七年级数学-方程与方程的解

七年级数学-方程与方程的解
七年级数学-方程与方程的解

5、用绳子测井深,绳子两折时,余60厘米,绳子三折时,差40厘米,求绳长和井深?

6、小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。他就问管理员叔叔共有多少只猩猩,管 理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰 好是100 .”那么聪明的你知道一共有多少只猩猩吗?

7、如图,在一个梯形内有两个三角形的面积分别为10和12,已知梯形的上底是下底长的3

2

。那么余 下的阴影部分的面积是多少?

七年级数学解方程汇总

七年级数学一元一次方程应用题归类 列方程解应用题的一般步骤(解题思路) (1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数. (3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程. (4)解——解方程:解所列的方程,求出未知数的值. (5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位) (一)和、差、倍、分问题——读题分析法 这类问题主要应搞清各量之间的关系,注意关键词语。仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. 1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率…”来体现。 2、多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。 增长量=原有量×增长率现在量=原有量+增长量 例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元? 例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤? (二)等积变形问题 等积变形是以形状改变而体积不变为前提。 常用等量关系为:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变, ②长方体的体积V=长×宽×高=abc 但体积不变.①圆柱体的体积公式V=底面积×高=S·h=2r h

七年级数学上册期末复习典型例题讲析(人教版)

七年级数学上册典型例题 例1. 已知方程2x m-3+3x=5是一元一次方程,则m= . 解:由一元一次方程的定义可知m-3=1,解得m=4.或m-3=0,解得m=3 所以m=4或m=3 警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x的指数是(m-3). 例2. 已知2 x=-是方程ax2-(2a-3)x+5=0的解,求a的值. 解:∵x=-2是方程ax2-(2a-3)x+5=0的解 ∴将x=-2代入方程, 得a·(-2)2-(2a-3)·(-2)+5=0 化简,得4a+4a-6+5=0 ∴ a=8 1 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a的一元一次方程就可以了. 例3. 解方程2(x+1)-3(4x-3)=9(1-x). 解:去括号,得2x+2-12x+9=9-9x, 移项,得2+9-9=12x-2x-9x. 合并同类项,得2=x,即x=2. 点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成x=a的形式. 例4. 解方程 1 7 5 3 2 1 4 1 6 1 8 1 = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? + - x . 解析:方程两边乘以8,再移项合并同类项,得111 351 642 x ?-? ?? ++= ? ?? ?? ?? 同样,方程两边乘以6,再移项合并同类项,得11 31 42 x- ?? += ? ??

最新人教版七年级下数学解方程练习题

精品文档 初一下册数学解方程练习题1.(每题5分,共10分)解方程组: (1)? ? ?=+=-1732623y x y x ; (2 2.解方程组 ??? ??=-+=++=++12 32721323z y x z y x z y x 3.解方程组: (1)3 3(1)022(3)2(1)10x y x y -?--=?? ?---=? (2)04239328a b c a b c a b c -+=?? ++=??-+=? 4.解方程(组) (1)32 21+=-- x x x (2)???-=+=+12332)13(2y x y x 5.?????? ?=++-=+--34231742 31y x y x 6.已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少? 7.二元一次方程组437(1)3x y kx k y +=?? +-=? 的解x ,y 的值相 等,求k . 8..当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)?有相同的解,求a 的值. 9.??? ??=---=+-=+-.44145 4y x z x z y z y x

10.若 4 2 x y = ? ? = ?是二元一次方程ax-by=8和ax+2by=-4 的公共解,求2a-b的值. 11.解下列方程: (1).(2) (3)(4) 12.(开放题)是否存在整数m,使关于x的方程2x+9=2 -(m-2)x在整数范围内有解,你能找到几个m的值? 你能求出相应的x的解吗? 13.方程组 25 28 x y x y += ? ? -= ?的解是否满足2x-y=8?满足2x -y=8的一对x,y的值是否是方程组 25 28 x y x y += ? ? -= ?的解? 14.甲乙两车间生产一种产品,原计划两车间共生产300 件产品,实际甲车间比原计划多生产10%,乙车间比原 计划多生产20%,结果共生产了340件产品,问原计划 甲、乙两车间各生产了多少件产品? 15.(本题满分14分) (1)解方程组 25 211 x y x y -=- ? ? += ? , (2)解方程组? ? ? = - = + )2 .( 6 3 3 )1(,8 4 4 y x y x 16. ?? ? ? ? = + + - = + - - . 6 ) (2 ) (3 1 5 2 y x y x y x y x ? ? ? ? ? = - + = + - = + 3 2 1 2 3 6 z-y x z y x z y x 精品文档

七年级上解方程50道

七年级上解方程50道 (1)1153 4 12 x x -= + ; (2)70%x+(30-x)×55%=30×65%; (3)5(2)3(27)x x -=-. (4)5112412 6 3 x x x +-- =+ ; (5)2(y -3)-6(2y -1)=-3(2-5y );(6)5(2)3(27)x x -=-; (7)2 3-x - 5 14+x =1. (8)()1322242x x ? ? --- = ?? ? ; (9)3(x-2)+1=x-(2x-1) (10)()1143212 3 x x +--= +.

(11)3 76 15= -y ; (17) 6 15+x = 8 19+x - 3 1x - (12)5 12 15 2x x x - =-- +; (18)5(x+2)=2(2x+7); (13)14 126 1103 12-+= +- -x x x (19)2(x+0.5)-3(x -0.4)=5.6 (14)325(2)x x -=-+; (20)3(x+2)-2(x+2)=2x+4 (15)23 135 12+=++ -x x x (21) 9 11z + 7 2= 9 2z - 7 5 (16)2x +3=x -1 (22)5 2-x - 10 3+x - 3 52-x +3=0

(23)2(10-0.5y)=-(1.5y+2) (29)()x 15400x 21003+=- (24)15 142 3=+- -x x (30) 14 323 12=-- -x x (25)05 .035.22 .04-= --x x (31) 3 8316 .036.13 .02+= -- x x x (26)51124126 3 x x x +--=+ (32)3(2x+5)=2(4x+3)-3 (27) 5.702 .0202.05.21 .0)32(2--= --x x (33)4y ﹣3(20﹣y)=6y ﹣7(9﹣y) (28)4x-3(x-20)=6x-7(9-x) (34)7(2x-1)-3(4x-1)=4(3x+2)-1

初一七年级数学上册列方程解应用题练习题(附答案)

初一数学上学期列方程解应用题练习题 班级:__学号:__姓名:______得分:__ 列方程解应用题(每题10分) 1.甲、乙两汽车,甲从A 地去B 地,乙从B 地去A 地,同时相向而行,1.5小时后两车相遇.相遇后,甲车还需要2小时到达B 地,乙车还需要 8 9小时到达A 地.若A 、B 两地相距210千米,试求甲乙两车的速度. 2.先读懂古诗,然后回答诗中问题. 巍巍古寺在山林,不知寺内几多僧. 三百六十四只碗,看看用尽不差争. 三人共食一碗饭,四人共吃一碗羹. 请问先生明算者,算来寺内几多僧. 3.牛奶和鸡蛋所含各种主要成分的百分比如下表.又知每1g 蛋白质、脂肪、碳水化合物产生和热量分别为16.8J 、37.8J 、16.8J .当牛奶和鸡蛋各取几克时,使它们质量之比为3:2,且产生1260J 的热量 4.某学校社会实践小分队走访100户家庭,发现一般洗衣水的浓度以0.2%-0.5%为

合适,即100kg洗衣水里含200-500g的洗衣粉比较合适,因为这时表面活性最大,去污效果最好.现有一个洗衣缸可容纳15kg洗衣水(包括衣服),已知缸中的已有衣服重4kg,所需洗衣水的浓度为0.4%,已放了两匙洗衣粉(1匙洗衣粉约为0.02kg)问还需加多少kg 洗衣粉,添多少kg水比较合适 5.“利海”通讯器材市场,计划用60000元从厂家购进若干部新型手机,以满足市场需求.已知该厂家生产三种不一同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元. (1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买 (2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号的手机购买数量不少于6部且不多于8部,请你求出每种型号手机的购买数量. 6.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元. (1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案, (2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案 (3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.

七年级上解方程50道

七年级上解方程50道 (1)1153412 x x - =+; (2)70%x+(30-x)×55%=30×65%; (3)5(2)3(27)x x -=-. (4)511241263x x x +--=+; (5)2(y -3)-6(2y -1)=-3(2-5y ) (6)5(2)3(27)x x -=-; (7)23-x -514+x =1. (8)()1322242x x ??---= ?? ?; (9)3(x-2)+1=x-(2x-1) (10) ()11432123x x +--=+. (11)3 7615=-y ; (17)615+x =819+x -31x - (12)5 12152x x x -=--+; (18)5(x+2)=2(2x+7); (13)14 126110312-+=+--x x x (19)2(x+0.5)-3(x -0.4)=5.6 (14)325(2)x x -=-+; (20)3(x+2)-2(x+2)=2x+4 (15)2313512+=++-x x x (21)9 11z +72=92z -75 (16)2x +3=x -1 (22) 52-x -103+x -352-x +3=0 (23)2(10-0.5y)=-(1.5y+2) (29)()x 15400x 21003+=- (24) 15 1423=+--x x (30)1432312=---x x (25)05.035.22.04-=--x x (31)38316.036.13.02+=--x x x (26) 511241263x x x +--=+ (32)3(2x+5)=2(4x+3)-3 (27)5.702 .0202.05.21.0)32(2--=--x x (33)4y ﹣3(20﹣y)=6y ﹣7(9﹣y) (28)4x-3(x-20)=6x-7(9-x) (34)7(2x-1)-3(4x-1)=4(3x+2)-1 (35) 312x +=76 x + (41)2(x-2)-3(4x-1)=9(1-x) (36)(51)13(4-y)=14 (y+3) (42)15-(8-5x)=7x+(4-3x) (37)32x +=x-16x - (43)3(x-7)-2[9-4(2-x)]=22 (38)511241263 x x x +--=+; (44)120-4(x+5)=25

初一数学解方程题大集合

三.解下列方程. 1. x+1.5-8 59+x =0 2. 3 2+y -3 14-y =2-6 52+y 3. 4 1(1-2 3x)-3 1(2-4 x )=2 4. 3 2[2 3(4 1x-2 1)-3]-2=x 5. 2 .05.13-x -03 .01.02.0-x =2.5 6.4x -3(20-x)=6x -7(9-x) 7.)12(4 3)]1(3 1[2 1+= -- x x x 8. 43(1)323322x x ?? ---=???? 9. 2233554--+=+-+x x x x 10.1-2(2x+3)=-3(2x+1) 11. 3 12-y -1= y 12.23y - +y =8 67-y 13. 4 .06.0-x +x = 3 .011.0+x 14.7x +6=8-3x 15,4x -3(20-x)=6x -7(9-x) 16, 5 y - 2 1-y =1- 5 2+y 17, 2 .188.1x -- 2 33.1x -= 3 .04.05-x 18, 32 1264+-=-x x 19,13 322 1=++ +x x 20,4 13-x - 6 75-x = 1 21, 2x -13 -5x -16 =1 22, x x 5)2(34=-- 23, 12 23 12++=-x x 24, 2 46 23 1x x x -= +-- 25,3)20(34=--x x 26, 16 323 1 2-= ---x x x 27,6x -7=4x-5 28, 1 3 2321=-+ +x x 29,327132+-=-)()(y y 30, 6 3542 133 -- =+-x x x 31, 3415 3 x x ---= 32, 2x-31 = 6 1 2x +-1 33,72(3x +7)=2-1.5x 34, 312+x -6 15-x =1 35,80% ·x =(x +22)·75% 36, 12443 23x ?? + -=- ???

初一下数学解方程练习卷1

初一年级数学学科练习题 共2页 第1页 ……… …○ …………密… …… … 封… … … … 线………○ 内…………不……… …要……… … 答 … ………题…………○… △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ △△△△△ 2011—2012学年度下学期 初一年级数学学科第五单元练习题 温馨提示:1、请你注意卷面的干净!! 2、聪明的你认真思考、仔细读题,你一定会成功! ! 一、解方程 1、依据下列解方程的过程,请在前面的括号内填写变形步骤, 在后面的括号内填写变形依据. 解:原方程可变形为( _________ ) 去分母,得3(3x+5)=2(2x ﹣1).( _________ ) 去括号,得9x+15=4x ﹣2.( _________ ) ( _________ ),得9x ﹣4x=﹣15﹣2.( _________ ) 合并,得5x=﹣17.( _________ ) ( _________ ),得x=.( _________ ) 2、5(x ﹣5)+2x =﹣4 3、6(x ﹣5)=﹣24 4、5(x +8)﹣5=6(2x ﹣7) 5、 6、 7、=﹣1 8、﹣=1 9、1﹣3(8﹣x )=﹣2(15﹣2x ) 10、 11、 12、5(x +8)=6(2x ﹣7)+5 13、 14、4(2x +3)=8(1﹣x )﹣5(x ﹣2) 15、

七年级上册数学--解方程——去括号,去分母

一元一次方程解法——去括号,去分母一.选择题 1.已知|2﹣x|=4,则x的值是() 2.已知方程2x+a=x﹣1的解满足2x+6=x+2,则a的值是() 4.(2008?十堰)把方程3x+去分母正确的是() 6.把方程﹣0.5=的分母化为整数,正确的是() . ﹣0.5=﹣0.5= ﹣0.5=﹣0.5= 7.将﹣=1变形为=1﹣,其错在() 8.方程的解为() C D 9.解方程时,去分母正确的是() 10.方程去分母后,正确的是() 11.方程=1,去分母得() 得 由 13.在解方程时,下列变形正确的是() .C D.

二.解答题 14.(2011?滨州)依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为(_________) 去分母,得3(3x+5)=2(2x﹣1).(_________) 去括号,得9x+15=4x﹣2.(_________) (_________),得9x﹣4x=﹣15﹣2.(_________) 合并,得5x=﹣17.(_________) (_________),得x=.(_________) 15.(2010?乐山)解方程:5(x﹣5)+2x=﹣4. 16.(2010?淄博)解方程6(x﹣5)=﹣24. 17.解下列方程 (1)2(x﹣1)+1=0;(2)(x﹣1)+=2; (3)[x﹣(x﹣1)]=(x﹣1);(4)﹣=50. 18.解方程 (1)3(x﹣2)+1=x﹣(2x﹣1);(2)﹣=1﹣. 19.解方程: (1)=+x;(2)2(x﹣2)=3(x﹣1).

20.解方程:=1﹣. 21.解关于x的方程: (1)4﹣x=3(2﹣x);(2)﹣=2. 22.解方程:﹣=3.23.﹣=1.24.﹣=﹣1.25.(3x﹣1)=1﹣(x+3).26.解方程:3x﹣(x﹣5)=2(2x﹣1). 27.(1)计算: ①17﹣23÷(﹣2)×3;②32÷(﹣1)2014+(﹣2)3﹣5×|﹣4|.

初一数学解方程测试题

七年级数学下册测试 一·选择题 1.方程193 10=-x 的解是( ) A.0=x B. 1=x C.2=x D.3=x 2.解为???-==3 0y x 的方程组是( ) A.???=+=-12332y x y x B.???-=+=-6233y x y x C.?? ???=-=+131732y x y x D.???=+=-135y x y x 3.1=x 时方程013=+-m x 的解,则m 的值是( ) A. -1 B. 4 C. 2 D. -2 4.既是方程32=-y x 的解,又是方程1043=+y x 的解是( ) A.???==21y x B.???==34y x C.???==12y x D.???-=-=5 4y x 5.方程6=+y x 的非负整数解有( ) A.5对 B.6对 C.7对 D.8对 6.若05323=+-n x 是一元一次方程,则n=( ) A. 1 B.2 C.-1 D.-2 7.如果单项式y x n m 2+与n m y x 244-是同类项,则m ,n 的值为( ) A.25,1=-=n m B.2 3,1==n m C.1,2==n m D.1,2-=-=n m 8.用加减法解方程组()???-=+=+) 2(927145y x y x 时,)2(2)1(-?得 A.13-=x B.132=-x C.117-=x D.173=x 9.一件羽绒服降价10%后售价是270元,原价的60%是其成本,则它的成本是( ) A.300元 B.290元 C.280元 D.180元 10.某班分组活动,若每组6人,则余下5人;若每组8人,则有少数4人。设总人数为x 人,组数为y ,则可列方程( )

人教版七年级下数学解方程练习题

初一下册数学解方程练习题 1.(每题5分,共10分)解方程组: (1)? ? ?=+=-17326 23y x y x ; (2 2.解方程组 ??? ??=-+=++=++12 32721323z y x z y x z y x 3.解方程组: (1)3 3(1)02 2(3)2(1)10x y x y -?--=???---=? (2) 04239328a b c a b c a b c -+=?? ++=??-+=? 4.解方程(组) (1)32 21+=--x x x (2)?? ?-=+=+12332)13(2y x y x 5.?????? ?=++-=+--34231742 31y x y x 6.已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是多少? 7.二元一次方程组437(1)3x y kx k y +=?? +-=? 的解x ,y 的值相 等,求k . 8..当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)?有相同的解,求a 的值.

9.? ? ? ? ? = - - - = + - = + - . 4 4 1 4 5 4 y x z x z y z y x 10.若 4 2 x y = ? ? = ?是二元一次方程ax-by=8和ax+2by=-4 的公共解,求2a-b的值. 11.解下列方程: (1).(2)(3) (4) 12.(开放题)是否存在整数m,使关于x的方程2x+9=2 -(m-2)x在整数范围内有解,你能找到几个m的值? 你能求出相应的x的解吗? 13.方程组 25 28 x y x y += ? ? -= ?的解是否满足2x-y=8?满足2x -y=8的一对x,y的值是否是方程组 25 28 x y x y += ? ? -= ?的解? 14.甲乙两车间生产一种产品,原计划两车间共生产300 件产品,实际甲车间比原计划多生产10%,乙车间比原 计划多生产20%,结果共生产了340件产品,问原计划 甲、乙两车间各生产了多少件产品? 15.(本题满分14分) (1)解方程组 25 211 x y x y -=- ? ? += ? , (2)解方程组? ? ? = - = + )2 .( 6 3 3 )1(,8 4 4 y x y x 16. ?? ? ? ? = + + - = + - - . 6 ) (2 ) (3 1 5 2 y x y x y x y x ? ? ? ? ? = - + = + - = + 3 2 1 2 3 6 z-y x z y x z y x

七年级数学上册 第五章 5.2解方程(一)教学设计 北师大版

第五章一元一次方程 2.解方程(一) 一.学生起点分析: 学生在上一节已经尝试着用等式的基本性质解一元一次方程,掌握情况较好,继续通过观察、归纳,发现用等式的基本性质一解一元一次方程的移项法则,就不难得出. 二.学习任务分析: 本大节解方程分三个课时,每课时所完成的具体任务不同.第一课时主要让学生分析、观察、归纳出用等式基本性质一归纳出移项法则简化方程、解方程的步骤.纵观本节课的安排,无不在内容的呈现顺序上让我们感觉到:数学知识的阶梯性,新内容的学习解答过程,总是借助一些已知的知识与方法,将其转化,让旧知识服务于新内容. 三、教学目标: 知识与技能: 1、熟悉利用等式的基本性质解一元一次方程的基本过程; 2、明确移项法则的依据 过程与方法:通过具体的例子归纳移项法则.使学生逐渐体会移项法则的优越性. 情感态度与价值观:在用移项法则解一元一次方程中,引导学生反思,从而自觉改正错误. 四、教学过程设计: 环节一: 内容:复习上课时用等式基本性质一的解题过程,引导学生归纳出移项法则. 目的:1.让学生在复习上课时内容、归纳出移项法则的过程中,体会用等式的基本性质一解方程与用加减互为逆运算解方程的区别; 同时让学生经历将算术问题“代数化”的过程,此过程也是一个抽象的过程,提炼、归纳上升到一个规律变化的过程. 2.简化解方程的步骤. 实际效果: 学生在归纳“移项法则”的过程中,表现出的观察、归纳、总结的能力很强,由此过程

中表现出来的用“移项法则”解方程的思维强于用小学逆运算关系解方程,基本能做到:移动的项变号,不移动的项不变号,对“移项”的实质理解也比较到位. 存在问题:方程两边需要移动的项多于两项时,移项过程中有的同学出现“移项”与“项 的换序”混淆. 如:解方程: 2 53231+=- x x . 12 5323--=--x x . ——————(1) 方程(1)中的25没有移项,只是“换序”不应该变号.这就是对于移项的实质没有理解清楚造成的. 环节二:小组合作活动 内容:1.例2.解方程32 141+=x x . 2.以小组为单位,每人出一个解方程的题,题型局限于本课时的题型,组内交换解答, 组长负责检查,组员负责看解答结果如何. 目的:1.学生自己出题的过程本身就是对本课时题型的一种掌握. 2.学生互解对方题目的过程,也是一个互相学习、取长补短的过程. 3.合作学习的过程也是让学生学会协作、交流的过程,从而达到巩固所学知识的目的. 实际效果: 1.我们看到学生在考虑解方程的问题时,也把有理数中各种数字的运算问题也做了迁移,有的学生还考虑到生活中会遇到的百分数问题. 2.一元一次方程的解法达到了巩固的目的. 环节三:巩固提高 内容:随堂练习,课本155页四个小题. 目的:巩固本课时的内容. 实际效果: 使用课堂条测的方式,限时完成.好的方面:80%的学生能够顺利完成;

七年级数学上册解方程练习题新人教版

七年级数学上册 解方程练习题(无答案) 新人教版 班级: 学号: 姓名: 一、选择 下面是等式而不是方程的是( ) A 、2+x=2x-7 B 、5x=2(x-1) C 、25.0212 =-)( D 、01-x 2x 2=+ 二、解方程 1、—2y+1= —1 2、51x 32 -=+ 3、2x 5.0x 3=+- 4、53x 2x -=- 5、10x 9-x 4= 6、5y 23 y 25 =+- 7、1x 2x 3-= 8、3x 8x 7+-=- 9、x 32 1x 35 =- 10、4x 1x 2-=- 11、03x 221-x 3=+-)()( 12、)()(x 97x 6x 203x 4--=-- 13、)()(x 213x 5.041 81-=+- 14、97x 2.054x 3.02=--+)()( 15、3x 3x 32 x 2+-=+-)( 16、81413+=-y y 17、13126823 -+=--+x x x 18、42 232131---=--+x x x x

19、15.08402.013.0=---x x 20、x x 32 2122)141(3223=-??????++ 三、解答题 1、 根据下列条件列方程并解方程: (1)x 的20%与15的差的一半等于-2 ; (2)x 的5倍减去4等于x 的6倍加上1。 2、 检验括号内的数是不是方程的解: 06x 5x 2=+-(2,3,4) 3、 已知x=2是方程m x 13x 22+=+-)(的解,求m 的值。 4、 已知关于x 的方程m x 41x m -=-)(的解是—4,求m 的值。

初一数学解方程题大集合

初一数学解方程题大集 合 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

三.解下列方程. 1. x+1.5-8 59+x =0 2. 3 2+y -3 14-y =2-6 52+y 3. 41(1-2 3x)-3 1(2-4 x )=2 4. 3 2[2 3(4 1x-2 1)-3]-2=x 5. 2 .05.13-x -03 .01.02.0-x =2.5 6.4x -3(20-x)=6x -7(9-x) 7.)12(4 3 )]1(31[21+=--x x x 8.43(1)323322x x ?? ---=???? 9. 2233554--+=+-+x x x x 10.1-2(2x+3)=-3(2x+1) 11. 3 12-y -1= y 12.2 3y - +y =8 67-y 13. 4 .06.0-x +x = 3 .011.0+x 14.7x +6=8-3x 15,4x -3(20-x)=6x -7(9-x) 16, 5 y -21-y =1-52+y 17,2.188.1x --233.1x -=3.04.05-x 18, 32 1 264+-=-x x 19,13 3221=+++x x 20, 413-x - 675-x = 1 21, 2x -13 -5x -1 6 =1 22, x x 5)2(34=-- 23, 12 2312++=-x x 24,246231x x x -= +-- 25,3)20(34=--x x 26, 16 323 1 2-= ---x x x 27,6x -7=4x-5 28, 132321=-++x x 29,327132+-=-)()(y y 30, 6 3 542133-- =+-x x x 31, 3 4 15 3 x x 32, 2x-31=61 2x +-1 33,72(3x +7)=2-1.5x 34, 312+x -6 15-x =1

新人教版七年级上学期数学解《方程专项练习题》

解方程 1、4(x-1)+2-2=2(4-x)-6 2、1-2(2x-5)=3(3-x) 3、(x-1)/3+1=(x+1)/2 4、4x-3(20-x)=6x-7(9-x) 5、5x-2=-7x+8 6、11x-3=2x+3 7、16=y/2+4 8、(4-3x)/7+(5x-3)/14=-(2x+3)/28+(5x-1)/11 9、mx-2=3x+n(m!=3) 10、3x-5=7x-11 11、2x+(5-3x)=15-(7-5x) 12、3/4x+2=3-1/4x 13、3/4-x=5/6-2/3x 14、2(x-2)-3(4x-1)=9(1-x) 15、2(x-3)-3(x-5)=7(x-1) 16、x-3/2[2/3(3/4-1)-2]=-2 17、x/3-1=x/2-2 18、x=(x+3)/2-(2-3x)/3 19、(2x-1)/3=1-(5x+2)/2 20、(2x-1)/3-(10x+1)/6=(2x+1)/4-1 21、3/2(x+1)-(x+1)/6=1

22、1/3(4y+5y)-1/2(3y-2)=2 23、-2(x-1)-4(x-2)=1 24、5(2x+1)-3(22x+11)=4(6x+3) 25、(x-1)/2-(2x-3)/6=(6-x)/3 26、2x-7+8x=10x-3-4x 27、1/3[x-1/2(x-1)]=2/3(x-1/2) 28、1/2[x/3-1/2(3/2x-1)]=x/12 29、1/3[2(2x+5)-3]+3/2(2x+5)=12 30、x/、(x+2)/4-(2x-3)/6=1 32、(2x-1)/5-(2x+1)/18=(1-x)/6-(1-6x)/15 33、1/2[x-1/2(x-1)]=2/3(x-1) 34、1/9{1/7[1/5((x+4)/3+2)+6]+8} 35、36、-2(x-5)=8-x/2 37、(x-3)/2-(4x+1)/5=1 38、(x-3)/(x+4)/= 39、x-(7-8x)=3(x-2) 40、x-(x-1)/2=2-(x+2)/3

七年级上册数学--解方程——去括号-去分母

七年级上册数学--解方程——去括号-去分母

一元一次方程解法——去括号,去分母 一.选择题 1.已知|2 ﹣x|=4,则x 的值是( ) 2.已知方程2x+a=x ﹣1的解满足2x+6=x+2,则a 的值是( ) 3.若|x ﹣1|=4,则x 为( ) 4.(2008?十堰)把方程3x+去分母正确的是( ) 5.(2007?台湾)解方程(3x+2)+2[(x ﹣1)﹣(2x+1)]=6,得x=( ) 6.把方程﹣0.5= 的分母化为整数,正确的是 ( ) . ﹣0.5= ﹣0.5= . ﹣0.5= . ﹣0.5=

8 .方程的解为( ) . . 9.解方程 时,去分母正确的是( ) 10.方程 去分母后,正确的是( ) 11.方程=1,去分母得( ) 12.下列解方程过程中,变形正确的是( ) 得由 13.在解方程时,下列变形正确的是( ) . . . . 二.解答题

14.(2011?滨州)依据下列解方程的过程,请在 前面的括号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为(_________) 去分母,得3(3x+5)=2(2x﹣1).(_________) 去括号,得9x+15=4x﹣2.(_________) (_________),得9x﹣4x=﹣15﹣2.(_________)合并,得5x=﹣17.(_________) (_________),得x=.(_________)15.(2010?乐山)解方程:5(x﹣5)+2x=﹣4.16.(2010?淄博)解方程6(x﹣5)=﹣24. 17.解下列方程 (1)2(x﹣1)+1=0; (2)(x﹣1)+=2; (3)[x﹣(x﹣1)]=(x﹣1); (4)﹣=50.

初一数学解方程题大集合

三.解下列方程. 1. x+8 59+x =0 2. 3 2+y -3 14-y =2-6 52+y 3. 41(1-2 3x)-3 1(2-4 x )=2 4. 3 2[2 3(4 1x-2 1)-3]-2=x 5. 2 .05.13-x -03 .01.02.0-x = 6.4x -3(20-x)=6x -7(9-x) 7.)12(4 3 )]1(31[21+=--x x x 8. 43(1)323322x x ?? ---=???? 9. 2233554--+=+-+x x x x 10.1-2(2x+3)=-3(2x+1) 11. 3 12-y -1= y 12.23y - +y =867-y 13. 4.06.0-x +x = 3.011.0+x , 14.7x +6=8-3x 15,4x -3(20-x)=6x -7(9-x) 16, 5 y -21-y =1-52+y 17,2.188.1x --233.1x -=3.04.05-x 18, 32 1 264+-=-x x 19,13 3221=+++x x 20, 413-x - 675-x = 1 21,2x -13 -5x -1 6 =1 22, x x 5)2(34=-- 23, 12 2312++=-x x 24,246231x x x -= +-- 25,3)20(34=--x x 26, 16 323 1 2-= ---x x x 27,6x -7=4x-5 28, 1 32321=-++x x 29,327132+-=-)()(y y 30, 6 3 542133-- =+-x x x 31, 3 4 15 3 x x 32, 2x-31=6 1 2x +-1 : 33, 72(3x +7)=2- 34, 312+x -6 1 5-x =1

初中七年级数学:解方程教学设计

新修订初中阶段原创精品配套教材 解方程 教材定制 / 提高课堂效率 /内容可修改 Solving equations 教师:风老师 风顺第二中学 编订:FoonShion教育

解方程 §5.2 (1) 教学目标: 1、学会利用等式性质1; 2、理解移项的概念; 3、学会移项。 教学重点:利用等式性质1及移项法则; 教学难点:利用等式性质1来解释方程的变形。 教学准备: 1、投影仪、投影片。 2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。 教学过程: (一)引入新课: 1、上节课的想一想引入新课:等式和方程之间有什么区别和联系? 方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。 2、下面的一些式子是否为方程?这些方程又有何特点? ① 5x+6=9x②3x+5③7+5×3=22④4x+3y=2 由学生小议后回答:①、④是方程。 分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。 我们先来研究最简单的(只含有一个未知数的)的一元一次方程。 3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。 注意:一次方程可以含有两个或两个以上的未知数:如上例的④。 4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。 5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答) ① 2x+3=11②y2=16③x+y=2④3y-1=4y 6、什么叫方程的解?怎样? 关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

初一数学解方程练习题

1. 下列运算正确的是( ) A .235=-x x B .ab b a 532=+ C .ab ba ab =-2 D .a b b a +=--)( 2. 北京奥运会火炬接力以“和谐之旅”为主题,以“点燃激情,传递梦想”为口号,是奥运史上传递路线最长的一次火炬接力,传递总里程约7.13万公里。将7.13万用科学记数法表示应为( ) A .41037.1? B .51037.1? C .4107.13? D .5107.13? 3. 多项式2334 322y x y x x -+-是_______次_______项式,一次项系数是________ 4. 把下列各数填入相应的括号内: 3 2-,3)1(-,0,)2.5(--,4)2(- 正整数{ }, 整数{ }, 负分数{ }, 5. 单项式ab π26-的次数是_________,系数是_______________

6. 若n m 、为有理数,且0)3(22=++-n m ,则=m ______,=n ______,=m n ______ 7. 如果两个单项式133+-m y x 与26y x n 的和是一个单项式,则=m ______,=n ______ 8. 下列各组数中,互为相反数的是( ) A .2-和 21 B .2和2- C .2-和21- D .21和2 9. 若b a 、互为相反数,n m 、互为倒数,则=-+mn b a 2012) (2012___________ 10. 解方程:7911-=x 37 13321-+=-x x

1. )2(3)4()5(-?--?-- ??? ? ?+-?--214132123 2. 若0|2|)5(2=-+-n m ,则=m _______,=n _______,=n m __________ 3. 如果单项式2322+-n m b a 与12-n ab 是同类项,那么=m _______,=n _______ 4. 下列说法中错误的是( ) A .平方是它本身的数只有0和1 B .立方是它本身的数只有1和1- C .相反数是它本身的数只有0 D .倒数是它本身的数只有1和1- 5. 下列各式中计算结果为正数的是( ) A .5)12(-- B .4)2()1(-?- C .3 )2()1(-÷- D .|2|--

北师大版-数学-七年级上册-《解方程》知识汇总

活动与探究 1.(1)小红在解方程3x =0时 ,在方程两边都乘0,得到0=0.她说:“怎么x 没有了?我做不下去啦.”她错在什么地方? (2)王刚在解方程2x =5x 时,在方程两边都除以x ,竟得到2=5.他错在什么地方? (3)你能帮小红、小刚将上面两个方程正确的解出吗? 过程:(1)小红在解方程3x =0时,用等式的第二个性质,得到0=0,而此等式仍成立,与第二个性质并不矛盾,可是她忘了是要解方程3x =0,而这里需要用等式的两个基本性质将方程3x =0变形为x =a (a 为常数)的形式. (2)王刚在解方程2x =5x 时,方程两边同时除以x ,显然是错误的,因为等式的第二个性质是在方程两边同时乘以或除以同一个数(除数不为0),等式仍成立.如果两边同时除以x ,而x 是一个字母,是可以取任意实数的,例如在这个方程里就x =0,方程即这个含有未知式的等式是不成立了.因此出现了2=5的不成立的等式. 结果:(3)小红解的方程应为:3x =0 在方程两边同时除以3,得x =0. 小刚解的方程应为:2x =5x 移项,得2x -5x =0. 合并同类项,得-3x =0. 方程两边同除以-3,得x =0. 知识总结 (一)解一元一次方程常见错解例析 一元一次方程是含有未知数的等式,而解一元一次方程就需用等式的两个基本性质对方程变形,直至x =a 的形式,也就解出了方程的解.但部分刚开始学习一元一次方程求法的同学往往由于忽略等式的性质或某些运算法则如去括号法则,合并同类项法则而导致解方程的错误.现对同学们在解一元一次方程的过程中出现的错例进行剖析. 1.移项没有变号 [例1]4x -2=3-x . 错解:移项,得4x -x =3-2. 合并同类项,得3x =1. 方程两边同除以3,得x =3 1.

相关文档
最新文档