2.左导数: 00) ()(lim )(0x x x f x f x f x x --='- →- 右导数:0 00)()(lim )(0x x x f x f x f x x --='+ →+ 定理: )(x f 在0x 的左(或右)邻域上连续在 其内可导,且极限存在; 则: ) (lim )(0 0x f x f x x '='-→-

(或: )(lim )(0 0x f x f x x '='+→+) 3.函数可导的必要条件: 定理: )(x f 在0x 处可导?)(x f 在0x 处连续 4. 函数可导的充要条件: 定 理 : ) (00 x f y x x '=' =存在 )()(00x f x f +-'='?, 且存在。 5.导函数: ),(x f y '=' ),(b a x ∈ )(x f 在),(b a 内处处可导。 y )(0x f ' 6.导数的几何性质: y ? )(0x f ' 是曲线 )(x f y =上点 x ? ()00,y x M 处切线的斜率。 o x 0 ㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)( 2o v u v u v u '?+?'='?)( 3o 2v v u v u v u '?-?'=' ?? ? ?? )0(≠v 3.复合函数的导数:

一元函数微分历年试题

第二章一元函数微分学 历年试题 1. 利用导数的定义求函数在某点的导数值 1994——2012年共考了8次,考到的概率P=42.1% (1)(0119)设函数f(x)在x=0处可导,且.x ) 0(f )x 3(f lim ,1)0(f 0x -='→求 (2)(0222)设函数f(x)在x=1处可导,且.x ) 1(f )x 21(f lim ,1)1(f 0x -+='→求 (3)(0303)函数f(x)在x 0处可导,且h ) x (f )h 2x (f lim ,2)x (f 000h 0-+='→则= ( ) A.0 B.1 C.2 D. 4 (4)(0702)已知.x ) 1(f )x 21(f lim ,2)1(f 0x )(则=?-?+='→? A.-2 B.0 C.2 D. 4 (5)(0802)已知f(x)在x=1处可导,且).( h ) 1(f )h 1(f lim ,3)1(f 0h =-+='→则 A.0 B.1 C.3 D. 6 2. 利用四则运算法则求函数的导数或在某点的导数值和微分 1994——2012年共考了19次,考到的概率P=100% (1)(0122)设函数.y ,1 x x cos y 2 '-= 则 (2)(0210)设函数.y ,x cos 11 y = '+= 则 (3)(0310)设函数.)0(f ,e x )x (f x ='=则 (4)(0419)设函数.y ,x ln x y '=求 (5)(0522)设函数.dy ,x cos x y 3求= (6)(0622)设函数.dy ,x sin x y 4求=

(7)(0705)设函数).( d y ),1x sin(y 2=-=求 A. dx )1x cos(2- B. dx )1x cos(2-- C. dx )1x cos(x 22- D. dx )1x cos(x 22-- (8)(0822)设函数.y ,3x sin x y 3'++=求 (9)(0903)设函数).( )1(f ,3x ln e )x (f x ='+=则 A.0 B.1 C. e D. 2e (10)(1022)设函数.dy ,x cos x y 3 则= (11)(1122)设函数.y ,x sin 1 x y '+= 求 (12)(1222)设函数.,cos )(?? ? ??'=2πf x x f 则=( ) A.-1 B. 2 1 - C.0 D. 1 3. 复合函数的导数 1994——2012年共考了16次,考到的概率P=84.2% (1)(0107)设函数.dy ,x 1y 2=+=则 (2)(0109)设函数.)x (f ,x sin )x (f ='=则 (3)(0217)设函数.y x 1x y 2 '+= 求 (4)(0211)设函数.)x (f ,x ln )x 2(f = '=则 (5)(0223)设函数.dx dy ,(x)]g f[y .x sin )x (g ,e )x (f x 求且'=== (6)(0318)设函数.y ,x x y '+=求 (7)(0418)设函数).0(f ,x 2sin 1)x (f '+=求

相关文档
最新文档