自相关函数与偏自相关函数(DOC)

自相关函数与偏自相关函数(DOC)
自相关函数与偏自相关函数(DOC)

自相关函数与偏自相关函数

上一节介绍了随机过程的几种模型。实际中单凭对时间序列的观察很难确定其属于哪一种模型,而自相关函数和偏自相关函数是分析随机过程和识别模型的有力工具。

1、自相关函数定义

在给出自相关函数定义之前先介绍自协方差函数概念。由第一节知随机过程{t x }中的每一个元素t x ,t = 1, 2, … 都是随机变量。对于平稳的随机过程,其期望为常数,用μ表示,即

()t E x μ=,1,2,

t

=

随机过程的取值将以 μ 为中心上下变动。平稳随机过程的方差也是一个常量

2

()t x

Var x σ=,1,2,t

=

2x σ用来度量随机过程取值对其均值μ的离散程度。

相隔k 期的两个随机变量t x 与t k x -的协方差即滞后k 期的自协方差,定义为:

(,)[()()]k t t k t t k Cov x x E x x γμμ--==--

自协方差序列:k γ,0,1,2,

k

=

称为随机过程{t x }的自协方差函数。当k = 0 时,2

0()t x Var x γσ==。

自相关系数定义:k ρ=

因为对于一个平稳过程有:2

()()t t k x Var x Var x σ-==

所以2

20

(,)

t t k k k

k x x Cov x x γγρσσγ-=

=

=,当 k = 0 时,有01ρ=。 以滞后期k 为变量的自相关系数列k ρ(0,1,2,

k =)称为自相关函数。因为k k ρρ-=,

即(,)t k t Cov x x -= (,)t t k Cov x x +,自相关函数是零对称的,所以实际研究中只给出自相关函数的正半部分即可。

2、自回归过程的自相关函数 (1)平稳AR(1)过程的自相关函数 AR(1) 过程:11t t t x x u φ-=+,|φ1| < 1。 已知()0t E x =(why?)。用t k x -同乘上式两侧

t x t k x -11t t k t t k x x u x φ---=+

上式两侧同取期望:k γ11k φγ-=

其中()0t t k E u x -=(why?)(由于x t = u t + φ1 u t -1 + φ12 u t -2 +… ,所以x t-k = u t-k + φ1 u t-k-1 +

φ12 u t-k-2 +…,而u t 是白噪音与其t - k 期及以前各项都不相关)。

两侧同除 γ0 得:2111210k k k k ρφρφρφρ--====

因为ρo = 1,所以有k ρ=1k φ(0k ≥)

对于平稳序列有 | φ1| < 1。所以当 φ1为正时,自相关函数按指数衰减至零;当 φ1为负时,自相关函数正负交错地指数衰减至零。见下图。因为对于经济时间序列,φ1一般为正,所以第一种情形常见。指数衰减至零的表现形式说明随着时间间隔的加长,变量之间的关系变得越来越弱。

1> φ1 > 0 -1<φ1 < 0

图 AR(1) 过程的自相关函数

同理,对于φ1 =1和φ1 >1情形即非平稳和强非平稳过程的自相关函数如下图。

φ1 = 1.1(强非平稳过程) φ1 = 1(随机游走过程)

(2)AR(p ) 过程的自相关函数

用t k x -(k > 0) 同乘平稳的 p 阶自回归过程1122t t t p t p t x x x x u φφφ---=++++

的两侧,得:1122t k t t k t t k t p t k t p t k t x x x x x x x x x u φφφ--------=++

++

对上式两侧分别求期望得:k γ1122k k p k p φγφγφγ---=+++,k > 0

用 γ0分别除上式的两侧得Yule-Walker 方程:

ρk = φ1 ρk -1 + φ2 ρk -2 + … + φp ρk -p , k > 0

令2

121()1(1- )p

p

p i i L L L L G L φφφ=Φ=---

-=∏,

其中L 为k 的滞后算子,这里1i G -, i = 1, 2, …, p 是特征方程()0L Φ=的根。为保证随机过程的平稳性,要求1i G <。则:

121210p i i p i G G G φφφ------

-=,也即1212k k k k p i i i p i G G G G φφφ---=++

+。

可证:1122k

k

k

k p p

AG A G A G ρ=++

+(*) 其中A i , i = 1, … ,p 为待定常数。(提示:可把(*)式代入到Yule-Walker 方程中证明) 由(*)式知道会遇到如下几种情形。

① 当i G 为实数时,(*)式中的k

i i AG 将随着k 的增加而几何衰减至零,

称为指数衰减。 ② 当i G 和j G 表示一对共轭复数时,设i G a bi =+,j G a bi =-,22b a += R ,则i G ,

j G 的极座标形式是:

(cos sin )i G R i θθ=+

(cos sin )j G R i θθ=-

若AR(p ) 过程平稳,则1i G <,所以必有R <1。那么随着k 的增加,

(cos sin )k k i G R k i k θθ=+

(cos sin )k k j G R k i k θθ=-

自相关函数(*)式中的相应项k i G , k j G 将按正弦振荡形式衰减。

注意:实际中的平稳自回归过程的自相关函数常是由指数衰减和正弦衰减两部分混合而成。

③ 从(*)式可以看出,当特征方程的根取值远离单位圆时,k 不必很大,自相关函数就会衰减至零。

④ 有一个实数根接近1时,自相关函数将衰减的很慢,近似于线性衰减。当有两个以上的根取值接近1时,自相关函数同样会衰减的很慢。

两个特征根为实根 两个特征根为共轭复根图

AR(2) 过程的自相关函数

3、移动平均过程的自相关函数 (1)MA(1) 过程的自相关函数。 对于MA(1)过程11t t t x u u θ-=+,有:

1111()[()()]k t t k t t t k t k E x x E u u u u γθθ-----==++

当k = 0时,

01111()[()()]t t t t t t E x x E u u u u γθθ--==++22111(2)t t t t E u u u u θ--=++

221(1)θσ=+ 当k = 1时,

1111112()[()()]

t t t t t t E x x E u u u u γθθ----==++

2211112112()t t t t t t t E u u u u u u u θθθ-----=+++21θσ=

当 k > 1 时,

1111()[()()]

k t t k t t t k t k E x x E u u u u γθθ-----==++

21111111()t t k t t k t t k t t k E u u u u u u u u θθθ--------=+++0=

综合以上三种情形,MA(1)过程自相关函数为

ρk = 0

γγk

= 1

21, 110, 1

k k θθ?=?+??

>

θ1 > 0 θ1 < 0

图 MA(1)过程的自相关函数

可见MA(1) 过程的自相关函数具有截尾特征。当k > 1时,ρk = 0。

(2) MA(q ) 过程的自相关函数 MA(q ) 过程的自相关函数是

ρk = 1122222

12...,1,2,,1...0,k k k q k q

q k q k q θθθθθθθθθθ++-++++?=?++++??>?

当k > q 时,ρk = 0,说明 ρk , k = 0, 1, … 具有截尾特征。

例如,对于MA(2) 过程,自相关函数是

ρ1=22212111θθθθθ+++, ρ2=2

2

212

1θθθ++, ρk = 0, k > 2。

4、 ARMA (1, 1) 过程的自相关函数

ARMA (1, 1) 过程的自相关函数ρk 从 ρ1开始指数衰减。ρ1的大小取决于 φ1和 θ1, ρ1

的符号取决于 (φ1 -θ1 )。若 φ1 > 0,指数衰减是平滑的,或正或负。若 φ1 < 0,相关函数为正负交替式指数衰减。

对于ARMA (p , q ) 过程,p , q ≥ 2时,自相关函数的表现形式比较复杂,可能是指数衰减、正弦衰减或二者的混合衰减。

5、相关图(correlogram ,或估计的自相关函数,样本自相关函数) 对于一个有限时间序列(x 1, x 2, …, x T )用样本平均数

x =

T

1

∑=T

t t

x

1

估计总体均值 μ,用样本方差 s 2

=

21

)(1

∑=-T

t t

x x

T

估计总体方差σx 2。

当用样本矩估计随机过程的自相关函数,则称其为相关图或估计的自相关函数,记为 r k =

C C k

, k = 0, 1 , 2, …, K , ( K < T ) . r k 是对ρk 的估计。其中

C k =

1

T k

-1

()(),T k t

t k

t x x x

x -+=--∑ k = 0, 1, 2, …, K ,

是对γk 的估计。 C 0 =

21

)(1

∑=-T

t t

x x

T

是对γ0的估计。T 是时间序列数据的样本容量。实际中T 不应太小,最好能大于60。

注意:C k 为有偏估计量。但在小样本条件下更有效。

相关图是对自相关函数的估计。由于MA 过程和ARMA 过程中的MA 分量的自相关函数具有截尾特性,所以通过相关图可以估计MA 过程的阶数q 。相关图是识别MA 过程阶数和ARMA 过程中MA 分量阶数的一个重要方法。对于年度时间序列数据,相关图一般取k = 15就足够了。

k r 的方差近似为1T -。所以在观察相关图时,若k r 的绝对值超过21T -(2个标准差),就被认为是显著地不为零。当T 充分大时,近似有:1(0)k r T

--=k r 12

T

~ N (0, 1)

第五节 偏自相关函数

偏自相关函数是描述随机过程结构特征的另一种方法。用 φkj 表示k 阶自回归过程中第j 个回归系数,则k 阶自回归模型表示为:

1122t k t k t kk t k t x x x x u φφφ---=++++

其中kk φ是最后一个回归系数。若把kk φ看作是滞后期k 的函数,则称

kk φ,1,2,

k =

为偏自相关函数。它由下式中的红项组成。

1111t t t x x u φ-=+

2112222t t t t x x x u φφ--=++

1122t k t k t kk t k kt x x x x u φφφ---=++++

因偏自相关函数中每一个回归系数kk φ恰好表示t x 与t k x -在排除了其中间变量1t x -,

2t x -,,1t k x -+ 影响之后的相关系数,

112211t k t k t kk t k kk t k kt x x x x x u φφφφ----+-----=+

所以偏自相关函数由此得名。

用kj φ表达Yule-Walker 方程1122k k k p k p ρφρφρφρ---=++

+,得

1122j k j k j kk j k ρφρφρφρ---=++

+

用矩阵形式表示上式,

?????

???????k ρρρ (2)

1= ?

?

??????????-----1............

...

......1 (13)

21

21

1121

k k k k k ρρρρρρρρρ????

?

???????kk k k φφφ...21 或

ρ = P φ. 则

φ = P -1ρ,

将k = 1, 2 , … 代入上式连续求解,可求得偏自相关函数 φ 11 = ρ1,

??????2221φφ=1

1

111-??

?

???ρρ??????21ρρ=1

111

112111ρρρρρρ????????????--=2

1212

2111ρρρρρρ-??????-- 其中

φ 22 = 21

2

121ρρρ--

对于AR(1)过程,t x = φ11 x t -1 +t u ,当k = 1时,φ11 ≠ 0;当k > 1时,0kk φ=。所以AR(1)过程的偏自相关函数特征是在k = 1出现峰值(φ11 = ρ1)然后截尾。

-0.

-0.-0.-0.0.0.0.0.0.-0.

-0.-0.-0.0.0.0.0.0.

φ11 > 0 φ11 < 0

AR(1) 过程的偏相关图

对于AR(2)过程,当k ≤ 2时,0kk φ≠;当k >2时,0kk φ=。偏自相关函数在滞后期2以后有截尾特性。

对于AR(p )过程,当k ≤ p 时,0kk φ≠;当k > p 时,0kk φ=。偏自相关函数在滞后期p 以后有截尾特性,因此可用此特征识别AR(p )过程的阶数。

对于MA(1)过程t x =t u + θ1 u t -1,有 [1/ (1+ θ1 L )]t x =t u , (1- θ1 L + θ12 L 2 - … )t x =t u ,

t x = θ1 x t -1 - θ12 x t -2 +θ13 x t -3 - … +t u

当θ1 > 0时,自回归系数的符号是正负交替的;当θ1 < 0时,自回归系数的符号全是负的。

因为MA(1) 过程可以转换为无限阶的AR 过程,所以MA(1) 过程的偏自相关函数呈指数衰减特征。

-0.-0.-0.-0.0.0.0.0.0.

-0.-0.-0.-0.0.0.0.0.0.

θ1 > 0 θ1 < 0

MA(1) 过程的偏自相关函数

对于MA(2) 过程,若Θ (L ) = 0的根是实数,偏自相关函数由两个指数衰减形式叠加而成。若Θ (L ) = 0的根是复数,偏自相关函数呈正弦衰减形式。

因为任何一个可逆的MA(q ) 过程都可以转换成一个无限阶的系数按几何递减的AR 过程,所以MA(q ) 过程的偏自相关函数呈缓慢衰减特征。

ARMA( p , q ) 过程的偏自相关函数也是无限延长的,其表现形式与MA(q )过程的偏自相关函数相类似。根据模型中移动平均部分的阶数q 以及参数θi 的不同,偏自相关函数呈指数衰减和(或)正弦衰减混合形式。

对于时间序列数据,偏自相关函数通常是未知的。可以用样本计算 φ11, φ22, … 的估计量 11?φ, 22

?φ, …。估计的偏自相关函数 kk

φ?, k = 1, 2, …, K , 称为偏相关图。因为AR 过程和ARMA 过程中AR 分量的偏自相关函数具有截尾特性,所以可利用偏相关图估计自回归过程的阶数p 。实际中对于偏相关图取k = 15就足可以了。

kk

φ?的方差近似为T -1。当T 充分大时,近似有 (kk φ?- 0) / T -1/2 = T 1/2kk

φ? ~ N (0, 1) 所以在观察偏相关图时,若kk

φ?的绝对值超过2 T -1/2(2个标准差),就被认为是显著地不为零。

注:2个标准差 = 2 T -1/2 = 2(1/7)= 0.286。图中虚线表示到中心线2个标准差宽度。

补充知识:检验过程是否为白噪声的Q 统计量

在介绍Q 统计量之前,先介绍序列y t 的估计的自相关函数(相关图)的定义,

r k =

∑∑=+=-----T

t t t

T

k t t k t t t

y y

T

y y y y

k

T 1

2

1

)(1)

)((1

, k = 1, 2, ….

其中r k 表示y t 与y t-k 估计的自相关系数,是对自相关系数ρk 的估计。

定义k t y -= (∑k t y -)/ (T -k ),t y = (∑y t )/ T 。

模型残差序列是否为白噪声的检验是用Box-Pierce (1970) 提出的Q 统计量完成的。Q 检验的零假设是

H :ρ1 = ρ2 = … = ρK = 0

即序列是一个白噪声过程。其中ρi 表示自相关系数。Q 统计量定义为

Q = T

=K

k k r 1

2 (k r 是用残差序列计算的自相关系数的估计值)

随着T →∞,Q 渐近服从2

()K p q χ--分布,其中T 表示样本容量,K 表示自相关系数的

个数,p 表示模型自回归部分的最大滞后值,q 表示移动平均部分的最大滞后值。

Ljung 和Box 认为定义的Q 统计量的分布与2()K p q χ--分布存在差异(相应值偏小),于是提出修正的Q 统计量。

Q = T (T +2)∑

=-K

k k

k T r 1

2

其中r k ,K ,p ,q 的定义如上式。修正的Q 统计量渐近服从2()K p q χ--分布。且它的近似性比原Q 统计量的近似性更好。(注意:EViews 中给出的Q 统计量就是按修正的Q 统计量定义的。)

用残差序列计算Q 统计量的值。显然若残差序列不是白噪声,残差序列中必含有其他成份,自相关系数不等于零。则Q 值将很大,反之Q 值将很小。判别规则是:

若Q 2()K p q αχ≤--,则接受H 0。 若Q >2()K p q αχ--,则拒绝H 0。

其中α 表示检验水平;p ,q 分别表示时间序列模型中自回归和移动平均滞后项的个数。 实际检验中,K 取15左右即可。

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

指数函数、对数函数、幂函数的图像和性质知识点总结

(一)指数与指数函数 1.根式 (1)根式的概念 (2).两个重要公式 ①?? ??????<-≥==)0()0(||a a a a a a a n n ; ②a a n n =)((注意a 必须使n a 有意义)。 2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n m n a a a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)m n m n m n a a m n N n a a - *= = >∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r as =a r+s (a>0,r 、s∈Q); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r bs (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质 y =a x a>1 0

图象 定义域R 值域(0,+∞) 性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,00时,0d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01) x a N a a =>≠ 且,那么数x叫做以a为底,N的对数,记作log N a x=,其中a叫做对数的底数,N叫做真数。 (2 对数形式特点记法 一般对数 底数为a0,1 a a >≠ 且log N a 常用对数底数为10 lg N 自然对数底数为e ln N 2 (1)对数的性质(0,1 a a >≠ 且):①1 log0 a =,②log1 a a =,③log N a a N =,④log N a a N =。(2)对数的重要公式:

三角函数公式大全81739

三角函数公式大全三角函数定义 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系:

公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系: 记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数

名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项 数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

指数函数、对数函数、幂函数的图像与性质.doc

指数函数、对数函数、幂函数的图像与性质 (一)指数与指数函数 1 .根式 ( 1 )根式的概念 根式的概念 符号表示 备注 如果 x n a , 那么 x 叫做 a 的 n 次方根 n 1且 n N 当 n 为奇数时 ,正数的 n 次方根是一个正数 , 负数的 n 次 n a 零的 n 次方根是零 方根是一个负数 当 n 为偶数时 , 正数的 n 次方根有两个 , 它们互为相反 n a ( a 0) 负数没有偶次方根 数 ( 2 ).两个重要公式 a n 为奇数 ① n a n a( a 0) ; | a | 0) n 为偶数 a(a ② (n a ) n a (注意 a 必须使 n a 有意义)。 2 .有理数指数幂 ( 1 )幂的有关概念 m n a m (a ①正数的正分数指数幂 : a n 0, m 、 n N ,且 n 1) ; m 1 1 ②正数的负分数指数幂 : a n 0, m 、 n N , 且 n 1) m (a a n n a m ③0 的正分数指数幂等于 0,0 的负分数指数幂没有意义 . 注: 分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 ( 2 )有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、 s ∈ Q); ②(a r )s =a rs (a>0,r 、 s ∈ Q); ③(ab) r =a r b s (a>0,b>0,r ∈Q);.

3.指数函数的图象与性质 y=a x a>100 时, y>1; (2) 当 x>0 时, 01 (3) 在( - ,+ )上是增函(3)在( - ,+ )上是减函数 数 注:如图所示,是指数函数( 1 ) y=a x, ( 2) y=b x,( 3 ) ,y=c x( 4 ),y=d x的图象,如何确定底数 a,b,c,d 与 1 之间的大小关系? 提示:在图中作直线x=1 ,与它们图象交点的纵坐标即为它们各自底数的值,即 c1 >d 1 >1>a 1 >b 1 , ∴ c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1 )对数的定义 如果 a x N (a 0且 a 1) ,那么数 x 叫做以 a 为底,N的对数,记作 x log a N,其中 a 叫做对数的底数,N 叫做真数。 (2 )几种常见对数 对数形式特点记法 一般对数底数为 a a 0,且a 1 log a N 常用对数底数为 10 lg N 自然对数底数为 e ln N

(完整版)三角函数诱导公式一览表(打印)

三角函数有关诱导公式一览表 公式 ) ( tan ) 2 tan( cos ) 2 cos( sin ) 2 sin( .1Z k k k k ∈ ? ? ? ? ? = + = + = + α α π α α π α α π ? ? ? ? ? = + - = + - = + α α π α α π α α π tan ) tan( cos ) cos( sin ) sin( .2 ? ? ? ? ? - = - = - - = - α α α α α α tan ) tan( cos ) cos( sin ) sin( .3 ? ? ? ? ? - = - - = - = - α α π α α π α α π tan ) tan( cos ) cos( sin ) sin( .4 ? ? ? ? ? = - = - α α π α α π sin ) 2 cos( cos ) 2 ( sin .5 ? ? ? ? ? - = + = + α α π α α π sin ) 2 cos( cos ) 2 ( sin .6 ? ? ? ? ? - = - - = - α α π α α π sin ) 2 3 cos( cos ) 2 3 ( sin .7 口诀函数名不变,符号看象限函数名改变,符号看先象限 图形 简记结合图形,7组公式可用口诀概括为:“奇变偶不变,符号看象限” 说明①公式的推导思路:前面4组通过找角的终边位置关系—坐标关系—三角函数关系而得出(后面3组通过角的变换,进而借助前面的有关公式转化得到)②各组诱导公式都可用含角度的形式

③在应用诱导公式解题时,基本思路是:“负化正,大化小,化成锐角再求值”。 一定要记清特殊角的三角函数值,根据问题做到准确应用,正确求解。

最新幂函数的性质、常考题型及对应练习

幂函数 分数指数幂 正分数指数幂的意义是:m n m n a a =(0a >,m 、n N ∈,且1n >) 负分数指数幂的意义是:m n n m a a - = (0a >,m 、n N ∈,且1n >) 一、幂函数的定义 一般地,形如 y x α =(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数.如 112 3 4 ,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. 从中可以归纳出以下结论: ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点.

三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 规律总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 四、幂函数的应用 题型一.幂函数的判断 例1.在函数22031 ,3,,y y x y x x y x x ===-=中,幂函数的个数为 ( ) A .0 B .1 C .2 D .3 练1.下列所给出的函数中,是幂函数的是( )

幂函数的图像与性质

【知识结构】 1.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂 :0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂 : 1 0,,1)m n m n a a m n N n a -*==>∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q );②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 例2 (1)计算:25 .021 21325.0320625.0])32.0()02.0()008.0()945()833[(÷?÷+---; (2)化简:533233232332 3134)2(248a a a a a b a a ab b b a a ???-÷++-- 变式:(2007执信A )化简下列各式(其中各字母均为正数): (1) ;)(653 12121 132b a b a b a ????--(2).)4()3(6521332121231----?÷-??b a b a b a (3) 1 00.256371.5()86-?-+

(三)幂函数 1、幂函数的定义 形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 例1.下列函数中不是幂函数的是( ) A .y x = B .3y x = C .2y x = D .1y x -= 例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数; 变式 已知幂函数2 223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数y =_______. 2.幂函数的图像 幂函数y =x α的图象由于α的值不同而不同. α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升; α<0时,图象不过原点,在第一象限的图象下降,反之也成立;

(完整版)三角函数诱导公式总结

三角函数诱导公式与同角的三角函数 【知识点1】诱导公式及其应用 公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-) 公式五: sin( 2π-α) = cos α; cos(2π -α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π +α) =- sin α. 公式七: sin(32π-α)=- cos α; cos(32π -α) = -sin α. 公式八: sin(32π+α) = -cos α; cos(32 π +α) = sin α. 公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角 一、前四组诱导公式可以概括为:函数名不变,符号看象限 公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ +?2 k 或是απ-? 2 k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函 数名,偶数就不变

例1、求值(1)29cos( )6π= __________. (2)0tan(855)-= _______ ___. (3)16 sin()3 π-= __________. 的值。 求:已知、例)sin(2)4cos() 3sin()2cos( , 3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2 B .cos2-sin2 C .±(sin2-cos2) D .sin2+cos2 例4、下列各式不正确的是【 】 A . sin (α+180°)=-sin α B .cos (-α+β)=-cos (α-β) C . sin (-α-360°)=-sin α D .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .3 2 m 例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】 A .5 B .-5 C .6 D .-6 例7、试判断 sin(2)cos() (9tan (5) 2αππαα παπα-+??+- ??? ··cos 为第三象限角)符号 例8、化简3 sin(3)cos()cos(4) 25 tan(3)cos()sin() 22 πααππαπαπααπ-?-?+-?+?- 例9、已知方程sin(α - 3π) = 2cos(α - 4π),求 ) sin()2 3sin(2) 2cos(5)sin(α--α-π α-π+α-π 例10、若1sin()3 πθ-= ,求 []cos() cos(2) 3 3 cos()1cos sin()cos()sin() 22 πθθππθθ θπθπθπ+-+ --?-?--+的值. 提示:先化简,再将1sin 3 θ=代入化简式即可.

(完整版)幂函数的图像与性质(2)

【知识结构】 1 ?有理数指数幕 (1)幕的有关概念 m ①正数的正分数指数幕:a n v'a m (a 0,m> n N ,且n 1); (三)幕函数 1、幕函数的定义 形如y=x " (a € R )的函数称为幕函数, m 1 1 a n m / ----- (a m n a a ②正数的负分数指数幕 0,m 、n N ,且n 1) ③0的正分数指数幕等于0,0的负分数指数幕没有意义 注:分数指数幕与根式可以互化,通常利用分数指数幕进行根式的运算 (2)有理数指数幕的性质 ①a f a s =a r+s (a>0,r 、s € Q ②(a r )s =a rs (a>0,r 、s € Q); ③(ab)r =a r b s (a>0,b>0,r € Q);. 例2 (1)计算: 3 "3 4 o 5 [(38)3(56) . 2 1 1 (0.008) 3 (0.02) ' (0.32円 0.06250.25 4 1 a 3 8a 3b 2 2 (2)化简:4b 3 23 ab a 3 (a 3 23 b) . a 3 a 2 a 引Ja Va 变式: (1) (2007执信A )化简下列各式(其中各字母均为正数) 2) 1 2 1 b 2 ( 3a?b 1) (4a? b 予.

其中x是自变量,a为常数 注:幕函数与指数函数有本质区别在于自变量的位置不同,幕函数的自变量在底数位置,而指数函数的自变量在指数位置。 例1.下列函数中不是幕函数的是() A. y Vx B. y X3 C y 2x D. y X1 例2.已知函数f x m2m 1 x 5m 3,当m为何值时,f x : (1)是幕函数;(2)是幕函数,且是0, 上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数; 变式已知幕函数y (m2 m 1)x m 2m 3,当x (0,g)时为减函数,则幕函数 y _______ - 2. 幕函数的图像 幕函数y= x a的图象由于a的值不同而不同. a的正负:a> 0时,图象过原点和(1,1),在第一象限的图象上升; aV0时,图象不过原点,在第一象限的图象下降,反之也成立;

函数模型及其应用

2021年新高考数学总复习第二章《函数与基本初等函数》 函数模型及其应用 1.几类函数模型 函数模型函数解析式 一次函数模型f(x)=ax+b(a,b为常数,a≠0) 反比例函数模型f(x)= k x+b(k,b为常数且k≠0) 二次函数模型 f(x)=ax2+bx+c (a,b,c为常数,a≠0) 指数函数模型 f(x)=ba x+c (a,b,c为常数,b≠0,a>0且a≠1) 对数函数模型 f(x)=b log a x+c (a,b,c为常数,b≠0,a>0且a≠1) 幂函数模型f(x)=ax n+b (a,b为常数,a≠0) 2.三种函数模型的性质 函数 性质 y=a x(a>1) y=log a x(a>1) y=x n(n>0) 在(0,+∞)上 的增减性 单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳 图象的变化 随x的增大逐渐表 现为与y轴平行 随x的增大逐渐表 现为与x轴平行 随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x

题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × ) (2)函数y =2x 的函数值比y =x 2的函数值大.( × ) (3)不存在x 0,使0x a 0,b ≠1)增长速度越来越快的形象比喻.( × ) 题组二 教材改编 2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( ) A .收入最高值与收入最低值的比是3∶1 B .结余最高的月份是7月 C .1至2月份的收入的变化率与4至5月份的收入的变化率相同 D .前6个月的平均收入为40万元 答案 D 解析 由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为1 6 ×(40+60+30+30+50+60)=45(万元),故D 错误.

三角函数诱导公式大全

三角函數誘導公式大全 三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为:

对于k2π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即 sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(42π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k2360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

(完整版)幂函数图象及其性质

幕函数的图像与性质 1幕函数的定义 形如y=x "(a € R )的函数称为幕函数,其中 x 是自变量,a 为常数 注:幕函数与指数函数有本质区别在于自变量的位置不同, 幕函数的自变量在底数位置, 而 指数函数的自变量在指数位置。 例题、(1).下列函数中不是幕函数的是( ) A . y 仮 B . y x 3 c . y 2x D . y x 1 答案:C 例2.已知函数f x m 2 m 1 x 5m 3,当m 为何值时,f x 图像是上升曲线。 (1)是幕函数; (2)是幕函数,且是 0, 上的增函数;(3)是正比例函数;(4)是反 比例函数; (5) 是二次函数; 简解:(1) (2) (3) m 4 (4) m 5 (5) m 1 变式训练: 已知函数f x m 2 2m m 为何值时, 在第一象限内它的 2 小 简解:m m 0 2 m 2m 3 解得:m 0 U 3, 小结与拓展:要牢记幕函数的定义,列出等式或不等式求解。 2.幕函数的图像 幕函数y = x a 的图象由于a 的值不同而不同. a 的正负:a> 0时,图象过原点和(1,1),在第一象限的图象上升; 在第一象限的图象下降,反之也成立; aV 0,图象不过原点,

1 注:在上图第一象限中如何确定 y=x 3, y=x 2, y=x , y x 2 , y=x -1方法:可画出x=x o ; 当x o >l 时,按交点的高低,从高到低依次为 y=x 3, y=x 2, 当0

高一三角函数公式及诱导公式习题(附答案)

三角函数公式 1. 同角三角函数基本关系式 sin 2 α+cos 2 α=1 sin α cos α =tan α tan αcot α=1 2. 诱导公式 (奇变偶不变,符号看象限) (一) sin(π-α)=sin α sin(π+α)=-sin α cos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α (二) sin(π2 -α)=cos α sin(π2 +α)=cos α cos(π2 -α)=sin α cos(π 2 +α)=- sin α tan(π2 -α)=cot α tan(π 2 +α)=-cot α sin(3π2 -α)=-cos α sin(3π 2 +α)=-cos α cos(3π2 -α)=-sin α cos(3π 2 +α)=sin α tan(3π2 -α)=cot α tan(3π 2 +α)=-cot α sin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α 3. 两角和与差的三角函数 cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)= tan α+tan β 1-tan αtan β tan(α-β)= tan α-tan β 1+tan αtan β 4. 二倍角公式 sin2α=2sin αcos α cos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α 1-tan 2α

幂函数的图象及性质

课件6幕函数图象及性质 课件编号:AB I -2-3-1. 课件名称:幕函数图象及性质? 课件运行环境:几何画板4.0以上版本. 课件主要功能:配合教科书“ 2.3幕函数”的教学.利用几何画板绘制函数图象的功能,绘制出幕函数的图象,再利用幕函数的图象研究函数的性质. 课件制作过程: (1)新建画板窗口.单击【Graph](图表)菜单中的【Define Coordinate System!(建立直角坐标系),建立直角坐标系.选中原点,按Ctrl + K,给原点加注标签A,并用【文本]工具把标签改为O. (2)单击【Graph]菜单的【Plot New Function](绘制函数图象),弹出“New Function”函数式编辑器,编辑函数f (x)= x,单击【OK]后画出函数f (x) 1 , , _ 2 3 —_ 1 =x的图象.同法编辑函数g (x)= x,h (x)= x,q(x)=x2和函数r(x)二一的 x 图象.选中函数图象,单击【Display](显示)菜单中的【Line Width](线型)中的【Thick](粗线).把上述图象设置成粗线,单击【Display](显示)菜单中的【Color](颜色)的选择各种不同的颜色给每一个函数图象着色,如图1. 图1 (3)再选中直线f (x) = x,单击【Edit](编辑)菜单,选择【Action

Buttons] (操作类按钮),单击【Hide/Show](隐藏/显示),此时屏幕上出现【Hide Function Plot](隐藏对象)按钮,选择【文本工具】,双击【Hide Function Plot】按钮, 出现对话框,将其中的【Label](标签)改为“ f (x)= x”,再单击【确定】?此时,单击“f (x)二x”按钮就会隐藏或显示直线f (x)二x ?用同样的方法制作 1 【Hide Function Plot】按钮g (x)= x2,h(x)=x3,q(x)=x2和r(x)二-,如图 x 2. (4)单击【File】(文件)菜单的【Document Options】(文档选项)对话框,将【Page Namd (页面名称)改为“画图象”,单击【0K】. (5)单击【File】(文件)菜单的【Document Options】(文档选项)对话框, 单击【Add Page](增加页),单击【Blank Pagd (空白页),将页面名称改为“ g 2” (X)= x ? (6)单击【Graph】菜单的【Plot New Function】(绘制函数图象),弹出 “New Function”函数式编辑器,在对话框内依次单击x,A,2,单击【OK】后画出函

(完整word版)三角函数高中数学诱导公式大全

常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα

cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。(符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”.

三角函数诱导公式大全

三角函数得求导公式就是什么? tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角与与差得三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

相关文档
最新文档