各种芯片电路图

各种芯片电路图
各种芯片电路图

常见几种开关电源工作原理及电路图

常见几种开关电源工作原理及电路图

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。 单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。 3.单端正激式开关电源 单端正激式开关电源的典型电路如图四所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也 导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

单端正激式开关电源主电路的设计

单端正激式开关电源主 电路的设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation

8通道电子开关电路

8通道电子开关电路 (1)电路结构与特点 团35所示电路是一种用途广泛的8通道电子开关电路。该电路结构简单,工作稳定 可靠,可以通过触摸、磁控、红外线、光电或连续脉冲等控制通道切换,并通过LED数码管显示通道号,适用于不同目的电子开关。其中,图35(a)为主控电路,固35(b)一(c)是几种触发电路,可视不同的目的去替换团35(a)中的前面u1部分。 在图35(a)中,平时Vl处于截止状态,其集电极输出商电平,并加至u1的2脚S端,使四处于准备状态,这时3脚Q端输出低电乎。当用手触摸传感器板M时,v1获取基 极偏流放导通,其负电报输出的低电乎加到u1的2脚s端,ul被触发,于是3脚便输出 一个宽约为200 ms的正脉冲,作为时钟情号送至U2的CP端。 u2是一个十进制计数器/脉冲分配器。当14脚(CP端)有I一10个正脉冲输入时,Y1 一Y10(图中只用到Yl—Y8)依次单独输出一个商电平信号。此输出信号有两个作用:一是送至u3作为通道显示控制信号,二是从插座P1引出,去同步控制其他电路(或电器)。 U3为1—8显示译码/驱动器。U4为共阴极LED数码管,R3为限流电阻。当U3的输出a一8有相应高电平时.u4数码管将显示l一8中的相应字形,作为工作通道显示。 图35(b)为磁控触发电路,可以用它去替换图35(a)中的U1部分。当磁铁NSl每靠近干簧管sl一次,其内部触点便接通一次,为U5的2脚加一触发倍号,u5的3脚的输出 脉冲可送到u2的cP端,作为时钟脉冲输入。固35(c)是一个磁检测电路,使用霍尔元件 u6作为信号转换,其中R6为内部负电极开路输出管的负载电阻。图35(d)是外加其他正 脉冲触发控制的例子,外加脉冲可取自各种传感电路或报警电路。图2s(e)为光电触发控 制电路,挡板Ns3每移开一次,光电管v4便输出一个正脉冲。 (2)冗IB件选择 在图35中,U1、U5选用NE555或吵555、LM555等时基电路;U2选用CD4017 CMOS集成电路;U3选用CH233显示译码/驱动器;U4选用LC5011共阴LED数码管;U6选用ND6852F霍尔元件;V1选用BCl48三极管;V2选用S9014三极管;V3选用 SE383发光管;v4选用3DU5光电接收管,R1、R10选用10kD,R2选用12ko,R3选用

UC3844组成的变频器维修技术之开关电源电路图及维修技巧

】 UC3844组成的变频器维修技术之开关电源电路图及维修技巧 2011-03-19 11:37 转载自分享 最终编辑欧陆变频器 变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——振荡回路、稳压回路、保护回路和负载回路等。 看一下电路中有几路脉络。 1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N 2、D1、C1形成振荡芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。 当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。

2、稳压回路:N 3、D3、C4等的+5V电源,R7—R10、PC3、R5、R6等元件构成了稳压控制回路。 当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。 3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号——稳压信号,也可看作是一路电压保护信号。但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的异常所引起。 4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。 振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。对三个或四个回路的检修,是在芯片本身正常的前提下进行的。另外,要像下象棋一样,用全局观念和系统思路来进行故障判断,透过现象看本质。如停振故障,也许并非由振荡回路元件损坏所引起,有可能是稳压回路故障或负载回路异常,导致了芯片内部保护电路起控,而停止了PWM脉冲的输出。并不能将和各个回路完全孤立起来进行检修,某一故障元件的出现很可能表现出“牵一发而全身动”的效果。 开关电源电路常表现为以下三种典型故障现象(结合图3、9): 一、次级负载供电电压都为0V。变频器上电后无反应,操作显示面板无指示,测量控制端子的24V和10V电压为0V。检查主电路充电电阻或预充电回路完好,可判断为开关电源故障。检修步骤如下:

三极管开关电路设计详细过程

揭秘:三极管开关电路设计详细过程 电源网首页| 分类:功率开关| 2011-03-10 09:15:39 | 评论(0) 摘要:三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电... 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。

同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕ 因此,基极电流最少应为: 上式表出了IC和IB之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间,有着甚大的差异。欲使开关闭合,则其V in值必须够高,以送出超过或等于(式1) 式所要求的最低基极电流值。由于基极回路只是一个电阻和基射极接面的串联电路,故Vin可由下式来求解﹕

单端正激式开关电源-主电路地设计

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation 目录 前言 (1)

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

开关电源工作频率的原理分析

开关电源工作频率的原理分析 一、开关电源的原理和发展趋势 第一节高频开关电源电路原理 高频开关电源由以下几个部分组成: 图12-1 (一)主电路 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。 4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 (二)控制电路 一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。 (三)检测电路 除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表数据。 (四)辅助电源 提供所有单一电路的不同要求电源。

第二节开关控制稳压原理 图12-2 开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示: EAB=TON/T*E 式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。 由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。 按TRC控制原理,有三种方式: (一)、脉冲宽度调制(Pulse Width Modulation,缩写为PWM) 开关周期恒定,通过改变脉冲宽度来改变占空比的方式。 (二)、脉冲频率调制(Pulse Frequency Modulation,缩写为PFM) 导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。 (三)混合调制 导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。 第三节开关电源的发展和趋势

NE555 双键触摸电子开关电路图

NE555 双键触摸电子开关电路图元件: R1,R2=3.3M 1/4W 5% D1=1N4148 二极管 RL1=12V 继电器 R3=10K 1/4W 5% 电阻 D2= 发光二极管 R4=1K 1/4W 5% Q1=BC547 三极管 C1=10nF 63V MKT 5% 电容 IC1=555 集成电路 分立元件的五路跑马灯控制电路

NE555和CD4017组成的流水灯控制电路 双键触摸式照明灯 本电路图使用两个触摸电极片,分别代替在实际生活中的开和关控制。 一、电路工作原理双触摸式照明开关电路如图1所示。 VS与VD7构成了开关回路。当人触摸到M1(开)电极片时,人体通过R4、VD5整流后给IC NE555集成电路的2脚一个低电平信号(此时IC NE555集成电路接为RS触发器),输出脚3输出高电平,通过R3后触发VS的门极,VS 导通,电灯点亮。 当人触摸到M2(关)电极片时,人体通过R5、VD6整流后给IC NE555集成电

路的6脚一个低电平信号,输出脚3输出低电平,R1提供的正向触发电压被R3 通过集成电路的3脚对地短路,VS失去触发电压,当交流过零时即关断,电灯 熄灭。 二、元器件选择 IC选用NE 555型集成电路;VS选用2N6565型普通塑封小型单向晶闸管;VD1~VD4选 图1 双键触摸式照明灯电路图 用IN4007硅整流二极管;VD7选用6.2V、1W的2CW105硅稳压二极管;VD6、VD7选用IN4148型硅开关二极管;R1~R5均选用RTX—1/8W型碳膜电阻器;C1选用CD11—16V型电解电容;C2选用C'I'I型瓷介电容器。 三、制作与调试方法本电路结构简单、使用方便,只要焊接正确,选用元件正确都能正常工作。由于本电路负载的能力受到稳压管VD7的限制,所以负载的功率不宜大于60W。

TNY264开关电源的应用电路图

TNY264开关电源的应用电路图 TinySwitch?II系列产品可广泛用于23W以下小功率、低成本的高效开关电源。例如,IC卡付费电度表中的小型化开关电源模块,手机电池恒压/恒流充电器,电源适配器(Powersupplyadapter),微机、彩电、激光打印机、录像机、摄录像机等高档家用电器中的待机电源(Standbypowersupply),还适用于ISDN 及DSL网络终端设备。 使用TinySwitch?II便于实现开关电源的优化设计。由于其开关频率提高到132kHz,因此高频变压器允许采用EE13或EF12.6小型化磁芯,并达到很高的电源效率。TinySwitch?II具有频率抖动特性,仅用一只电感(在输出功率小于3W 或可接受的较低效率时,还可用两个小电阻)和两只电容,即可进行EMI滤波。即使在短路条件下,也不需要使用大功率整流管。做具有恒压/恒流特性的充电器时,TinySwitch?II能直接从输入高压中获取能量,不需要反馈绕组,并且即使输出电压降到零时仍能输出电流,因此可大大简化充电器的电路设计。对于需要欠压保护的应用领域(如PC待机电源),也能节省元件数量。 1:TinySwitch?II的典型应用 1:1 -- 2.5W恒流/恒压输出式手机电池充电器 由TNY264(IC1)构成的2.5W(5V、0.5A)、交流宽范围输入的手机电池充电器电路,如图1所示。RF为熔断电阻器。85V~265V交流电经过VD1~VD4桥式整流,再通过由电感L1与C1、C2构成的π型滤波器,获得直流高压UI。R1为L1的阻尼电阻。利用TNY264的频率抖动特性,允许使用简单的滤波器和低价格的安全电容C8(Y电容)即可满足抑制初、次级之间传导式电磁干扰(EMI)的国际标准。即使发生输出端容性负载接地的最不利情况下,通过给高频变压器增加屏蔽层,仍能有效抑制EMI。由二极管VD6、电容C3和电阻R2构成的钳位保护电路,能将功率MOSFET关断时加在漏极上的尖峰电压限制在安全范围以内。当输出电流IO低于500mA时,电压控制环工作,电流控制环则因晶体管VT截止而不起作用。此时,输出电压UO由光耦合器IC2(LTV817)中LED的正向压降(UF≈1V)和稳压管VDZ的稳压值(UZ=3.9V)来共同设定,即UO=UF+UZ≈5V。电阻R8给稳压管提供偏置电流,使VDZ的稳定电流IZ接近于典型值。次级电压经VD5、C5、L2和C6整流滤波后,获得+5V输出电压。 TinySwitch?II的开关频率较高,在输出整流管VD5关断后的反向恢复过程中,会产生开关噪声,容易损坏整流管。虽然在VD5两端并上由阻容元件串联而

单火线取电智能开关设计经验(附电路原理图)_V2.0版本

关键词摘要:两线制单火线智能家居无线遥控触摸感应 ZigBee智能开关单火线取电技术超微功耗单火线电源模块 PI-3V3-B4 PI-05V-D4 前言 随着智能家居的快速发展,单火线智能墙壁开关(只有单根火线进/出,不需要零线)成为了传统机械墙壁开关的升级换代(直接替代)产品,实现了灯具和电器开关的智能化控制(如声控开关,触摸开关,红外线遥控开关,人体感应开关,手机控制WIFI 智能开关等)。并且,国内外普通家庭大多为单火线布线,在升级实现智能化改造时往往要求新智能开关能直接代换旧有的机械墙壁开关,更换时无需重新布线。所以开发新型电子智能照明开关都必须要求采用单线制(2 Wire 两线制)的单火开关。 根据电子常识可知,凡是电子智能照明开关本身都需要消耗一定的电流,在待机时,由于单火线开关待机取电是通过流过灯具的电流给智能开关的控制电路供电的,如果待机输入电流太小就会导致待机电路不能正常工作,如果待机输入电流太大就会导致灯具关闭后还会有闪烁或微亮(出现“关不死”的现象)等问题。特别是高阻抗的电子节能灯和LED灯(例如: 高效节能灯和AC直接驱动的AC LED灯具),对待机电流更为敏感。 单火线开关闪烁的原因是什么? 电子开关为什么接白炽灯不会闪烁,而接节能灯和LED灯就会闪烁呢?这与节能灯(或LED灯)以及电子开关的自身构造都有关系:由于电子开关是用电子电路组成的控制开关,就一定要消耗一定的电流,这一电流必定要通过串接在电源回路中的节能灯(或

LED灯)。由于电子节能灯(或LED灯)内部电路结构的特殊性,即使流过节能灯(或LED 灯)的电流很小,也会使节能灯产生不同程度的闪烁现象。 下面分析其中原因:节能灯(或LED灯)内部电路一般采用了桥式整流电容滤波电路,如下图: 当电子开关本身消耗的微小的电流通过火线经灯具内部的桥式整流电路的滤波电容C时,这一很小的电流向灯具内部电容C充电,当灯具内部电容C上的直流电压充到一定的程度时(约50V左右,不同的灯电路会有些差别),节能灯内部的电子电路就会恢复工作而使节能灯(或LED灯)点亮,这时电容C两端的电压因为放电而随则会下降,然后再开始下一回合的充电及放电过程。这样,我们就会看到灯闪或微亮现象。 这一闪烁现象的间隔与流过的电流及节能灯(或LED灯)的内部电路结构密切相关,很难进行具体量化(如:多少瓦数以上的灯不会闪烁,哪些类型的灯不会闪烁)。经过对大量各品牌不同厂家的节能灯进行实际测试,发现引起节能灯闪烁的电流从20微安至100微安不等。有一些节能灯在电流小于10微安以下时都还会出现闪烁或者微亮的现象,另外灯闪烁与否与实际灯的标称功率瓦数也没有直接的绝对关系(如: 测试发现有些1W甚至更小的灯都不会闪烁或微亮,而有一些个别杂牌5W的灯却会出现闪烁

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

三极管开关电路分析

站内搜索: 永生 RSS 电路测试仪正达电路测试 电路测试仪-北京正达专营电路测试仪 https://www.360docs.net/doc/e913231780.html, 高校实验教学解决方案 集成电路维修检测仪. STC 51 新39.99 USB ISP 5 in 1(USB 能在线 录器 45.0 搜索

图1 基本的三极管开关 因此,基极电流最少应为: ( 流值。由于基极回路只是一个电阻和基射极接面的串联电路,故 (

为了避免混淆起见,本文所介绍的三极管开关均采用NPN三极管,当然NPN三极管亦可以被当作开关来使用,只是比较不常见罢了。 例题1 试解释出在图2的开关电路中,欲使开关闭合(三极管饱和) 所须的输入电压为何﹖并解释出此时之负载电流与基极电流值﹖ 解﹕由2式可知,在饱和状态下,所有的供电电压完全跨降于负载电阻上,因此 由方程式 (1) 可知 因此输入电压可由下式求得﹕ 图2 用三极管做为灯泡开关 由例题得知,欲利用三极管开关来控制大到1.5A的负载电流之启闭动作,只须要利用甚小的控制电压和电流即可。此外,三极管虽然流过大电流,却不须要装上散热片,因为当负载电流流过时,三极管呈饱和状态,其VCE趋近于零,所以其电流和电压相乘的功率之非常小,根本不须要散热片。 二、三极管开关与机械式开关的比较 截至目前为止,我们都假设当三极管开关导通时,其基极与射极之间是完全短路的。事实并非如此,没有任何三极管可以完全短路而使VCE=0,大多数的小信号硅质三极管在饱和时,VCE(饱和) 值约为0.2伏特,纵使是专为开关应用而设计的交换三极管,其VCE(饱和) 值顶多也只能低到0.1伏特左右,而且负载电流一高,VCE(饱和) 值还会有些许的上升现象,虽然对大多数的分析计算而言,VCE(饱和) 值可以不予考虑,但是在测试交换电路时,必须明白VCE(饱和) 值并非真的是0。 虽然VCE(饱和)的电压很小,本身微不足道,但是若将几个三极管开关串接起来,其总和的压降效应就很可观了, 不幸的是机械式的开关经常是采用串接的方式来工作的,如图3(a)所示,三极管开关无法模拟机械式开关的等效电 路(如图3(b)所示)来工作,这是三极管开关的一大缺点。表 步进电机控制工作原理 直流电机的PWM冲调速控制技术 消除按键抖动电路 伺服电机工作原理LED驱动原理

开关电源电路图解析

开关电源电路图解析 所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 开关电源电路图 一、主电路 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,

开关电源电路组成及各部分详解

开关电源各功能电路详解 一、开关电源的电路组成 二、输入电路的原理及常见电路 三、功率变换电路 四、输出整流滤波电路 五、稳压环路原理 六、短路保护电路 七、输出端限流保护 八、输出过压保护电路的原理 九、功率因数校正电路(PFC) 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理:

①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若 C5容量变小,输出的交流纹波将增大。 2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬

单键开关电路图

轻触式交流电源开关 本文介绍一种适合业余自制由轻触按钮开关控制的交流开关,其特点有: (1)由单刀轻触按钮开关控制,具有停电自锁功能; (2)无需其它同类电路必须的、长期通电的直流电源和双稳态电路,因此静态不耗电; (3)由于按钮开关仅通过微弱的控制电流,所以工作可靠。该开关电路原理如附图所示。 图中,S为轻触式按钮开关,RL为单相负载,BCR是适当功率的双向可控硅。在关断状态时,RL两端无电压,光电耦合器IC1、IC2也同时截止。若按动S,则220V市电经R1降压,VD1整流、C1滤波、DW稳压得到6V直流电压,IC1内部发光二极管点亮,次级可控硅导通,BCR 触发导通,RL得电工作。松开S后,220V市电改经BCR和R2为控制电路提供工作电流。另一方面,当按下S电路刚通电时,由于C2两端电压不能突变,晶体管VT截止,故IC2也截止,电路按上述过程完成开机。随即6V直流电源经VD2、R6、R4对C2充电,VT基极电位逐渐升高,约0.5秒后VT导通,IC2内部的发光管点亮,次级可控硅导通,电路保持正常工作状态。再按动一次S,此时因IC2次级可控硅导通,故控制电路电源被其短路,于是IC1和BCR均截止,RL失电,即使松开S后,直流电源也会消失。片刻后C3电荷放尽,VT、IC2也相继截止,电路回到完全断电状态。 VT、C2、R4等组成的延时电路能保证IC2延时导通与延时截止,以防IC1、IC2同时导通导致电路产生连续通断的不稳定现象。由以上分析可知,按下S的时间应短于VT的延时时间,即RL一俟通电或断电即应及时松开S。 调试时,适当调整C2容量,使VT有不少于0.5秒的延时后导通时间;适当调整C3容量,使VT有1秒左右的延时后截止时间,其余不必调试。 简单的单按键开关 电路:如SW引线较 长的话,需在ICB 6 与GND间加一抗干 扰小电容

开关电源常用保护电路

开关电源常用保护电路 摘要:开关电源工作在高电压下,较大功率的开关电源同时也工作在大电流状态下,并且受到浪涌电流和高压脉冲的威胁,加之开关电源电路复杂,,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便.为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路. 2 开关电源的原理及特点 2.1 工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成.功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能.它主要由开关三极管和高频变压器组成. 图 1 画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V ,激励信号,续流二极管 Vp ,储能电感和滤波电容 C 组成.实际上,直流开关电源的核心部分是一个直流变压器. 2.2 特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体( Mn-Zn )材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT 技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄.因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化. 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱.由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境

光控开关电路设计模拟电子技术

课程设计说明书(论文) 题目:光控开关电路设计 课程名称:模拟电子技术 学院:电子信息与电气工程学院 学生姓名: 学号: 专业班级: 指导教师: 2014年06月06日

课程设计任务书

光控开关电路设计 摘要:此光控灯电路是基于光电传感器特性的基础上而设计的。该光控开关由光控部分,开关部分, LED灯三部分组成。当自然光的亮度(或人为亮度)发生改变时,光控灯将随着“开”和“关”。适合作为街道、宿舍走廊或其它公共场所照明灯,起到日熄夜亮的控制作用,以节约用电。它具有体积小、外形美观、制作容易、工作可靠等优点,适合于各种楼房走廊的照明设备,降低能耗,节约能源。 关键词:光敏二极管;电压比较器;继电器;晶体三极管

目录 1.设计背景 (1) 1.1满足现实生活需求 (1) 1.2适应现代科技发展 (1) 2.设计方案 (1) 2.1可供选择方案. (1) 2.2方案论证 (2) 3.方案的实施 (2) 3.1原理图的设计 (2) 3.2PCB板的设计和制作 (4) 3.3元器件的组装与焊接 (6) 3.4光控开关的调试 (6) 4.结果与结论 (6) 4.1.光控开关设计结果 (6) 4.2.结论 (6) 5.收获与致谢 (7) 6.参考文献 (8) 7.附件 (8) . . .

1. 设计背景 1.1满足现实生活需求 在现代社会现实生活中我们无时无刻不在使用这电灯,现在市场上出现了各种各样的灯,比如:白炽灯,节能灯,彩灯等等,但是不论如何都少不了控制这些灯的开关。因此,设计一个可行性的开关显的尤为的重要。本次设计就是为了满足现实生活的需求而设计的光控开关。 1.2适应现代科技发展 随着现代科学技术的发展传统式开关已经不能满足现代生活。在现代社会很多地方夜晚需要长明灯,比如一些公共场所,一些生产车间。如果这些地方使用传统的开关很可能产生夜晚开灯之后,等到白天的时候就会忘记关灯而造成严重的能源浪费。还有在一些生产过程中,我们能把这些光控开关当做报警装置的一部分。当人手触碰到那些危险区域之前,由于人手的遮光而使得光线变暗而触发开关产生报警。因此我们的光控开关的设计是很有必要很有意义的一件事。 2.设计方案 2.1可供选取方案: 方案一: 用μA741光敏二极管构成光控部分 通过改变μA741正向与反向输入电压的不同使μA741的输出端输出稳定的高电平或低电平从而使8050晶体三极管导通或截止来控制继电器的锡合与断开。 方案二: 用555定时器构建单稳态电路与光敏二极管够成光控部分 用555定时器构建的单稳态触发器同样能输出稳定的高电平或低电平从而使8050晶体三极管导通或截止来控制继电器的锡合与断开。 2.2方案的论证和选取: 用μA741与光敏二极管构成的光控电路部分,电路结构更加简单可行,现实情况更容易制作。因此,通过比较最终方案选用方案一。 3. 方案实施

几种常见开关电源电路图

uc3842开关电源电路图 用UC3842做的开关电源的典型电路见图1。过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。这被称为“打嗝”式(hi ccup)保护。在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms 到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。仔细调整这个电阻的数值,一般都可以达到满意的保护。使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。 图2、3、4是常见的电路。图2采取拉低第1脚的方法关闭电源。图3采用断开振荡回路的方法。图4采取抬高第2脚,进而使第1脚降低的方法。在这3个电路里R3电阻即使不要,仍能很好保护。注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。在过载或短路保护时,它也起延时保护的左右。在灯泡、马达等启动电流大的场合,C4的取值也要大一点。

图1是使用最广泛的电路,然而它的保护电路仍有几个问题: 1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R 3的数值,给生产造成麻烦; 2. 在输出电压较低时,如 3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值; 3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。 这时如果采用辅助电路来实现保护关断,会达到更好的效果。辅助关断电路的实现原理:在过载或短路时,输出电压降低,电压反馈的光耦不再导通,辅助关断电路当检测到光耦不再导通时,延迟一段时间就动作,关闭电源。

相关文档
最新文档