《机械设计基础》专升本习题及答案解析(20201223074243)

《机械设计基础》专升本习题及答案解析(20201223074243)
《机械设计基础》专升本习题及答案解析(20201223074243)

机械设计基础专升本复习题(一)

一、判断题:正确的打符号",错误的打符号X

11. 刚体受三个力作用处于平衡时,这三个力的作用线必交于一点。

12. 在运动副中,咼副是点接触,低副是线接触。 ()

13. 曲柄摇杆机构以曲柄或摇杆为原动件时,均有两个死点位置。 14. 加大凸轮基圆半径可以减少凸轮机构的压力角。 () 15. 渐开线标准直齿圆柱齿轮不产生根切的最少齿数是 16. 周转轮系的自由度一定为1。()

17 .将通过蜗杆轴线并与蜗轮轴线垂直的平面定义为中间平面。 18 .代号为6205的滚动轴承,其内径为25mm 。()

19. 在V 带传动中,限制带轮最小直径主要是为了限制带的弯曲应力。

20. 利用轴肩或轴环是最常用和最方便可靠的轴上固定方法。 () 二、填空题

直齿圆柱齿轮的正确啮合条件是 _______ 相等, ___________ 相等。 螺杆相对于螺母转过一周时,它们沿轴线方向相对移动的距离称为

________________________ 0

在V 带传动设计中,为了限制带的弯曲应力,应对带轮的 _________ 加以限制。

硬齿面齿轮常用 ____ 渗碳淬火来得到,热处理后需要 __________ 加工。 要将主动件的连续转动转换为从动件的间歇转动,可用 _________ 机构。 轴上零件的轴向固定方法有 ______ 、 _______ 、 ________ 、 ______ 等。

常用的滑动轴承材料分为 ___________ 、 ___________ 、 ____________ 三类。 齿轮轮齿的切削加工方法按其原理可分为 __________ 和 _________ 两类。

凸轮机构按从动件的运动形式和相对位置分类,可分为直动从动件凸轮机构 和 凸轮

机构。 10. _____________________________ 带传动的主要失效形式是 、 及带与带

1. 在实际生产中,有时也利用机构的"死点"位置夹紧工件。()

2. 机构具有确定的运动的条件是:原动件的个数等于机构的自由度

数。

3. 若力的作用线通过矩

心,则力矩为零。 ()

4. 平面连杆机构中,连杆与从动件之间所夹锐角称为压力角。

5. 带传动中,打滑现象是不可避免的。 ()

6. 在平面连杆机构中,连杆与曲柄是同时存在的,

()

标准齿轮分度圆上的齿厚和齿槽宽相等。 (

7. 8. 9. 10. 螺纹中径是螺纹的公称直径。

即只要有连杆就一定有曲柄。 以控制工作温度。 1.

2.

3.

4. 5.

6.

7. 8. 9. 15。(

轮的磨损。

11 .蜗杆传动对蜗杆导程角和蜗轮螺旋角的要求是两者大小________________ 和旋

向__________ 。闭式蜗杆传动必须进行________________ 以控制油温。12._______________________________________________________ 软齿面齿轮常用中碳钢或中碳合金钢制造,其中大齿轮一般经_________________ 处理, 而小齿轮采用__________ 处理。

13. _______________________________________________________ 若要将

主动件的往复摆动转换为从动件的间歇转动,可用 ______________________ 机构。

14 .只传递扭矩而不受弯矩的轴称为 ___________ ,同时承受扭矩和弯矩的轴称

为 _______ 。

15.滑动轴承与轴颈表面直接接触的部分称为

三、单项选择题

A .大小相等、方向相反、作用线相同、作用在两个相互作用物体上

B .大小相等、方向相反、作用线相同、作用在同一刚体上

C .大小相等、方向相同、作用钱相同、作用在同一刚体上

D .大小相等、方向相反、作用点相同 2. 下列机构中,不属于间歇机构的是 ()。 A .棘轮机构 B .槽轮机构 C .齿轮机构

D .不完全齿轮机构

3. A ,B 、C 点分别作用10kN 、40kN , 30 kN 的力,方向如图1所示,则1-1截 面

和2-2截面的轴力为()。

A . 10KN ,-30KN

B . -10KN ,30KN

C . -10KN ,40KN

D . 10KN ,-40KN

4. 在铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,为 了获

得双曲柄机构,其机架应取()。

A .最短杆

B .最短杆的相邻杆

C .最短杆的相对杆

D .任何一杆 5. 在轮系中加入惰轮可改变轮系的( A .传动比 B .转向 C .转向和传动比

6. 两轴在空间交错900的传动,如已知传动比较大,贝U 宜选用()。 A .直齿圆柱齿轮传动 B .斜齿圆柱齿轮传动 C .圆锥齿轮传动 D .蜗轮蜗杆传动

7. 同一轴段上若采用两个平键时,一般设在 ()的位置。 A .同一母线 B .相隔900 C .相隔1200 D .相隔1800

1.作用在刚体上的二力平衡条件是( )。

1

机械设计基础专升本复习题

8.带传动设计时,若传动中心距取值过大,则使(

)。

A .传动结构不紧凑B.带传动的传递功率降低C .带传动易发生打滑 D .带传动的疲劳强度降低

机械设计基础专升本复习题

3-

9 .力F 使物体绕点0转动的效果,取决于下列因素()。

A .力F 的大小和力F 使物体绕0点转动的方向

B .力臂d 的长短和力F 使物体绕0

点转动的方向

C 力与力臂的乘积Fd 的大小和力F 使物体绕0点转动的方向

D .仅取决于力与力臂的乘积Fd 的大小,与转动方向无关 10. 机器与机构的区别在于()。

A .是否由各种零件经装配而成的组合体

B .它们各部分之间是否有确定的相对运动

C .在工作时是否能完成有效的机械功或能量转换

11. 平面四杆机构无急回特性时,行程速比系数 ()。 A .大于1 B .小于1 C .等于1

12. 一对齿轮啮合时,两轮的()始终相切。 A .节圆 B .分度圆 C .基圆 D .齿根圆 13. 带传动的弹性滑动现象是由于( )而引

起的。

A ?带的弹性变形

B .带与带轮的摩擦系数过小

C 初拉力达不到规定值

D ?带型选择不当

14?键的截面尺寸bX h 主要是根据()来选择。 A .传递转矩的大小 B .传递功率的大小 C .轮毂的长度 D ?轴的直径

15.采用螺纹联接时,若被联接件总厚度较大,在需要经常装拆的情况下宜采用 ()。

A ?螺栓联接

B .紧定螺钉联接

C 螺钉联接

D .双头螺柱联接

16?当两轴距离较远时,且要求传动比准确,宜采用 ( A .带传动 B .一对齿轮传动

四、指出图2中轴结构不合理之处,并作简要说明

)。

C .轮系传动

D .槽轮传动

a

/

图2

五、计算题

1.计算图3所示机构的自由度

3C

图3

2.计算图4所示机构的自由度,并判断机构是否具有确定的运动

图4

3. *—渐开线标准直齿圆柱齿轮,已知齿数Z=25,模数m=4mm,压力角a =20o,

h a*=1, c=0.25。试求该齿轮的分度圆直径、齿顶圆直径、齿根圆直径、基圆直

径和分度圆齿厚

4.如图5所示轮系中各齿轮齿数:Z i= Z2= 20, Z3= 60, Z3= Z4= 20, Z4= Z5= 40 试求传动比i i4和i i5,并判断n5相对n i的转向

jam

图5

5 .圆截面简支梁如图6所示,已知F=1KN,试求:

(1)梁A、B端的约束反力

(2) 计算弯矩,并画出弯矩图

(3) 若梁直径d=40mm ,求梁的最大应力

2m

图6

6 .求图7所示梁支座的约束反力。已知 F=2KN

机械设计基础专升本复习题(1)答案

判断题:

1」 2」 3、2 4、X 5、X 6、x 7」 8 2 9、2 10、x

11」 12、X 13、x 14、2 15、X

16、x

17」

18 2

1 9、2

20、2

二、选择题:

1 B 2、C

3、A

4、A

5、B

6、D

7、 D 8 A

9、 C 10、C 11、C

12、A

13、A

14、D

15 D

16、C

三、填空题

2m

F

2m

F

2m

30°

机械设计基础(第三版)课后答案(1-18节全)

机械设计概述 1.1机械设计过程通常分为哪几个阶段?各阶段的主要内容是什么? 答:机械设计过程通常可分为以下几个阶段: 1.产品规划主要工作是提出设计任务和明确设计要求。 2.方案设计在满足设计任务书中设计具体要求的前提下,由设计人员构思出多种可行方案并进行分析比较,从中优选出一种功能满足要求、工作性能可靠、结构设计可靠、结构设计可行、成本低廉的方案。 3.技术设计完成总体设计、部件设计、零件设计等。 4.制造及试验制造出样机、试用、修改、鉴定。 1.2常见的失效形式有哪几种? 答:断裂,过量变形,表面失效,破坏正常工作条件引起的失效等几种。 1.3什么叫工作能力?计算准则是如何得出的? 答:工作能力为指零件在一定的工作条件下抵抗可能出现的失效的能力。对于载荷而言称为承载能力。 根据不同的失效原因建立起来的工作能力判定条件。 1.4标准化的重要意义是什么? 答:标准化的重要意义可使零件、部件的种类减少,简化生产管理过程,降低成本,保证产品的质量,缩短生产周期。

摩擦、磨损及润滑概述 2.1按摩擦副表面间的润滑状态,摩擦可分为哪几类?各有何特点? 答:摩擦副可分为四类:干摩擦、液体摩擦、边界摩擦和混合摩擦。 干摩擦的特点是两物体间无任何润滑剂和保护膜,摩擦系数及摩擦阻力最大,磨损最严重,在接触区内出现了粘着和梨刨现象。液体摩擦的特点是两摩擦表面不直接接触,被液体油膜完全隔开,摩擦系数极小,摩擦是在液体的分子间进行的,称为液体润滑。边界摩擦的特点是两摩擦表面被吸附在表面的边界膜隔开,但由于边界膜较薄,不能完全避免金属的直接接触,摩擦系数较大,仍有局部磨损产生。混合摩擦的特点是同时存在边界润滑和液体润滑,摩擦系数比边界润滑小,但会有磨损发生。 2.2磨损过程分几个阶段?各阶段的特点是什么? 答:磨损过程分三个阶段,即跑合摩合磨损阶段、稳定磨损阶段、剧烈磨损阶段。各阶段的特点是:跑合磨损阶段磨损速度由快变慢;稳定磨损阶段磨损缓慢,磨损率稳定;剧烈磨损阶段,磨损速度及磨损率都急剧增大。 2.3 按磨损机理的不同,磨损有哪几种类型? 答:磨损的分类有磨粒磨损、粘着磨损、疲劳磨损点蚀、腐蚀磨损。 2.4 哪种磨损对传动件来说是有益的?为什么? 答:跑合磨损是有益的磨损,因为经跑合磨损后,磨损速度减慢,可改善工作表面的性质,提高摩擦副的使用寿命。 2.5如何选择适当的润滑剂? 答:选润滑剂时应根据工作载荷、运动速度、工作温度及其它工作条件选择。 当载荷大时,选粘度大的润滑油,如有较大的冲击时选润滑脂或固体润滑剂。高速时选粘度小的润滑油,高速高温时可选气体润滑剂;低速时选粘度小的润滑油,低速重载时可选润滑脂;多尘条件选润滑脂,多水时选耐水润滑脂。 2.6润滑油的润滑方法有哪些? 答:油润滑的润滑方法有分散润滑法和集中润滑法。集中润滑法是连续润滑,可实现压力润滑。分散润滑法可以是间断的或连续的。间断润滑有人工定时润滑、手动油杯润滑、油芯油杯润滑、针阀油杯润滑、带油润滑、油浴及飞溅润滑、喷油润滑、油零润滑等几种。 2.7接触式密封中常用的密封件有哪些? 答:接触式密封常用的密封件有O形密封圈,J形、U形、V形、Y形、L形密封圈,以 2.8非接触式密封是如何实现密封的? 答:非接触式密封有曲路密封和隙缝密封,它是靠隙缝中的润滑脂实现密封的。

初一上学期动点问题(含答案)

初一上学期动点问题练习 1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示); (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q? (3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长; 解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t; (2)设点P运动x秒时,在点C处追上点Q(如图) 则AC=5,BC=3, ∵AC-BC=AB ∴5-3="14" 解得:=7, ∴点P运动7秒时,在点C处追上点Q; (3)没有变化.分两种情况: ①当点P在点A、B两点之间运动时: MN=MP+NP=AP+BP=(AP+BP)=AB="7" ②当点P运动到点B的左侧时: MN=MP-NP= AP-BP=(AP-BP)=AB="7" ∴综上所述,线段MN的长度不发生变化,其值为7; 2.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒. (1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______. (2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离. 解:(1)PA=t,PC=36-t; (2)当16≤t≤24时PQ=t-3(t-16)=-2t+48, 当24<t≤28时PQ=3(t-16)-t=2t-48, 当28<t≤30时PQ=72-3(t-16)-t=120-4t, 当30<t≤36时PQ=t-[72-3(t-16)]=4t-120. 3.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A 的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为______,点B表示的数为______,点C表示的数为______;(2)用含t的代数式

求动点的轨迹方程方法例题习题答案

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难 点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中 没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形 状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法”。 求动点轨迹的常用方法 动点P 的轨迹方程是指点P 的坐标(x, y )满足的关系式。 1. 直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN 切圆C 于N 。 依题意:MN MQ =,即22MN MQ = 而222NO MO MN -=,所以 (x-2)2+y 2=x 2+y 2-1 化简得:x=45 。动点M 的轨迹是一条直线。 2. 定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点 的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出 轨迹方程。 例题:动圆M 过定点P (-4,0),且与圆C :082 2=-+x y x 相切,求动圆圆心M 的轨迹 方程。 解:设M(x,y),动圆M的半径为r 。 若圆M 与圆C 相外切,则有 ∣M C ∣=r +4 若圆M 与圆C 相内切,则有 ∣M C ∣=r-4 而∣M P ∣=r, 所以 ∣M C ∣-∣M P ∣=±4 动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。其中a=2, c=4。 动点的轨迹方程为: 3. 相关点法 若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则 将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程。这种方法称为相关点法。

机械设计基础试题答案[1]

一、填空题 1 作平面运动的三个构件共有___3__个瞬心,它们位于_ 一条直线__ 上。 2带传动工作时,带中的应力由以下三部分组成(1)紧边和松边拉力产生的拉应力、(2)离心力产生的拉应力、(3)弯曲应力。最大应力发生在紧边进入小带轮处。 3 带传动的主要失效形式是打滑和疲劳破坏___ 。 4 一对渐开线直齿圆柱齿轮正确啮合条件是:模数相等__ 和分度圆压力角相等。 5 在矩形螺纹、锯齿形螺纹和三角形螺纹三种螺纹中,传动效率最高的是矩形 螺纹,自锁性最好的是三角形螺纹,只能用于单向传动的是锯齿形 螺纹。 6螺纹的公称直径是大径,确定螺纹几何参数关系和配合性质的直径是中径。 7普通平键的工作面为键的__侧__面,楔键的工作面为键的_上下表___面,普 通平键的截面尺寸h b 是根据___轴径_ 确定的。 8代号为62308的滚动轴承,其类型名称为深沟球轴承,内径为 40 mm,2 为宽度系列代号, 3 为直径系列代号。 9在凸轮机构四种常用的推杆运动规律中,等速运动规律有刚性冲击;等加速等减速运动规律和余弦加速度运动规律有柔性 冲击;正弦加速度运动规律无冲击。 10自由度数目为 1 的周转轮系称为行星轮系。 11在齿轮传动设计时,软齿面闭式传动常因_____齿面点蚀_ 而失效,故通常先按__齿面接触疲劳__ 强度设计公式确定传动的尺寸,然后验算齿轮的 ____齿根弯曲疲劳____ 强度。 二、问答题 1.按轴工作时所承受的载荷不同,可把轴分成几类如何分类 答:根据轴工作时承受的载荷情况,可以将轴分成三类: 一、转轴:既承受转矩也承受弯矩; 二、心轴:只承受弯矩不承受转矩; 三、传动轴:只承受转矩不承受弯矩

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

动点例题解析及答案

初中数学动点问题及练习题附参考答案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式。 二、应用比例式建立函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题。 (一)点动问题。(二)线动问题。(三)面动问题。 二、解决动态几何问题的常见方法有: 1、特殊探路,一般推证。 2、动手实践,操作确认。 3、建立联系,计算说明。

初二数学经典动点问题

动点问题 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 3、如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形? (2)当t为何值时,四边形MNCD是等腰梯形?

4、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D 出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值; 如果不能,请说明理由. 5、直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O?B?A运动. (1)直接写出A、B两点的坐标; (2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何 图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些 技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A 、B 是平面直角坐标系内两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示); (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位 置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.

(2)双动点模型 P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值. 作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点 M 、N 即为所求. O B P P' P''M N 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k . 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5 和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( )

初三动点问题经典练习

动点问题练习 1.如图,已知在矩形ABCD 中,AD =8,CD =4,点E 从点D 出发,沿线段DA 以每秒1个单 位长的速度向点A 方向移动,同时点F 从点C 出发,沿射线CD 方向以每秒2个单位长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为t (秒). (1)求当t 为何值时,两点同时停止运动; (2)设四边形BCFE 的面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围; (3)求当t 为何值时,以E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当t 为何值时,∠BEC =∠BFC . 1. 解:(1)当B ,E ,F 三点共线时,两点同时停止运动,如图2所示.………(1分) 由题意可知:ED =t ,BC =8,FD = 2t -4,FC = 2t . ∵ED ∥BC ,∴△FED ∽△FBC .∴ FD ED FC BC = . ∴ 2428 t t t -=.解得t =4. ∴当t =4时,两点同时停止运动;……(3分) (2)∵ED=t ,CF=2t , ∴S =S △BCE + S △BCF = 12×8×4+1 2 ×2t ×t =16+ t 2. 即S =16+ t 2.(0 ≤t ≤4);………………………………………………………(6分) (3)①若EF=EC 时,则点F 只能在CD 的延长线上, ∵EF 2=2 2 2 (24)51616t t t t -+=-+, EC 2=222416t t +=+,∴251616t t -+=2 16t +.∴t =4或t=0(舍去); ②若EC=FC 时,∵EC 2=222416t t +=+,FC 2=4t 2,∴2 16t +=4t 2.∴4 33 t =; ③若EF=FC 时,∵EF 2=2 2 2 (24)51616t t t t -+=-+,FC 2=4t 2, ∴2 51616t t -+=4t 2.∴t 1=163+,t 2=1683-. ∴当t 的值为44 33 1683-E ,F ,C 三点为顶点的三角形是等腰三角形;………………………………………………………………………………(9分) (4)在Rt △BCF 和Rt △CED 中,∵∠BCD =∠CDE =90°,2BC CF CD ED ==, A B C D E F O 图2 A B C D E F

圆的动点问题--经典习题及答案

圆的动点问题 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:在Rt ABC △中,∠ACB =90°,BC =6,AC =8,过点A 作直线MN ⊥AC ,点E 是直线 MN 上的一个动点, (1)如图1,如果点E 是射线AM 上的一个动点(不与点A 重合),联结CE 交AB 于点P .若 AE 为x ,AP 为y ,求y 关于x 的函数解析式,并写出它的定义域; (2) 在射线AM 上是否存在一点E ,使以点E 、A 、P 组成的三角形与△ABC 相似,若存在求 AE 的长,若不存在,请说明理由; (3)如图2,过点B 作BD ⊥MN ,垂足为D ,以点C 为圆心,若以AC 为半径的⊙C 与以ED 为半径的⊙E 相切,求⊙E 的半径. A B C P E M 第25题图1 D A B C M 第25题图2 N

25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. A B E F C D O A B E F C D O

25.如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与OB的延长线相交于点D,设AC=x,BD=y. (1)求y关于x的函数解析式,并写出它的定义域; (2)如果⊙O1与⊙O相交于点A、C,且⊙O1与⊙O的圆心距为2,当BD=OB时,求⊙O1 的半径; (3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.

(完整)七年级上期末动点问题专题(附答案)

七年级上学期期末动点问题专题 1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|. (1)求线段AB的长. (2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值. (3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN 的值不变,②|PM﹣PN|的值不变. 2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x. (1)PA=_________;PB=_________(用含x的式子表示) (2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由. (3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由. 3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点, AB=14. (1)若点P在线段AB上,且AP=8,求线段MN的长度; (2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关; (3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;② 的值不变,请选择一个正确的结论并求其值.

4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上) (1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置: (2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值. (3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值. 5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200. (1)若BC=300,求点A对应的数; (2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形); (3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动 到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.

中考动点问题专题 教师讲义带答案

中考动点型问题专题 一、中考专题诠释 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲 解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半

径的圆的面积S与点P的运动时间t的函数图象大致为() A.B.C.D. 思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论. 解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则: (1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1); (2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2). 综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2), 这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B 符合要求. 故选B. 点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择. 对应训练 1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是() A.B.C.D.

机械设计基础(第五版) 答案第1-6章

1-1至1-4解机构运动简图如下图所示。 图 1.11 题1-1解图图1.12 题1-2解图 图1.13 题1-3解图图1.14 题1-4解图 1-5 解 1-6 解 1-7 解 1-8 解 1-9 解 1-10 解 1-11 解 1-12 解 1-13解该导杆机构的全部瞬心如图所示,构件1、3的角速比为: 1-14解该正切机构的全部瞬心如图所示,构件3的速度为: ,方 向垂直向上。 1-15解要求轮1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,

即,和,如图所示。则:,轮2与轮1的转向相反。1-16解(1)图a中的构件组合的自由度为: 自由度为零,为一刚性桁架,所以构件之间不能产生相对运 动。 (2)图b中的CD 杆是虚约束,去掉与否不影响机构的运动。故图b中机构的自由度为: 所以构件之间能产生相对运动。 题2-1答: a ),且最短杆为机架,因此是双曲柄机构。 b ),且最短杆的邻边为机架,因此是曲柄摇杆机构。 c ),不满足杆长条件,因此是双摇杆机构。 d ),且最短杆的对边为机架,因此是双摇杆机构。 题2-2解: 要想成为转动导杆机构,则要求与均为周转副。 ( 1 )当为周转副时,要求能通过两次与机架共线的位置。见图2-15 中位置和 。 在中,直角边小于斜边,故有:(极限情况取等号); 在中,直角边小于斜边,故有:(极限情况取等号)。 综合这二者,要求即可。 ( 2 )当为周转副时,要求能通过两次与机架共线的位置。见图2-15 中位置 和 。 在位置时,从线段来看,要能绕过点要求:(极限情

况取等号); 在位置时,因为导杆是无限长的,故没有过多条件限制。 ( 3 )综合( 1 )、( 2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是: 题2-3 见图 2.16 。 图2.16 题2-4解: (1 )由公式,并带入已知数据列方程有: 因此空回行程所需时间; (2 )因为曲柄空回行程用时, 转过的角度为, 因此其转速为:转/ 分钟 题2-5

中考数学最新经典动点问题-十大题型

1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

2、直线与坐标轴分别交于两点,动点同时从点出发, 同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出 与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 3 64 y x =-+A B 、P Q 、O A Q OA P O B A A B 、Q t OPQ △S S t 48 5 S = P O P Q 、、 M

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A

动点例题解析及标准答案

动点例题解析及答案

————————————————————————————————作者:————————————————————————————————日期:

初中数学动点问题及练习题附参考答案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式。 二、应用比例式建立函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题。 (一)点动问题。(二)线动问题。(三)面动问题。 二、解决动态几何问题的常见方法有: 1、特殊探路,一般推证。 2、动手实践,操作确认。 3、建立联系,计算说明。

2010008 机械设计基础1(中英文)(2011)

天津大学《机械设计基础1》课程教学大纲 课程编号:2010008课程名称:机械设计基础1 学时:80 学分: 5 学时分配:授课:80上机:实验:6实践:实践(周): 授课学院:机械工程学院 适用专业:近机类 先修课程:工程图学,材料力学,理论力学 一、课程的性质与目的 机械设计基础是一门培养学生具有一定机械设计能力的技术基础课。本课程在教学内容方面着重基本知识、基本理论和基本方法,在培养实践能力方面着重设计技能和创新能力的基本训练。 本课程的主要目的和任务是培养学生:1)掌握常用机构的工作原理、运动特性和动力特性,具有分析和设计常用机构的基本能力,并初步具有机械运动方案设计的能力;2)掌握通用机械零部件的工作原理、特点、选用和设计计算的基本知识,并具有设计简单机械及通用机械传动装置的基本能力;3)具有应用计算机进行辅助设计的能力;4)具有应用标准、规范、手册、图册等有关资料的能力;5)能通过实验巩固和加深对理论的理解, 获得实验技能的基本训练。 二、教学基本要求 1、要求掌握的基本知识 机械设计的一般知识。熟悉机构和机械零件的主要类型、性能、特点和应用,熟悉机械零件的常用材料、标准和结构,熟悉摩擦、磨损、润滑和密封的一般知识。 2、要求掌握的基本理论和方法 熟悉机构的组成、主要类型、工作原理和运动特性,具有分析和设计常用机构的能力,能进行简单机构的分析与综合。掌握机械动力学的基本原理,了解机械的调速、刚性回转件的平衡。熟悉机械零件的工作原理、受力分析、应力状态、失效形式等。熟练掌握机械零件的设计计算准则:强度、刚度、耐磨性、寿命、热平衡及经济性等。能进行简化计算,掌握当量法,试算法等。了解改善载

初中数学动点题型汇总

初中数学动点集 一、线段和、差中的动点 (一)利用垂线段最短的性质解决最大(小)值的问题 1.如下图所示,△ABC 是以AB 为斜边的直角三角形,AC=4,BC=3,P 为AB 上的一动点,且PE⊥AC 于E,PF ⊥BC 于F,则线段EF 长度的最小值是。 2.如图所示,在菱形ABCD 中,过A 作AE⊥BC 于E,P 为AB 上一动点,已知 13 5 AB BE ,EC=8,则线段PE 的长度最小值为。 3.如图所示,等边△ABC 的边长为1,D、E 两点分别在边AB、AC 上,CE=DE,则线段CE 的最小值为。 4.如右图所示,点A 的坐标为(0,22-),点B 在直线y=x 上运动,当线段AB 最短时, 点B 的坐标为。

5.在平面直角坐标系xoy中,直线y=2x+m与y轴交于点A,与直线y=-x+4交于点B(3,n),p为直线y=-x+4上一动点。 (1)求m,n的值 (2)当线段AP最短时,求点p的坐标。 2。 6.已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=30 试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的值最短,则此时AM+NB=。 (二)利用三点共线的特征解决最大(小)值的问题 1.如图所示,四边形ABCD是正方形,边长是4,E是BC上一点,且BE=1,P是对角线AC上任意一点,则 PE+PB的最小值是。 2.如图所示,点P是边长为1的菱形ABCD对角线AC上的一个动点,M、N分别是AB,BC边上的中点,PM+PN 的最小值是。

3.如图所示,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是。 4.如图1所示,F,E分别是正方形ABCD的边CD、DA上两个动点(不与C、D、A重合),满足DF=AE。直线BE、AF相交于点G,则有BE=AF,BE⊥AF;如图2所示,F,E分别是正方形ABCD的边CD、DA延长线上的两个动点(不与D、A重合),依然有BE=AF,BE⊥AF; 若在上述的图1与图2中,正方形ABCD的边长为4,随着动点F、E的移动,线段DG的长也随之变化。在变化过程中,线段DG的长是否存在最大值或最小值?若存在,求出这个最大值或最小值,若不存在,请说明理由。(要求:分别就图1、图2直接写出结论,再选择其中一个图形说明理由)

初中数学动点问题例题集

动点问题专题训练 1、如图,已知A B C △中,10A B A C ==厘米,8B C =厘米,点D 为A B 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿A B C △三边运动,求经过多长时间点P 与点Q 第一次在A B C △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10A B =厘米,点D 为A B 的中点, ∴5B D =厘米. 又∵厘米, ∴835P C =-=厘米8PC BC BP BC =-=,, ∴P C B D =. 又∵A B A C =, ∴B C ∠=∠, ∴BPD CQP △≌△. ························································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433 B P t ==秒, ∴51544 3Q C Q v t = ==厘米/秒. ············································································ (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得 1532104 x x =+?, P

初二数学动点问题练习(含答案)67532

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从 A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动, 如果P,Q分别从A,C同时出发,设移动时间为t秒。 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任 意一点,则DN+MN的最小值为 5 3、如图,在Rt ABC △中,9060 ACB B ∠=∠= °,°,2 BC=.点O是AC的中点,过 点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作 CE AB ∥交直线l于点E,设直线l的旋转角为α. (1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当α=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当90 α=°时,判断四边形EDBC是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形 在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴AB=4,AC=2 3. ∴AO= 1 2 AC =3.在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形 4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. O E C D A α l O C A (备用图)C B A E D 图1 N M A B C D E M A C B E D N M 图3

相关文档
最新文档