高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析
高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解

一、高考物理精讲专题带电粒子在电场中的运动

1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .

(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.

①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;

②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.

【答案】(1)24mv e (2)①439a

v

π ②(31)B ae ≥-

【解析】 【详解】

(1)对电子经C 、A 间的电场加速时,由动能定理得

()2

211322

eU m v mv =

- 得2

4mv U e

=

(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.

设此轨迹圆的半径为r ,则)

2

223a r

r a -=+

又2r

T v

π=

得tan 3a

r

θ== 故θ=60°

所以电子在磁场中运动的时间2-22t T πθ

π

= 得439a

t v

π=

(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:

23r a a '=-

又2

v evB m r ='

得3-1B ae =

()

所以3-1B ae

()

2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为

2

L

()o ?>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.

(1)求粒子到达O 点时速度的大小;

(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23

能打到MN 板上,求所加磁感应强度的大小;

(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E L

φ

=

,若从AB 圆弧面收集到的某粒子经

O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v m

?

=;(2)12m B L q ?=;(3)060α∴= ;22m L q ?

【解析】 【分析】 【详解】

试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2

102

qU mv =-

2U ???=-=2q v m

?

=

(2)从AB 圆弧面收集到的粒子有

2

3

能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60?,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.

根据几何关系,粒子圆周运动的半径:2R L =

由洛伦兹力提供向心力得:2

v qBv m R

=

联合解得:12m B L q

?

=

(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远,

这是一个类平抛运动的逆过程. 建立如图坐标.

2

12qE L t m

= 222mL m

t L qE q ?

==22x Eq qEL q v t m m m ?

=

==

若速度与x 轴方向的夹角为α角 cos x v v α=

1

cos 2

α=060α∴=

3.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60o的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60o,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60o的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。已知粒子从O 运动到A 的时间与从A 运动到B 的时间相同,不计粒子重力,已知量为m 、q 、v 0、d .求:

(1)粒子从O 到A 运动过程中,电场力所做功W ; (2)匀强电场的场强大小E 1、E 2; (3)粒子到达B 点时的动能E kB .

【答案】(1)2032W mv = (2)E 1=203m υ E 2=2

03m υ (3) E kB =2

0143m υ

【解析】 【分析】

(1)对粒子应用动能定理可以求出电场力做的功。

(2)粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。 (3)根据粒子运动过程,应用动能计算公式求出粒子到达B 点时的动能。 【详解】

(1) 由题知:粒子在O 点动能为E ko =

2

012

mv 粒子在A 点动能为:E kA =4E ko ,粒子从O 到A 运动过程,由动能定理得:电场力所做功:W=E kA -E ko =2

032

mv ; (2) 以O 为坐标原点,初速v 0方向为x 轴正向, 建立直角坐标系xOy ,如图所示

设粒子从O 到A 运动过程,粒子加速度大小为a 1, 历时t 1,A 点坐标为(x ,y ) 粒子做类平抛运动:x=v 0t 1,y=

21112

a t 由题知:粒子在A 点速度大小v A =2 v 0,v Ay

0,v Ay =a 1 t 1 粒子在A 点速度方向与竖直线PQ 夹角为30°。

解得:1

x =

,20132v y a = 由几何关系得:ysin60°

-xcos60°=d ,

解得:1a =,10

4d t v =

由牛顿第二定律得:qE 1=ma 1,

解得:1E =

设粒子从A 到B 运动过程中,加速度大小为a 2,历时t 2,

水平方向上有:v A sin30°=2

2

t a 2sin60°,2104d t t v ==,qE 2=ma 2,

解得:22a =

,2

23E qd

=; (3) 分析知:粒子过A 点后,速度方向恰与电场E 2方向垂直,再做类平抛运动, 粒子到达B 点时动能:E kB =2

12

B mv ,v B 2=(2v 0)2+(a 2t 2)2, 解得:20

143

KB mv E =。 【点睛】

本题考查了带电粒子在电场中的运动,根据题意分析清楚粒子运动过程与运动性质是解题的前提与关键,应用动能定理、类平抛运动规律可以解题。

4.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。在负x 轴上有一质量为m 、电量为+q 的金属a 球以速度v 0沿x 轴向右匀速运动,并与静止在坐标原点O 处用绝缘细支柱支撑的(支柱与b 球不粘连、无摩擦)质量为2m 、不带电金属b 球发生弹性碰撞。已知a 、b 球体积大小、材料相同且都可视为点电荷,碰后电荷总量均分,重力加速度为g ,不计a 、b 球间的静电力,不计a 、b 球产生的场对电场、磁场的影响,求:

(1)碰撞后,a 、b 球的速度大小; (2)a 、b 碰后,经0

23v t g

=

时a 球到某位置P 点,求P 点的位置坐标; (3)a 、b 碰后,要使 b 球不从CD 边界射出,求磁感应强度B 的取值。

【答案】(1) 01

3a v v =-,023

=b v v ;(2)(2029g v - ,2

09g v - ); (3) 016m 015v B qL <<或

16m 3v B qL

>

【解析】 【分析】

(1)a 、b 碰撞,由动量守恒和能量守恒关系求解碰后a 、b 的速度;

(2)碰后a 在电场中向左做类平抛运动,根据平抛运动的规律求解P 点的位置坐标; (3)要使 b 球不从CD 边界射出,求解恰能从C 点和D 点射出的临界条件确定磁感应强度的范围。 【详解】 (1)a 匀速,则

1mg qE = ①

a 、

b 碰撞,动量守恒

02a b mv mv mv =+ ②

机械能守恒

()22201112222

a b mv mv m v =+ ③ 由②③得

01

3a v v =-,023

=b v v ④

(2)碰后a 、b 电量总量平分,则

1

2

a b q q q ==

碰后a 在电场中向左做类平抛运动,设经0

23v t g

=

时a 球到P 点的位置坐标为(-x ,-y )

a x v t = ⑤ ,2

12

y at =

⑥ 其中

112

mg qE ma -=⑦,12a g =

由⑤⑥⑦得

2029v x g =,2

09v y g

=

故P 点的位置坐标为(2029g v - ,2

9g

v - )⑧ (3)碰撞后对b

21

22

qE mg = ⑨ 故b 做匀速圆周运动,则

21

22b b v qv B m r

= ⑩ 得

83mv r qB

=

? b 恰好从C 射出,则

2L r =?

由??得

116m 3v B qL

=

恰从D 射出,则由几何关系

()2

224r L r L =+- ?,

5

2

r L =

? 由??得

216m 15v B qL

=

故要使b 不从CD 边界射出,则B 的取值范围满足

016m 015v B qL <<

或0

16m 3v B qL

> 【点睛】

本题考查带电粒子在电磁场中的运动以及动量守恒定律及能量守恒关系,注意在磁场中的

运动要注意几何关系的应用,在电场中注意由类平抛运动的规律求解。

5.两平行的带电金属板水平放置,板间电场可视为匀强电场.带电量相等粒子a ,b 分别以相同初速度水平射入匀强电场,粒子a 飞离电场时水平方向分位移与竖直方向分位移大小相等,粒子b 飞离电场时水平方向速度与竖直方向速度大小相等.忽略粒子间相互作用力及重力影响,求粒子a 、b 质量之比. 【答案】1:2 【解析】 【详解】

假设极板长度为l ,粒子a 的质量为m a ,离开电场时竖直位移为y ,粒子b 的质量为m b ,离开电场时竖直分速度为v y ,两粒子初速度均为v 0,在极板间运动时间均为t 对粒子a :l =v 0t …① y =

12

a 1t 2

…② 1a

qE

a m =

…③ y =l …④

①②③④联立解得:20

2a qEl m v = 对粒子b :v y =a 2t …⑤ v y =v 0…⑥

2b

qE

a m =

…⑦ ①⑤⑥⑦联立解得:20

b qEl m v =

1

2

a b m m =.

6.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x

(1)求电场强度大小E ;

(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;

(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.

【答案】(1)2

mv E qL =(2)04nmv B qL =n=1、2、3......(3)0

2L t v π=

【解析】

本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.

(1)带电粒子在电场中做类平抛运动有: 0L v t =,

2

122

L at =,qE ma = 联立解得: 2

mv E qL

=

(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan x

y

v v θ==l 速度大小0

02sin v v v θ

=

= 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2

π

;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.

若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2

π

.则有2R ,此时满足L=2nx 联立可得:22R n

=

由牛顿第二定律,洛伦兹力提供向心力,则有:2

v qvB m R

=

得:0

4nmv B qL

=

,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为

2

π

.则有222x R ,此时满足()221L n x =+

联立可得:()2212

R n =

+

由牛顿第二定律,洛伦兹力提供向心力,则有:2

22

v qvB m R =

得:()0

2221n mv B qL

+=

,n=1、2、3....

所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =

,n=1、2、3....或()0

2221n mv B qL

+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×

2

π×2=2nπ,则02222n n m L t T qB v ππππ=?==

若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220

(42)(42)2n n m L

t T qB v ππππ++=?

== 粒子从进入磁场到坐标(-L ,0)点所用的时间为0

2222n n m L

t T qB v ππππ=?

==或

2220

(42)(4

2)2n n m L

t T qB v ππππ++=?

==

7.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为

2

R

的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.

(1)求电场强度大小及粒子经过P 点时的速度大小和方向; (2)为使粒子从AC 边界射出磁场,磁感应强度应满足什么条件;

(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?

【答案】(1) 2

24mv E qR

=2v ,速度方向沿y 轴负方向

(2)

82225mv mv B qR qR ≤≤

(3))

2713mv

qR

【解析】 【分析】 【详解】

(1)在电场中,粒子沿初速度方向做匀速运动

132cos 4522cos 45R

L R R =

-?=?

1L vt =

沿电场力方向做匀加速运动,加速度为a

22sin 452L R R =?=

2212

L at =

qE a m

=

设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v 、2v ,合速度v '

1v v =、2v at =,2

tan v v

θ=

联立可得2

24mv E qR

=

进入磁场的速度22

122v v v v =+=

'

45θ=?,速度方向沿y 轴负方向

(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12

R

r =

由211mv qv B r =''得122mv

B =

当粒子从C 点射出时,由勾股定理得

()

2

2

2222R R r r ??

-+= ???

解得258

r R =

由222mv qv B r =''得282mv

B =

根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当8222mv mv

B ≤≤

时,粒子从AC 边界射出

(3)为使粒子不再回到电场区域,需粒子在CD区域穿出磁场,设出磁场时速度方向平行

于x轴,其半径为3r,由几何关系得

2

22 332

R

r r R

?

?

+-=

?

??

解得

()

3

71

4

R

r

+

=

2

3

3

mv

qv B

r

=

'

'得

()

3

2

271

3

mv

B

qR

-

=

磁感应强度小于3B,运转半径更大,出磁场时速度方向偏向x轴下方,便不会回到电场中

8.图中是磁聚焦法测比荷的原理图。在阴极K和阳极A之间加电压,电子由阳极A中心处的小孔P射出。小孔P与荧光屏中心O点连线为整个装置的中轴线。在极板很短的电容器C上加很小的交变电场,使不同时刻通过这里的电子发生不同程度的偏转,可认为所有电子从同一点发散。在电容器C和荧光屏S之间加一平行PO的匀强磁场,电子从C出来后将沿螺旋线运动,经过一段时间再次汇聚在一点。调节磁感应强度B的大小,可使电子流刚好再次汇聚在荧光屏的O点。已知K、A之间的加速电压为U,C与S之间磁场的磁感应强度为B,发散点到O点的距离为l。

(1)我们在研究复杂运动时,常常将其分解为两个简单的运动形式。你认为题中电子的螺旋运动可分解为哪两个简单的运动形式?

(2)求电子的比荷

e

m

【答案】(1)沿PO方向的匀速运动和垂直于PO方向上的匀速圆周运动;(2)2

22

8

e U

m B l

π

=

【解析】

【详解】

(1)电子的螺旋运动可分解为沿PO 方向的匀速运动和垂直于PO 方向上的匀速圆周运动。

(2)从发散点到再次汇聚点,两个方向的分运动时间相等,有12=t t 加速电场2

12eU mv =

匀速直线运动

1l t v

=

匀速圆周运动 2

v evB m R =, 2m T qB π= 2t T = 联立以上各式可得2228e U

m B l

π=

9.如图所示,在xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y 轴向下.一电子以速度v 0从y 轴上的P 点垂直于y 轴向右飞入电场,经过x 轴上M 点进入磁场区域,又恰能从y 轴上的Q 点垂直于y 轴向左飞出磁场已知P 点坐标为(0,-L),M 点的坐标为(23

3

L ,0).求 (1)电子飞出磁场时的速度大小v (2)电子在磁场中运动的时间t

【答案】(1)02v v =;(2)20

49L

t v π= 【解析】 【详解】

(1)轨迹如图所示,设电子从电场进入磁场时速度方向与x 轴夹角为θ,

(1)在电场中x 轴方向:0123L

v t =,y

轴方向12y v L t =:,

0tan 3y v v θ== 得60θ=o ,0

02cos v v v θ

=

= (2)在磁场中,234

3

L r L =

= 磁场中的偏转角度为2

3

απ=

20

2439r

L t v v ππ==

10.如图所示,一内壁光滑的绝缘圆管AB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB =2L ,圆环的半径为r 2L =

(圆管的直径忽略

不计),过OD 的虚线与过AB 的虚线垂直相交于C 点.在虚线AB 的上方存在水平向右的、范围足够大的匀强电场;虚线AB 的下方存在竖直向下的、范围足够大的匀强电场,电场

强度大小等于mg

q

.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的绝缘小物体(可视为质点),PC 间距为L.现将该小物体无初速度释放,经过一段时间,小物体刚好沿切线无碰撞地进入圆管内,并继续运动.重力加速度用g 表示. (1)虚线AB 上方匀强电场的电场强度为多大?

(2)小物体从管口B 离开后,经过一段时间的运动落到虚线AB 上的N 点(图中未标出N 点),则N 点距离C 点多远?

(3)小物体由P 点运动到N 点的总时间为多少?

【答案】(1)mg q

E = (2)7CN x L = (3)32(3)4L t g

π+

总= 【解析】

(1)小物体无初速释放后在重力、电场力的作用下做匀加速直线运动,小物体刚好沿切线无碰撞地进入圆管内,故小物体刚好沿PA 连线运动,重力与电场力的合力沿PA 方向;又

PA AC L ==,故0

tan 45qE mg =

,解得:mg

q

E =

(2)小物体从P 到A 的运动由动能定理可得:2

12

A mgL qEL mv +=

,解得:2A v gL =

虚线AB 的下方存在竖直向下的、范围足够大的匀强电场,电场强度大小等于

mg

q

,电荷量为q -(q >0)的绝缘小物体所受电场力22F qE mg

==,方向竖直向上,故小物体从A 到B 做匀速圆周运动,2B A v v gL ==

小物体从管口B 离开后,经过一段时间的运动落到虚线AB 上的N 点,对竖直方向:

02sin 45B v t g =解得:22L t g

=

水平方向:0

2

1(cos 45)2

B x v t at =+

、 qE ma =解得:8x L = N 点距离C 点:7CN x x L L =-= (3)小物体从P 到A 的时间1t ,则1122A L v t =

解得:12L t g

= 物体从A 到B 的时间2t ,则2

3

223244

A L

L t v g

ππ??==

小物体由P 点运动到N 点的总时间 123234L

t t t t g

π??++=+

?

??总=

11.如图甲所示,平行板A 、B 竖直放置,B 板接地,A 、B 两板加上交变电压,A 板的电势随时间变化规律如图乙所示,乙图所示物理量均为已知量。t=0时刻,一个质量为m ,电荷量为q 的带正电的粒子在B 板附近由静止释放,不计粒子的重力,求: (1)要使粒子到达A 板时速度为零,A 、B 板间的距离应满足什么条件? (2)要使粒子到达A 板前一直加速,A 、B 板间的距离应满足什么条件

(3)若将两板间的距离调为L ,保持两板的电势差大小不变,改变交变电压周期,使粒子在

t=

4T 到t=2T

时间内从B 板附近由静止释放后粒子不能到达A 板,改变后的周期应满足什么条件?

【答案】(102

nq T

m ?(2)0

22q T

d m

?≤ (3)04m T L q ?<【解析】 【分析】

粒子从0t =时刻释放后一个周期内,先做初速度为零的匀加速运动,后做匀减速运动速度

为零,因此粒子到达A 时速度为零,则粒子在板间运动的时间应为周期的整数倍; 要使粒子到达A 板前一直加速,即粒子在板间运动的时间不超过半个周期;从B 板附近由静止释放后粒子不能到达A 板,带电粒子在4

T t =到2T

t =时间内向A 做匀加速运动,在

2T

t =

到34

T t =时间内向A 做匀减速运动,速度减为零后将返回; 【详解】

解:(1)由题可知,粒子从0t =时刻释放后一个周期内,先做初速度为零的匀加速运动,后做匀减速运动速度为零,因此粒子到达A 时速度为零,则粒子在板间运动的时间应为周期的整数倍;

设板间的间距为d ,则板间电场强度大小为:0

E d

?=

在开始的半周期内,粒子运动的距离:2

1()22

T x a =

qE a m

=

2d nx =,(n=1,2,3….)

解得:d =

(n=1,2,3….) (2) 要使粒子到达A 板前一直加速,即粒子在板间运动的时间不超过半个周期

212d at = 0

q a md

?= 2

T t ≤

解得:d ≤

(3) 带电粒子在4

T t =

到2T t =时间内向A 做匀加速运动,在2T

t =到34T t =时间内向A 做匀

减速运动,速度减为零后将返回,粒子向A 运动可能的最大位移:2

12()24

T s a =?

q a mL

?=

从B 板附近由静止释放后粒子不能到达A 板,则有:x L <

解得:4T <

12.如图所示,在x 轴上方有垂直xOy 平面向里的匀强磁场,磁感应强度为B 1=B 0,在x 轴

下方有交替分布的匀强电场和匀强磁场,匀强电场平行于y 轴,匀强磁场B 2=2B 0垂直于xOy 平面,图象如图所示.一质量为m ,电量为-q 的粒子在02

3

t t =

时刻沿着与y 轴正方向成60°角方向从A 点射入磁场,20t t =时第一次到达x 轴,并且速度垂直于x 轴经过C 点,C 与原点O 的距离为3L .第二次到达x 轴时经过x 轴上的D 点,D 与原点O 的距离为4L .(不计粒子重力,电场和磁场互不影响,结果用B 0、m 、q 、L 表示)

(1)求此粒子从A 点射出时的速度υ0; (2)求电场强度E 0的大小和方向;

(3)粒子在09t t =时到达M 点,求M 点坐标.

【答案】(1)002qB L v m = (2)202πqB L

E m

= (3)(9L ,3π2-L ) 【解析】

试题分析:(1)设粒子在磁场中做圆周运动的半径为R 1,由牛顿第二定律得

根据题意由几何关系可得

联立①②得

(2)粒子在第一象限磁场中运动的周期设为T 1,可得

粒子在第四象限磁场中运动的周期设为T 2,可得

根据题意由几何关系可得⑥ 由④⑤⑥可得

综上可以判断3t 0—4 t 0粒子在第四象限的磁场中刚好运动半个周期,半径为

由牛顿第二定律得

2 t0—

3 t0,粒子做匀减速直线运动,

qE=ma 11

12

综上解得

13

(3)由题意知,粒子在8 t0时刚在第四象限做完半个圆周运动,x=9L 14

粒子在电场中减速运动的时间为t0,由运动学公式可得

15

联立③ ⑨⑩1112可解得

16

联立可得M点的坐标为

(9L,) 17

考点:带电粒子在电场及在磁场中的运动.

高一物理运动学练习测试题

精心整理 高一物理运动学练习题(一) 1、在不需要考虑物体本身的大小和形状时,可以把物体简化为一个有质量的点,即质点.物理学中,把这种在原型的基础上,突出问题的主要方面,忽略次要因素,经过科学抽象而建立起来的客体称为() A.控制变量 B.理想模型 C.等效代替 D.科学假说 2.下列关于质点的说法中,正确的是()A.体积很小的物体都可看成质点 B.不论物体的质量多大,只要物体的尺寸对所研究的问题没有影响或影响可以忽略不计,就可以看成质点 C.研究运动员跨栏时身体各部位的姿势时可以把运动员看成质点 D.研究乒乓球的各种旋转运动时可以把乒乓球看成质点 3.下列各组物理量中,都是矢量的是()A.位移、时间、速度B.速度、速率、加速度 C.加速度、速度的变化、速度D.速度、路程、位移 4.一个物体从A点运动到B点,下列结论正确的是() A.物体的位移一定等于路程B.物体的位移与路程的方向相同,都从A指向B C.物体的位移的大小总是小于或等于它的路程D.物体的位移是直线,而路程是曲线 5.一个小球从5m高处落下,被水平地面弹回,在4m高处被接住,则小球在整个过程中(取向下为正方向)() A.位移为9m B.路程为-9m C.位移为-1m D.位移为1m 6.下列关于速度和加速度的说法中,正确的是() A.物体的速度越大,加速度也越大B.物体的速度为零时,加速度也为零 C.物体的速度变化量越大,加速度越大D.物体的速度变化越快,加速度越大 7.我国飞豹战斗机由静止开始启动,在跑动500m后起飞,已知5s末的速度为10m/s,10s末的速度为15m/s,在20s末飞机起飞。问飞豹战斗机由静止到起飞这段时间内的平均速度为() A.10m/s B.12.5m/s C.15m/s D.25m/s 8.在同一张底片上对小球运动的路径每隔0.1s拍一次照,得到的照片如图所示,则小球在拍照的时间内,运动的平均速度是() A.0.25m/s B.0.2m/s C.0.17m/sD.无法确定 9.以下各种运动的速度和加速度的关系可能存在的是 A.速度向东,正在减小,加速度向西,正在增大 B.速度向东,正在增大,加速度向西,正在减小 C.速度向东,正在增大,加速度向西,正在增大 D.速度向东,正在减小,加速度向东,正在增大 10.一足球以12m/s的速度飞来,被一脚踢回,踢出时的速度大小为24m/s,球与脚接触时间为0.1s,则此过程中足球的加速度为:() A、120m/s2,方向与中踢出方向相同 B、120m/s2,方向与中飞来方向相同

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

高中物理牛顿运动定律题20套(带答案)

高中物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的传送带.已知某传送带与水平面成37θ=o 角,皮带的AB 部分长 5.8L m =,皮带以恒定的速率4/v m s =按图示方向传送,若在B 端无初速度地放置一个质量50m kg =的救灾物资

(P 可视为质点),P 与皮带之间的动摩擦因数0.5(μ=取210/g m s =,sin370.6)=o , 求: ()1物资P 从B 端开始运动时的加速度. ()2物资P 到达A 端时的动能. 【答案】()1物资P 从B 端开始运动时的加速度是()2 10/.2m s 物资P 到达A 端时的动能 是900J . 【解析】 【分析】 (1)选取物体P 为研究的对象,对P 进行受力分析,求得合外力,然后根据牛顿第三定律即可求出加速度; (2)物体p 从B 到A 的过程中,重力和摩擦力做功,可以使用动能定律求得物资P 到达A 端时的动能,也可以使用运动学的公式求出速度,然后求动能. 【详解】 (1)P 刚放上B 点时,受到沿传送带向下的滑动摩擦力的作用,sin mg F ma θ+=; cos N F mg θ=N F F μ=其加速度为:21sin cos 10/a g g m s θμθ=+= (2)解法一:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用 根据动能定理:()()2211sin 22 A mg F L s mv mv θ--=- 到A 端时的动能2 19002 kA A E mv J = = 解法二:P 达到与传送带有相同速度的位移2 1 0.82v s m a == 以后物资P 受到沿传送带向上的滑动摩擦力作用, P 的加速度2 2sin cos 2/a g g m s θμθ=-= 后段运动有:2 22212 L s vt a t -=+, 解得:21t s =, 到达A 端的速度226/A v v a t m s =+=

带电粒子在电场中的运动练习题(含答案)

带电粒子在电场中的运动 1.如图所示,A 处有一个静止不动的带电体Q ,若在c 处有初速度为零的质子和α粒子,在电场力作用下由c 点向d 点运动,已知质子到达d 时速度为v 1,α粒子到达d 时速度为v 2,那么v 1、v 2等于:( ) A. :1 B.2 ∶1 C.2∶1 D.1∶2 2.如图所示, 一电子沿等量异种电荷的中垂线由 A →O → B 匀速运动,电子重力不计,则电子除受电场力外,所受的另一个力的大小和方向变化情况是:( ) A .先变大后变小,方向水平向左 B .先变大后变小,方向水平向右 C .先变小后变大,方向水平向左 D .先变小后变大,方向水平向右 3.让 、 、 的混合物沿着与电场垂直的方向进入同一有界匀强电场偏转, 要使它们的偏转角相同,则这些粒子必须具有相同的( ) A.初速度 B.初动能 C. 质 量 D.荷质比 4.如图所示,有三个质量相等,分别带正电,负电和不带电的小球,从上、下带电平行金属板间的P 点.以相同速率垂直电场方向射入电场,它们分别落到A 、B 、C 三点, 则 ( ) A 、A 带正电、 B 不带电、 C 带负电 B 、三小球在电场中运动时间相等 C 、在电场中加速度的关系是aC>aB>aA D 、到达正极板时动能关系 E A >E B >E C 5.如图所示,实线为不知方向的三条电场线,从电场中M 点以相同速度垂直 于电场线方向飞出a 、b 两个带电粒子,运动轨迹如图中虚线所示,不计粒 子重力及粒子之间的库仑力,则( ) A .a 一定带正电,b 一定带负电 B .a 的速度将减小,b 的速度将增加 C .a 的加速度将减小,b 的加速度将增加 D .两个粒子的动能,一个增加一个减小 6.空间某区域内存在着电场,电场线在竖直平面上的分布如图所示,一个质量为m 、电荷量为q 的小球在该电场中运动,小球经过A 点时的速度大小为v 1,方向水平向右,运动至B 点时的速度大小为v 2, 运动方向与水平方向之间的夹角为α,A 、B 两点之间的高度差与水平距离均为H ,则以下判断中正 确的是( ) A .若v 2>v 1,则电场力一定做正功 B .A 、B 两点间的电势差2221()2m U v v q =- C .小球运动到B 点时所受重力的瞬时功率2P mgv = D .小球由A 点运动到B 点,电场力做的功22211122 W mv mv mgH =-- 2 H 11H 21H 31

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试曲线运动 1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A开始滑动? (2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少? 【答案】(1) g l μ (2) 3 4 mgl kl mg μ μ - 【解析】 【分析】 (1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x. 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力. (1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有: μmg=mlω02, 解得:ω0= g l μ 即当ω0= g l μ A开始滑动. (2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12, r=l+△x 解得: 3 4 mgl x kl mg μ μ - V= 【点睛】 当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.

高中物理 运动学经典试题

1.如图所示,以匀速行驶的汽车即将通过路口,绿灯还有2 s 将熄灭,此时汽车距离 停车线18m 。该车加速时最大加速度大小为,减速时最大加速度大小为。 此路段允许行驶的最大速度为,下列说法中正确的有 A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线 B .如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速 C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线 D .如果距停车线处减速,汽车能停在停车线处 2.甲、乙两车在公路上沿同一方向做直线运动,它们的 v -t 图象如图所示.两图象在t =t 1时 相交于P 点,P 在横轴上的投影为Q ,△OPQ 的面积为S .在t =0时刻,乙车在甲车前面,相距为 d .已知此后两车相遇两次,且第一次相遇的时刻为t ′,则下面四组t ′和d 的组合可能的是 ( ) A . B . C . D . 3.A 、B 两辆汽车在笔直的公路上同向行驶,当B 车在A 车前84 m 处时,B 车速度为4 m/s ,且以2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车加速度突然变为零.A 车一直以20 m/s 的速度做匀速运动,经过12 s 后两车相遇.问B 车加速行驶的时间是多少? 4. 已知O 、A 、B 、C 为同一直线上的四点.AB 间的距离为l 1,BC 间的距离为l 2,一物体自O 点 由静止出发,沿此直线做匀加速运动,依次经过A 、B 、C 三点,已知物体通过AB 段与BC 段所用的时间相等.求O 与A 的距离. 5. 甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t =0时刻同时经过公路旁的同一 个路标.在描述两车运动的v -t 图中(如图),直线a 、b 分别描述了甲乙两车在0~20秒的 运动情况.关于两车之间的位置关系,下列说法正确的是 ( ) A .在0~10秒内两车逐渐靠近 B .在10~20秒内两车逐渐远离 C .在5~15秒内两车的位移相等 D .在t =10秒时两车在公路上相遇 6.如图是一娱乐场的喷水滑梯.若忽略摩擦力,人从滑梯顶 端滑下直到入水前,速度大小随时间变化的关系最接近图 8m/s 22m/s 25m/s 12.5m/s 5m S d t t ==',1S d t t 41,211=='S d t t 2 1,211=='S d t t 43,211=='

带电粒子在电场中的运动(附详解答案)

带电粒子在电场中的运动 强化训练 1.(多选题)冬天当脱毛衫时,静电经常会跟你开个小玩笑.下列一些相关的说法中正确的是( ) A .在将外衣脱下的过程中,内外衣间摩擦起电,内衣和外衣所带的电荷是同种电荷 B .如果内外两件衣服可看作电容器的两极,并且在将外衣脱下的某个过程中两衣间电荷量一定,随着两衣间距离的增大,两衣间电容变小,则两衣间的电势差也将变小 C .在将外衣脱下的过程中,内外两衣间隔增大,衣物上电荷的电势能将增大(若不计放电中和) D .脱衣时如果人体带上了正电,当手接近金属门把时,由于手与门把间空气电离会造成对人体轻微的电击 2.(2012·新课标全国卷) (多选题)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( ) A .所受重力与电场力平衡 B .电势能逐渐增加 C .动能逐渐增加 D .做匀变速直线运动 3.(2011·安徽卷)如图6-3-12甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是( ) A .0<t 0<T 4 B.T 2<t 0<3T 4 C.3T 4<t 0<T D .T <t 0<9T 8 4.示波管是一种多功能电学仪器,它的工作原理可以等效成下列情况:如图所示,真空室中电极K 发出电子(初速度不计)经过电压为U 1的加速电场后,由小孔S 沿水平金属板A 、B 间的中心线射入板中.金属板长为L ,相距为d ,当A 、B 间电压为U 2时,电子偏离中心线飞出电场打到荧光屏上而显示亮点.已知电子的质量为m ,电荷量为e ,不计电子重力,下列情况中一定能使亮点偏离中心的距离变大的是( ) A .U 1变大,U 2变大 B .U 1变小,U 2变大 C .U 1变大,U 2变小 D .U 1变小,U 2变小 5.(2011·广东卷) (多选题)如图6-3-14为静电除尘器除尘机理的示意图.尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘的目的.下列表述正确的是( ) A .到达集尘极的尘埃带正电荷 B .电场方向由集尘极指向放电极 C .带电尘埃所受电场力的方向与电场方向相同 D .同一位置带电荷量越多的尘埃所受电场力越大 6.如图所示,D 是一只二极管,AB 是平行板电容器,在电容器两极板间有一带电微粒P 处于静止状态,当两极板A 和B 间的距离增大一些的瞬间(两极板仍平行),带电微粒P 的运动情况是( ) A .向下运动 B .向上运动 C .仍静止不动 D .不能确定 7.(多选题)如图6-3-16所示,灯丝发热后发出的电子经加速电场后,进入偏转电场,若加速电压为U 1,偏转电压为U 2,要使电子在电场中偏转量y 变为原来的2倍,可选用的方法有(设电子不落到极板上)( ) A .只使U 1变为原来的1 2倍 B .只使U 2变为原来的1 2倍 C .只使偏转电极的长度L 变为原来的2倍 D .只使偏转电极间的距离d 减为原来的1 2 倍 8.(2013·沈阳二中测试) (多选题)在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图6-3-17所示.由此可见( ) A .电场力为3mg B .小球带正电 C .小球从A 到B 与从B 到C 的运动时间相等

高中物理《运动学》练习题

高中物理《运动学》练习题 一、选择题 1.下列说法中正确的是() A .匀速运动就是匀速直线运动 B .对于匀速直线运动来说,路程就是位移 C .物体的位移越大,平均速度一定越大 D .物体在某段时间内的平均速度越大,在其间任一时刻的瞬时速度也一定越大 2.关于速度的说法正确的是() A .速度与位移成正比 B .平均速率等于平均速度的大小 C .匀速直线运动任何一段时间内的平均速度等于任一点的瞬时速度 D .瞬时速度就是运动物体在一段较短时间内的平均速度 3.物体沿一条直线运动,下列说法正确的是() A .物体在某时刻的速度为3m/s ,则物体在1s 内一定走3m B .物体在某1s 内的平均速度是3m/s ,则物体在这1s 内的位移一定是3m C .物体在某段时间内的平均速度是3m/s ,则物体在1s 内的位移一定是3m D .物体在发生某段位移过程中的平均速度是3m/s ,则物体在这段位移的一半时的速度一定是3m/s 4.关于平均速度的下列说法中,物理含义正确的是() A .汽车在出发后10s 内的平均速度是5m/s B .汽车在某段时间内的平均速度是5m/s ,表示汽车在这段时间的每1s 内的位移都是5m C .汽车经过两路标之间的平均速度是5m/s D .汽车在某段时间内的平均速度都等于它的初速度与末速度之和的一半 5.火车以76km/h 的速度经过某一段路,子弹以600m /s 的速度从枪口射出,则() A .76km/h 是平均速度 B .76km/h 是瞬时速度 C .600m/s 是瞬时速度 D .600m/s 是平均速度 6.某人沿直线做单方向运动,由A 到B 的速度为1v ,由B 到C 的速度为2v ,若BC AB =,则这全过程的平均速度是() A .2/)(21v v - B .2/)(21v v + C .)/()(2121v v v v +- D .)/(22121v v v v + 7.如图是A 、B 两物体运动的速度图象,则下列说法正确的是() A .物体A 的运动是以10m/s 的速度匀速运动 B .物体B 的运动是先以5m /s 的速度与A 同方向 C .物体B 在最初3s 内位移是10m D .物体B 在最初3s 内路程是10m 8.有一质点从t =0开始由原点出发,其运动的速度—时间图象如图所示,则() A .1=t s 时,质点离原点的距离最大 B .2=t s 时,质点离原点的距离最大 C .2=t s 时,质点回到原点 D .4=t s 时,质点回到原点 9.如图所示,能正确表示物体做匀速直线运动的图象是() 10.质点做匀加速直线运动,加速度大小为2 m/s 2,在质点做匀加速运动的过程中,下列说法正确的是()

高一物理圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( ) A .A 、 B 两个物体同时达到最大静摩擦力 B .B 、 C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动 D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】 ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时 2122C mg m r μω= ,计算得出:11 2.5/20.4 g rad s r μω= = = ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C 可得:2 2222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2g r μω= 当 1 5/0.2 g rad s r μω> = = 时整体会发生滑动,故A 错误,BC 正确; D 、 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC 2.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。则( )

(完整)高中物理平抛运动经典例题

1. 利用平抛运动的推论求解 推论1:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有 水平方向位移 竖直方向和 由图可知,与相似,则 联立以上各式可得 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 图10 [例1] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。 图11 解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有 ,和 由上述推论3知 据图9中几何关系得 由以上各式解得 即质点距斜面的最远距离为

图12 推论2:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有 证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系: 在速度三角形中 在位移三角形中 由上面两式可得 图13 [例2] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

带电粒子在电场中的运动

带电粒子在电场中的运动 带电粒子经电场加速:处理方法,可用动能定理、牛顿运动定律或用功能关系。带电粒子经电场偏转:处理方法:灵活应用运动的合成和分解。 带电粒子在匀强电场中作类平抛运动,U、 d、 l、 m、 q、 v0已知。 (1)穿越时间: (2)末速度: (3)侧向位移: (4)偏角:

1、如图所示,长为L、倾角为θ的光滑绝缘斜面处于电场中,一带电量为+q、质量为m的小球,以初速度v0从斜面底端 A点开始沿斜面上滑,当到达斜面顶端B点时,速度仍为v0,则() A.A、B两点间的电压一定等于mgLsinθ/q. B.小球在B点的电势能一定大于在A点的电势能 C.若电场是匀强电场,则该电场的电场强度的最大值一定为mg/q D.如果该电场由斜面中点正止方某处的点电荷产生,则该点电荷必为负电荷. 2、如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中0点自由释放后,分别抵达B、C两点,若AB=BC,则它们带电荷量之比q1:q2等于() A.1:2 B.2:1. C. 1:2 D.2:1 3.如图所示,质量为m、电量为q的带电微粒,以初速度v 从A点竖直向上射 入水平方向、电场强度为E的匀强电场中。当微粒经过B点时速率为V B =2V , 而方向与E同向。下列判断中正确的是( ) A、A、B两点间电势差为2mV 2/q. B、A、B两点间的高度差为V 2/2g. C、微粒在B点的电势能大于在A点的电势能 D、从A到B微粒作匀变速运动.

4.一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图,AB与电场线夹角θ=30°,已知带电微粒的质量m=1.0×10-7kg,电量q=1.0×10-10C,A、B相距L=20cm.(取g=10m/s2,结果保留二位有效数字)求:(1)说明微粒在电场中运动的性质,要求说明理由. (2)电场强度的大小和方向? (3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少? 1.7×104N/C v A= 2.8m/s 5.一个带电荷量为-q的油滴,从O点以速度v射入匀强电场中,v的方向与电场方向成θ角,已知油滴的质量为m,测得油滴达到运动轨迹的最高点时,它的速度大小又为v,求: (1) 最高点的位置可能在O点的哪一方? (2) 电场强度E为多少? (3) 最高点处(设为N)与O点的电势差U NO为多少? U NO = q mv 2 sin2 2

高中物理直线运动试题经典及解析

高中物理直线运动试题经典及解析 一、高中物理精讲专题测试直线运动 1.货车A 正在公路上以20 m/s 的速度匀速行驶,因疲劳驾驶,司机注意力不集中,当司机发现正前方有一辆静止的轿车B 时,两车距离仅有75 m . (1)若此时轿车B 立即以2 m/s 2的加速度启动,通过计算判断:如果货车A 司机没有刹车,是否会撞上轿车B ;若不相撞,求两车相距最近的距离;若相撞,求出从货车A 发现轿车B 开始到撞上轿车B 的时间. (2)若货车A 司机发现轿车B 时立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为了避免碰撞,在货车A 刹车的同时,轿车B 立即做匀加速直线运动(不计反应时间),问:轿车B 加速度至少多大才能避免相撞. 【答案】(1)两车会相撞t 1=5 s ;(2)222 m/s 0.67m/s 3 B a =≈ 【解析】 【详解】 (1)当两车速度相等时,A 、B 两车相距最近或相撞. 设经过的时间为t ,则:v A =v B 对B 车v B =at 联立可得:t =10 s A 车的位移为:x A =v A t= 200 m B 车的位移为: x B = 2 12 at =100 m 因为x B +x 0=175 m

高中物理平抛运动经典大题

1如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 2 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角 为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 3 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q点物体速度。 4 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 5 某一平抛的部分轨迹如图4所示,已知,,,求。

6从高为H的A点平抛一物体,其水平射程为,在A点正上方高为2H的B点,向同一方向平抛另一物体,其水平射程为。两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。(提示:从平抛运动的轨迹入手求解问题) 图5 7 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?(提示:灵活分解求解平抛运动的最值问题) 图6 8 从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为和,初速度方向相反,求经过多长时间两小球速度之间的夹角为?(提示:利用平抛运动的推论求解分速度和合速度构成一个直角矢量三角形) 图7 9宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间,小球落到星球表面,测得抛出点与落地点之间的距离为,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。(提示:利用推论,分位移和合位移构成直角矢量三角形)10如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。(提示:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。)

带电粒子在电场中的运动教学设计

贵州师大附中实习期间 教学设计 《带电粒子在电场中的运动》 指导老师: 实习生: 谢忠 2015年9月

《带电粒子在电场中的运动》教学设计 一、教学设计说明 1.教材分析 《带电粒子在在电场中的运动》是《普通高中物理课程标准》选修模块3—1中第一章“静电场” 中的内容,其基本内容是要求“处理带电粒子在电场中运动的问题”主要培养学生综合应用力学知识和电学知识的能力。 本节课的教学内容选自人民教育出版普通高中课程标准实验教材教科书2007年版《物理》选修3—1第1章第9节。教材内容由“带电粒子的加速”“带电粒子的偏转”“示波管原理”三部分组成,教学内容的梯度十分明显,安排符合学生的认知规律,教材首先介绍了带电粒子在电场中静电力的作用会发生不同程度的偏转,紧接着通过例题的形式来研究带电粒子的加速和偏转问题,这样我们出现进行问题的处理,清晰明了,一步一步地进行分析求解,可以防止公式过多的出现,避免学生死记硬背的现象出现,让学生从问题的本质出发,将复杂的问题简单化。 示波管的原理部分不仅对力学、电学知识的综合能力有较高的要求,而且要有一定的空间想象能力,因此教科书在“思考与讨论”栏目中设置了四个问题,层次分明、循序渐进,给学生足够的时间与空间的配置,对此部分内容的学习减轻了负担。 2.学情分析 教学主体是普通高二年纪的学生,已经掌握了运动学和功能关系的知识以及简单的静电学的知识,学生具有一定的分析推理能力,但是由于力学和电学的综合程度已有提高,这对于学生的学习还是有一定的困难。 高中二年级学生处于高中学习的关键时期,理论和科技方面的知识都需要加强,而本节教学则恰是理论联系现代科学实验和技术设备的知识,对学生而言通过本节课的学习讲师质的提升,也基于物理学习的宗旨,为往后的电磁学的学习打下(作为类比学习)基础。

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高中物理牛顿运动定律经典练习题

牛顿运动定律 一、基础知识回顾: 1、牛顿第一定律 一切物体总保持,直到有外力迫使它改变这种状态为止。 注意:(1)牛顿第一定律进一步揭示了力不是维持物体运动(物体速度)的原因,而是物体运动状态(物体速度)的原因,换言之,力是产生的原因。(2)牛顿第一定律不是实验定律,它是以伽利略的“理想实验“为基础,经过科学抽象,归纳推理而总结出来的。 2、惯性 物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。 3、对牛顿第一运动定律的理解 (1)运动是物体的一种属性,物体的运动不需要力来维持。 (2)它定性地揭示了运动与力的关系,力是改变物体运动状态的原因,是使物体产生加速度的原因。 (3)定律说明了任何物体都有一个极其重要的性质——惯性。 (4)牛顿第一定律揭示了静止状态和匀速直线运动状态的等价性。 4、对物体的惯性的理解 (1)惯性是物体总有保持自己原来状态(速度)的本性,是物体的固有属性,不能克服和避免。 (2)惯性只与物体本身有关而与物体是否运动,是否受力无关。任何物体无论它运动还是静止,无论运动状态是改变还是不改变,物体都有惯性,且物体质量不变惯性不变。质量是物体惯性的唯一量度。 (3)物体惯性的大小是描述物体保持原来运动状态的本领强弱。物体惯性(质量)大,保持原来的运动状态的本领强,物体的运动状态难改变,反之物体的运动状态易改变。(4)惯性不是力。 5、牛顿第二定律的内容和公式 物体的加速度跟成正比,跟成反比,加速度的方向跟合外力方向相同。公式是:a=F合/ m 或F合 =ma 6、对牛顿第二定律的理解 (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律得出物体的运动规律。反过来,知道运动规律可以根据牛顿第二运动定律得出物体的受力情况,在牛顿第二运动定律的数学表达式F合=ma中,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。 (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度。(3)牛顿第二定律公式:F合=ma是矢量式,F、a都是矢量且方向相同。 (4)牛顿第二定律F合=ma定义了力的单位:“牛顿”。 7、牛顿第三定律的内容 两个物体之间的作用力与反作用力总是大小相等、方向相反,作用在同一条直线上 8、对牛顿第三定律的理解 (1)作用力和反作用力的同时性。它们是同时产生同时变化,同时消失,不是先有作用力后有反作用力。

带电粒子在电场中的运动知识点精解

带电粒子在电场中的运动知识点精解 1.带电粒子在电场中的加速 这是一个有实际意义的应用问题。电量为q的带电粒子由静止经过电势差为U的电 场加速后,根据动能定理及电场力做功公式可求得带电粒子获得的速度大小为 可见,末速度的大小与带电粒子本身的性质(q/m)有关。这点与重力场加速重物是不 同的。 2.带电粒子在电场中的偏转 如图1-36所示,质量为m的负电荷-q以初速度v0平行两金属板进入电场。设 两板间的电势差为U,板长为L,板间距离为d。则带电粒子在电场中所做的是类似 平抛的运动。 (1)带电粒子经过电场所需时间(可根据带电粒子在平行金属板方向做匀速直线 运动求) (2)带电粒子的加速度(带电粒子在垂直金属板方向做匀加速直线运动) (3)离开电场时在垂直金属板方向的分速度 (4)电荷离开电场时偏转角度的正切值 3.处理带电粒子在电场中运动问题的思想方法 (1)动力学观点

这类问题基本上是运动学、动力学、静电学知识的综合题。处理问题的要点是要注意区分不同的物理过程,弄清在不同物理过程中物体的受力情况及运动性质,并选用相应的物理规律。 能用来处理该类问题的物理规律主要有:牛顿定律结合直线运动公式;动量定理;动量守恒定律。 (2)功能观点 对于有变力参加作用的带电体的运动,必须借助于功能观点来处理。即使都是恒力作用问题,用功能观点处理也常常显得简洁。具体方法常用两种: ①用动能定理。 ②用包括静电势能、能在的能量守恒定律。 【说明】该类问题中分析电荷受力情况时,常涉及“重力”是否要考虑的问题。一般区分为三种情况: ①对电子、质子、原子核、(正、负)离子等带电粒子均不考虑重力的影响; ②根据题中给出的数据,先估算重力mg和电场力qE的值,若mg<

高中物理曲线运动经典习题道带答案

一.选择题(共25小题)1.(2015春?苏州校级月考)如图所示,在水平地面上做匀速直线运动的汽车,通过定滑轮用绳子吊起一个物体,若汽车和被吊物体在同一时刻的速度分别为v1和v2,则下面说法正确的是() A.物体做匀速运动,且v2=v1B.物体做加速运动,且v2>v1 C.物体做加速运动,且v2<v1D.物体做减速运动,且v2<v1 2.(2015春?潍坊校级月考)如图所示,沿竖直杆以速度v为速下滑的物体A,通过轻质细绳拉光滑水平面上的物体B,细绳与竖直杆间的夹角为θ,则以下说法正确的是() A.物体B向右做匀速运动B.物体B向右做加速运动 C.物体B向右做减速运动D.物体B向右做匀加速运动3.(2014?蓟县校级二模)如图所示,绕过定滑轮的细绳一端拴在小车上,另一端吊一物体A,A的重力为G,若小车沿水平地面向右匀速运动,则() A.物体A做加速运动,细绳拉力小于G B.物体A做加速运动,细绳拉力大于G C.物体A做减速运动,细绳拉力大于G D.物体A做减速运动,细绳拉力小于G 4.(2014秋?鸡西期末)如图所示,用绳跨过定滑轮牵引小船,设水的阻力不变,则在小船匀速靠岸的过程中() A.绳子的拉力不断增大B.绳子的拉力不变 C.船所受浮力增大D.船所受浮力变小 5.(2014春?邵阳县校级期末)人用绳子通过动滑轮拉A,A穿在光滑的竖直杆上,当以速度v0匀速地拉绳使物体A到达如图所示位置时,绳与竖直杆的夹角为θ,求A物体实际运动的速度是()

A.v0sinθB.C.v0cosθD. 6.(2013秋?海曙区校级期末)如图中,套在竖直细杆上的环A由跨过定滑轮的不可伸长的轻绳与重物B相连.由于B的质量较大,故在释放B后,A将沿杆上升,当A 环上升至与定滑轮的连线处于水平位置时,其上升速度V1≠0,若这时B的速度为V2,则() A.V2=V1B.V2>V1C.V2≠0D.V2=0 7.(2015?普兰店市模拟)做平抛运动的物体,在水平方向通过的最大距离取决于() A.物体的高度和受到的重力 B.物体受到的重力和初速度 C.物体的高度和初速度 D.物体受到的重力、高度和初速度 8.(2015?云南校级学业考试)关于平抛物体的运动,下列说法中正确的是()A.物体只受重力的作用,是a=g的匀变速运动 B.初速度越大,物体在空中运动的时间越长 C.物体落地时的水平位移与初速度无关 D.物体落地时的水平位移与抛出点的高度无关 9.(2014?陕西校级模拟)一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为() A.B.C.t anθD.2tanθ10.(2011?广东)如图所示,在网球的网前截击练习中,若练习者在球网正上方距地面H处,将球以速度v沿垂直球网的方向击出,球刚好落在底线上,已知底线到网的距离为L,重力加速度取g,将球的运动视作平抛运动,下列表述正确的是()

相关文档
最新文档