实验6苯乙烯甲基丙烯酸甲酯自由基悬浮共聚合.

实验6苯乙烯甲基丙烯酸甲酯自由基悬浮共聚合.
实验6苯乙烯甲基丙烯酸甲酯自由基悬浮共聚合.

苯乙烯和甲基丙烯酸甲酯自由基悬浮共聚合

一.实验目的

1.通过对苯乙烯和甲基丙烯酸甲酯单体的悬浮聚合实验,了解共聚合和均聚的相同点和不同点;

2.学习悬浮聚合的操作方法和各影响因素;

二.实验原理

悬浮聚合实质上是借助于较强烈的搅拌和悬浮剂的作用,通常将不溶于水的单体分散在介质水中,利用机械搅拌,将单体打散成直径为0.01~5 mm的小液滴的形式进行的本体聚合。在每个小液滴内,单体的聚合过程和机理与本体聚合相似。悬浮聚合解决了本体聚合中不易散热的问题,产物容易分离,清洗可以得到纯度较高的颗粒状聚合物。

其主要组分有四种:单体,分散介质(水,悬浮剂,引发剂

1.单体

不溶于水单体,如:苯乙烯(styrene,醋酸乙烯酯(vinyl acetate,甲基丙烯酸酯(methyl methacrylate等。

2.分散介质

分散介质大多为水,作为热传导介质。

3.悬浮剂:调节聚合体系的表面张力、粘度、避免单体液滴在水相中粘结。

a.水溶性高分子,如天然物:明胶(gelatin,淀粉(starch;

合成物:聚乙烯醇(PVA等。

b.难溶性无机物,如:BaSO

4,BaCO

3

,CaCO

3

,滑石粉,粘土等。

c.可溶性电介质:NaCl,KCl,Na

2SO

4

等。

4.引发剂

主要为油溶性引发剂,如:过氧化二苯甲酰(benzoyl peroxide,BPO,偶氮二异丁腈(azobisisobutyronitrile,AIBN等。

三.主要仪器和试剂

实验仪器:

三口瓶(250ml×1,球形冷凝管×1,电热锅×1,搅拌马达与搅棒×1,

温度计(100℃×1,量筒(100ml×1,锥形瓶(100ml×1,三角漏斗×1

实验试剂:

苯乙烯单体,甲基丙烯酸甲酯,过氧化二苯甲酰(BPO,聚乙烯醇(PVA,去离子水

四.实验步骤

1.架好带有冷凝管、温度计、三口烧瓶的搅拌装置;

2.分别将0.3g BPO和5ml苯乙烯和10ml甲基丙烯酸甲酯加入100ml锥形瓶中,轻轻摇动至溶解后加入250ml三口烧瓶中;配置2%的PVA溶液。

3.再将15 ml 2 % PVA溶液和130ml去离子水冲洗锥形瓶与量筒后加入250ml 三口烧瓶中开始搅拌和加热;

4.在1小时内,将温度慢慢加热至85-90℃,并保持此温度聚合反应1.5-2小时后,用吸管吸少量反应液于含冷水的表面皿中观察,若聚合物变硬可结束反应;

5.将反应液冷却至室温后,过滤分离,反覆水洗后,在50℃下温风干燥后,称重。

五.注意事项

1.搅拌太激烈时,易生成砂粒状聚合体;搅拌太慢时,易生成结块,附着在反应器内壁或搅拌棒上;

2.PVA难溶于水,必须待PVA完全溶解后,才可以开始加热;

3.称量BPO采用塑料匙或竹匙,避免使用金属匙。

六.思考题

(1悬浮聚合两种单体的比例对最后聚合有何影响?

(2悬浮聚合需要注意什么?从实验结果来看,共聚合更易成功还是均聚更易成功,为什么?

高分子化学 自由基聚合练习题

1、自由基向()转移,导致诱导分解,使引发剂效率降低,同时也使聚合度降低。 A、引发剂 B、单体 C、高分子链 D、溶剂 2、下列反应过程能使自由基聚合物聚合度增加的是() A、链增长反应 B、链引发反应 C、链转移反应 D、链终止反应 3、自由基聚合体系中出现自动加速现象的原因是。 A、单体浓度降低 B、引发剂浓度降低 C、体系温度升高 D、体系粘度增大 4、对于自由基聚合,在其他条件保持不变的前提下升高聚合温度,得到的聚合物的分子量将。 A、减小 B、说不准 C、不变 D、增大 5、生产聚氯乙烯时,决定产物分子量的因素是。 A、聚合温度 B、引发剂种类 C、引发剂浓度 D、单体浓度 6、在高压聚乙烯(LDPE)中存在长支链,其形成原因是。 A、向引发剂链转移 B、分子内链转移 C、向聚合物的链转移 D、向单体的链转移 7、α-甲基苯乙烯的Tc=25℃,则在下列()条件下可能形成高聚物。 A、聚合温度≥25℃ B、聚合温度=25℃ C、聚合温度<25℃ 8、苯乙烯在60℃进行自由基聚合时的链终止方式为。 A、偶合终止 B、歧化终止 C、既有偶合终止也有歧化终止,但以歧化终止为主 D、既有偶合终止也有歧化终止,但以偶合终止为主 9、甲基丙烯酸甲酯在贮运过程中,为了防止聚合,可以考虑加入。 A、甲苯 B、AIBN C、对苯二酚 D、甲基乙烯基酮 10、本体聚合至一定转化率时会出现自动加速效应,这时体系中的自由基浓度和寿命τ的变化规律为。 A、[M*]增加,τ缩短 B、[M*]增加,τ延长 C、[M*]减少,τ延长 11、对于自由基聚合,聚合温度升高,歧化终止的比例将。 A、增大 B、说不准 C、减小 D、不变

自由基共聚

自由基共聚 1.一两种单体共聚为例,说明无规共聚、交替、嵌段、接枝共聚物的结构有什么差异?在 这些共聚物名称中,对前后单体的位置有什么规定? 解:无规共聚物:聚合物中两结构单元M1、M2无规排列,而且M1、M2连续的单元数不多。名称中前一单体为主单体,后一单体为第二单体。 交替共聚物:聚合物中两单元M1、M2严格相间呈交替排布,名称前后单体互换也可。 嵌段共聚物:有较长的M1链段和另一较长链段M2构成的大分子,每一链段可以长达几百到几千结构单元,缩写通式PM1-b-PM2。名称中前后单体常代表单体加入次序。 接枝共聚物:主链由一种单元组成,支链则由另一种单元组成,缩写通式为PM1-g、-PM2。名称中前单体为主链,后单体为支链。 2.推导二元共聚合物组成微分方程的基本假设有哪些?由此得到什么结论?他与推导自 由基均聚物动力学的基本假设有什么异同? 解:二元共聚物组成的微分方式是: d[M1]/d[M2]=[M1]/[M2]×{r1[M1]+[M2]}/{r2[M2]+[M1]} 该方程式是在以下假设条件下推导出来的: 1)活性链的活性与链长无关; 2)活性链的活性仅取决于末端单元结构; 3)聚合反应为不可逆; 4)共聚物的聚合度很大,引发和终止对共聚物的组成无影响; 5)两种活性链相互转变的速率相等。 满足以上假设条件的二元共聚反应可用于上述共聚物组成微分方程计算投料组成和瞬间形成的共聚物组成之间的关系。出自由基聚合外,阴离子或阳离子共聚时,原则上也可用上述共聚物组成也能够微分方程进行计算。但是,对于有解的二元共聚、有前末端效应的共聚以及多活性种的二元共聚。 应该强调指出的是,这个方程仅反映了共聚物瞬时组成与单体组成之间的关系。通常仅适用于低转化率。这是因为两单体的竞聚率不同,随着工具反映的进行,投料比不断发生变化,只有低转化率时所得的共聚物组成才近似与起始投料组成相对应。 3.何谓竟聚率和单体的相对活性? 解:竞聚率是单体均聚链增长和共聚链增长速率常数之比。 即r1=k11/k12,r2=k22/k21;单体相对活性是指两种单体对同一链自由基反应(增长)速率常数之比,即M1的相对活性为1/r2,M2的相对活性为1/r1. 4.说明竞聚率r1与r2的意义并说明如何用r1、r2来计算单体的相对活性? 解:M1的竞聚率是r1=k11/k12,他表达的是链自由基~M1·与单体M1反应时的速率常数和他与单体M2反应时速率常数之比;M2的竞聚率是r2=k22/k21,即链自由基~M2·与单体M2反应时的速率常数和他与单体M1反应时速率常数之比。 竞聚率的倒数1/r1= k12/ k11,1/r2= k21/ k22表示同一自由基和异种单体的交叉增长率速率常数之比,因此单体M1的相对活性应为1/r2,单体M2的相对活性应为1/r1。 5.理想共聚和理想恒比共聚的区别是什么? 解:理想恒比共聚是指共聚物组成和单体组成完全相同的共聚,其共聚物组成曲线为对角线。而理想共聚却是共聚物组成与单体组成成简单比例关系,其共聚物组成曲线不予恒比对角线相交。 6.解释下列名词: ⑴均聚合与共聚合,均聚物与共聚物; 解:一种单体进行的聚合反应成为均聚合,产物为均聚产物。有两种或两种以上单体进行

自由基聚合习题参考答案

2. 下列烯类单体适于何种机理聚合自由基聚合、阳离子聚合还是阴离子聚合并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。 CH 2=CHC 6H 5:三种机理均可,共轭体系。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。

第六章离子聚合

第六章离子聚合 一、名称解释 1. 阳离子聚合:增长活性中心为带正电荷的阳离子的连锁聚合。 2. 活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 3. 化学计量聚合:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。 4. 开环聚合:环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。 5. Ziegler-Natta引发剂:Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主 引发剂是Ⅳ~Ⅷ族过渡金属化合物。共引发剂是Ⅰ~Ⅲ族的金属有机化合物。 6. 配位聚合:单体与引发剂经过配位方式进行的聚合反应。具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。配位聚合又有络合引发聚合或插入聚合之称。 7. 定向聚合:任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。定向聚 合等同于立构规整聚合。 二、选择题 1. 下列单体中哪一种最容易进行阳离子聚合反应---------------------------------------------( B ) A.CH2=CH2B.CH2=CHOCH3C.CH2=CHCl D.CH2=CHNO2 2. 下列哪种物质不能作为阳离子聚合的引发剂------------------------------------------------(B ) A.正碳离子盐B.有机碱金属C.质子酸D.Lewis酸 3. 四氢呋喃可以进行下列哪种聚合---------------------------------------------------------( C ) A.自由基聚合B.阴离子聚合C.阳离子聚合D.配位聚合 4. 在无终止的阴离子聚合中,阴离子无终止的原因是(C ) A 阴离子本身比较稳定 B 阴离子无双基终止而是单基终止 C 从活性链上脱出负氢离子困难 D 活化能低,在低温下聚合 5. 合成聚合物的几种方法中,能获得最窄相对分子质量分布的是( A ) A 阴离子聚合 B 阳离子聚合 C 自由基聚合D自由基共聚合 6. 能引发苯乙烯阴离子活性聚合,并且聚合度等于两倍的动力学链长的是(D) A. BuLi B. AIBN C. AlCl3+H2O D. 萘+钠 7. 制备分子量分别较窄的聚苯乙烯,应该选择(B) A阳离子聚合B阴离子聚合反应C配位聚合反应D自由基聚合反应

自由基聚合习题

4. 下列单体适于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合,并说明理由。CH2=CHCl CH2=CHCl2CH2=CHCN CH2=C(CN)2CH2=CHCH3CH2=C(CH3)2 CH2=CHC6H5CF2=CF2CH2=C(CN)COOR CH2=C(CH3)-CH=CH2 CH2=CHCl 只能进行自由基聚合。Cl原子是吸电子基团,也有共轭效应,但均较弱。 CH2=CHCl2能进行自由基和阴离子聚合,因为两个氯原子使诱导效应增强。 CH2=CHCN 适合自由基聚合和阴离子聚合。-CN是较强的吸电子取代基,并有共轭效应。 CH2=C(CN)2 CH2=CHCH3不能进行自由基、阳离子、阴离子聚合,只能进行配位聚合,因为一个甲基供电性弱,不足以使丙烯进行阳离子聚合。 CH2=C(CH3)2只能进行阳离子聚合。-CH3为推电子取代基,-CH3与双键有超共轭效应,两个甲基都是推电子取代基,其协同作用相当于强的推电子取代基,有利于双键电子云密度增加和阳离子进攻。 CH2=CHC6H5可进行自由基、阳离子、阴离子聚合。因为共轭体系中电子流动性大,容易诱导极化。 CF2=CF2适合自由基聚合。F原子体积小。 CH2=C(CN)COOR适合阴离子聚合,两个吸电子取代基其协同作用相当含有强的吸电子取代基,并兼有共轭效应,只能进行阴离子聚合。 CH2=C(CH3)-CH=CH2 5. 判断下列烯类单体能否进行自由基聚合,并说明理由。 CH2=C(C6H5)2ClCH=CHCl CH2=C(CH3)C2H5CH3CH=CHCH3 CH2=C(CH3)COOCH3CH2=CHOCOCH3CH3CH=CHCOOCH3 CH2=CHCH3 CH2=C(C6H5)2不能通过自由基聚合形成高相对分子质量聚合物。因为C6H5-取代基空间位阻大,只能形成二聚体。 ClCH=CHCl不能通过自由基聚合形成高相对分子质量聚合物。因为单体结构对称,对1,2-二取代造成较大的空间位阻。 CH2=CHCH3与CH2=C(CH3)C2H5均不能通过自由基聚合形成高相对分子质量聚合物。由于双键的电荷密度大,不利于自由基的进攻,且易转移生成较稳定的烯丙基型自由基,难于再与丙烯等加成转变成较活泼的自由基,故得不到高聚物,前者只能进行配位阴离子聚合,后者只能进行阳离子聚合。 CH3CH=CHCH3不能通过自由基聚合形成高相对分子质量聚合物。因为结构结称、位阻大,且易发生单体转移生成烯丙基稳定结构。 CH2=C(CH3)COOCH3能通过自由基聚合形成高相对分子质量聚合物。因为是1,1-二元取代基,甲基体积较小,-COOCH3为吸电子取代基,-CH3为推电子取代基,均有共轭效应。 CH2=CHOCOCH3能通过自由基聚合形成高相对分子质量聚合物。 CH3CH=CHCOOCH3不能通过自由基聚合形成高相对分子质量聚合物。由于是1,2-二元取代基,结构结称,空间阻碍大。 CF2=CFCl能通过自由基聚合形成高相对分子质量聚合物。这是因为F原子体积很小,

苯乙烯自由基悬浮聚合

高分子化学实验 苯乙烯自由基悬浮聚合 一、实验目的 (1)通过对苯乙烯单体的悬浮聚合实验,了解自由基悬浮聚合的方法和配方中各组分的作用; (2)学习悬浮聚合的操作方法; (3)通过对聚合物颗粒均匀性和大小的控制,了解分散剂、升温速度、搅拌形式与搅拌速度对悬浮聚合的重要性。 二、实验原理 悬浮聚合实质上是借助于较强烈的搅拌和悬浮剂的作用,通常是将不溶于水的单体分散在介质水中,利用机械搅拌,将单体打散成直径为0.01~5mm的小液滴的形式进行本体聚合,在每个小液滴内,单体的聚合过程和机理与本体聚合相似。悬浮聚合解决了本体聚合中不易散热的问题,产物容易分离,清洗可以得到纯度较高的颗粒状聚合物。 其主要组分有四种;单体、分散介质(水)、悬浮剂、引发剂。 1.单体 单体不溶于水,如:苯乙烯(styrene)、醋酸乙烯酯(vinyl acetate)、甲基丙烯酸酯(methyl methacrylate)等。 2.分散介质 分散介质大多为水,作为热传导介质。 3.悬浮剂 调节聚合体系的表面张力、粘度、避免单体液滴在水相中粘结。

(1)水溶性高分子,如天然物:明胶(gelatin),淀粉(starch);合成物:聚乙烯醇(PVA)等。 (2)难溶性无机物,如:BaSO4, BaSO3,CaCO3,滑石粉,粘士等。 (3)可溶液性电介质:NaCl,KCl,Na2SO4等。 4.引发剂 主要为油溶性引发剂,如:过氧化二苯甲酰(BPO),偶氮二异丁腈(AIBN)等。 三、主要仪器和试剂 1.实验仪器名称及数量: 三口瓶(250ml)×1,球形冷凝管×1,电热锅×1,搅拌马达与搅拌棒各×1,温度计(100℃)×1,量筒(100ml)×1,布氏漏斗×1,抽滤瓶×1。 2.实验试剂 苯乙烯单体,过氧化二苯甲酰(BPO),聚乙烯醇(PVA),去离子水。 四、实验步骤 (1)架好带有冷凝管、温度计、三口烧瓶的搅拌装置,如下图所示; (2)分别将0.3gBPO和16ml苯乙烯加入100ml锥形瓶中,轻轻摇动至溶解后加入250ml三口烧瓶中; (3)再将7~8ml,0.3%PVA溶液加入250ml三口烧瓶中; (4)130ml去离子水冲洗锥形瓶及量简后,加入250ml三口烧

第三章自由基共聚合(1)分析

第三章自由基共聚合 一、课程主要内容 ⒈自由基共聚合反应概述:共聚物的分类与命名;研究自由基共聚合反应的意义。 ⒉二元共聚物组成与原料组成的关系:共聚物组成微分方程的推导及讨论;共聚类型及共聚物组成曲线。 ⒊共聚反应的竞聚率的测定:直线交点法;截距斜率法;积分法。 ⒋控制共聚物组成的方法:调节起始单体配比的一次投料法;连续补加活泼单体的投料法;连续补加混合单体的投料法。 ⒌单体的相对活性和自由基的活性:单体的相对活性和自由基的活性;影响单体活性和自由基活性的因素;Q-e概念。 通过学习第三章,掌握共聚物的分类与命名,两单体共聚的倾向,截距斜率法测定竞聚率;熟练掌握二元共聚物组成与原料组成的关系,控制共聚物组成的方法;而对单体的相对活性和自由基的活性,Q-e概念作一般了解。 二、试题与答案 本章试题有基本概念题、填空题、选择填空题、简答题和计算题。 ㈠基本概念题 ⒈自由基共聚合反应:两种或两种以上单体混合物,经引发聚合后形成的聚合物大分子链中含有两种或两种以上单体单元的聚合过程,称为自由基共聚合反应,简称自由基共聚。 ⒉无规共聚物:共聚物大分子链中两种单体单元毫无规律排列。M1、M2连续的单元数不多; ⒊交替共聚物:共聚物大分子链中两种单体单元严格相间排列的共聚物。 ⒋嵌段共聚物:由较长的M1链段和另一较长的M2链段构成的共聚物; ⒌接枝共聚物:接枝共聚物主链由一种(或两种)单体单元构成,支链由另一种(或另两种)单体单元构成的共聚物。 ⒍共聚合和共聚物:两种或两种以上单体混合物,经引发聚合后,形成的聚合物其大分子链中,含有两种或两种以上单体单元的聚合过程,称为共聚合反应,。大分子链中含有两种或两种以上单体单元的聚合物称为共聚物。 ⒎共聚物组成:共聚物大分子链中单体单元的比例即为共聚物组成。 ⒏竞聚率:均聚链增长反应速率常数与共聚链增长反应速率常数之比。 ⒐竞聚率r1、r2的物理意义:r1是单体M1均聚链增长反应速率常数与M2共聚链增长反应速率常数之比。r2是单体M2均聚链增长反应速率常数与M1共聚链增长反应速率常数之比。r1、r2表征两种单体的相对活性。 ㈡填空题 ⒈根据共聚物大分子链中单体单元的排列顺序,共聚物分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物。

第三章 自由基聚合_习题

第三章自由基聚合_习题 1、下列烯类单体能否进行自由基聚合?并解释原因。 CH2=C(C6H5)2CH2=C(CH3)C2H5 CH3CH=CHCH3C l CH=CHC l CF2=CF2 CH2=C(CH3)COOCH3CH2=CHCOOCH3 CH2=CHCN CH2=C(CH3)CH=CH 2、以偶氮二异丁腈为引发剂,写出醋酸乙烯酯聚合历程中各基元反应式。 3、PVA的单体是什么?写出其聚合反应式。 4、试写出氯乙烯以偶氮二异庚腈为引发剂聚合时的各个基元反应。 5、甲基丙烯酸甲酯聚合时,歧化终止的百分比与温度的依赖性如下表所示: 计算: (a)歧化终止与偶合终止的活化能差值; (b)偶合终止为90%时的温度。 6、如果某引发剂的半衰期为4 hr,那么反应12 hr后,引发剂还剩余多少(百分比)没有分解? 7、写出下列常用引发剂的分子式和分解反应式。 偶氮二异丁腈,偶氮二异庚腈,过氧化二苯甲酰,过氧化二碳酸二(2-乙基己酯), 异丙苯过氧化氢,过氧化羧酸叔丁酯,过硫酸钾-亚硫酸盐体系,过氧化氢-亚铁盐体系

8、苯乙烯在苯中以过氧化二苯甲酰为引发剂、80℃下进行聚合反应。已知: k d=2.5×10-4S-1,E d=124.3kJ·mol-1,试求60℃的k d值和引发剂的半衰期。 9、直接光引发和加光引发剂的光引发有什么不同? 10、据报道,过氧化二乙基的一级分解速率常数为1.0×1014e-35000cal/RT s-1,试预测这种引发剂的使用温度范围。 11、在稳态状态下,如果[M×]=1×10-11mol/L,那么在30、60、90分钟后,[M×]分别等于多少? 12、何为自动加速作用?其出现的根本原因是什么? 13、阻聚作用与缓聚作用的定义,常见阻聚剂有哪几种类型?它们的阻聚机理有什么不同? 14、单体溶液浓度为0.20 mol/L,过氧化物引发剂浓度为4.0×10-3 mol/L,在60℃下加热聚合,问需多长时间能达到50%的转化率?计算时采用如下数据:k p=145 L/mol×s,k t=7.0×107 L/mol×s,f=1,引发剂半衰期为44 hr。 15、用引发剂W在60℃下热引发单体Z(单体浓度8.3 mol/L)进行本体聚合,得到下列数据: 若试验证明R p=4.0×10-4[I]1/2,请计算C M,k p/k t1/2和fk d的值。在聚合中,向引发剂链转移重要吗?如果重要,请简述怎样计算C I。 16、氧化还原体系Ce4+-醇可以引发自由基聚合: 链增长反应为:

自由基共聚合练习题

自由基共聚合练习题 一、填空题: 1、根据共聚物大分子链中单体单元的排列顺序,共聚物分为_______、______、 ______和______。 2、共聚中控制聚合物平均组成的方法_____、_____。 3、竞聚率的物理意义是____,对于r1=r2=1的情况,称为__,r1=r2=0,称_____,而r1<1和r2<1时,共聚组成 曲线存在恒比点,恒比点原料组成公式为__。 4、从竞聚率看,理想共聚的典型特征为_____。 5、M1-M2两单体共聚, r1=0.75,r2= 0.20。其共聚曲线与对角线的交点称为_____。若f10=0.80,随共聚进行到某一时刻,共聚物组成为F1,单体组成为f1,则f1_____f10,F1____F10(大于或小于)。 6、单体的相对活性习惯上用_____判定,自由基的相对活性习惯上用_____判定。在 Q—e值判断共聚行为时,Q代表_____,e代表_____。 二、选择题: 1.下列单体中,与丁二烯(e=1.05)共聚时,交替倾向最大的是() A.PS(e=-1.08) B.马来酸酐(e=2.25) C.醋酸乙烯(e=-0.22) D.丙烯腈(e=1.2) 2.一对单体工具和的竞聚率r1和r2的值将随() A.局和时间而变化 B.局和温度而变化 C.单体配比不同而变化 D.单体的总浓度而变化 3.已知一对单体在进行共聚合反应时获得了恒比共聚物,其条件必定是() A、r1=1.5,r2=1.5 B、r1=0.1,r2=1.0 C、r1=0.5,r2=0.5 D、r1=1.5,r2=0.7 4.在自由基聚合中,竞聚率为()时,可得到交替共聚物。 A 5.下列共聚中,理想共聚是(),理想恒比共聚是(),交替共聚是() A.r1r=1 B.r1=r2=1 C.r1=r2 D.r1=r2=0 6.当r1>1 r2<1时,若提高聚合反应温度,反应将趋向于() A 交替共聚 B 理想共聚 C嵌段共聚 D恒比共聚 7.当两种单体的Q.e值越接近则越() A.越难共聚 B。趋于理想共聚 C.趋于交替共聚 D.趋于恒比共聚 8.两种单体的Q和e值越接近,就( ) A.难以共聚 B.倾向于交替共聚 C.倾向于理想共聚 D.倾向于嵌段共聚 9.有机玻璃板材是采用( ) A、本体聚合 B、溶液聚合 C、悬浮聚合 D、乳液聚合 三、概念题: 1、共聚物 2、自由基共聚合反应 3、竞聚率 4、理想恒比共聚 5、Q,e概念

第四章自由基共聚合作业

第四章自由基共聚合作业 P146T 思考题4.考虑r1=r2=1;r1=r2=0;r1>0,r2=0;r1r2=1等情况,说明11f f F =()的函数 关系和图像特征。 解答:由21112122111222 r f +f f r f +2f f +r f F = 当r1=r2=1时,11f F =,如图;当r1=r2=0时,11= 2F ,如图 当r1>0,r2=0时,1121112r f +f r f +2f F =,如图;当r1r2=1时,11122d[]d[]r d[]d[] M M M M =,如图

P147T1.氯乙烯-醋酸乙烯酯、甲基丙烯酸甲酯-苯乙烯两对单体聚合,若两体系中醋酸乙烯酯和苯乙烯的浓度均为15%(质量分数),根据文献报道的竞聚率,试求共聚物起始组成。 解答:由氯乙烯-醋酸乙烯酯的竞聚率为:r1=1.68,r2=0.23; =15%=85%ωω(醋酸乙烯酯),(氯乙烯);10.85 62.5f ==0.8860.851-0.85+62.586 () 21f =1-f =0.114 21112122111222 r f +f f =0.932r f +2f f +r f F ?=;10.93262.5==0.9090.93262.5+0.06886W ??? 甲基丙烯酸甲酯-苯乙烯的竞聚率:r1=0.46,r2=0.52; 10.85 100f ==0.8550.851-0.85+100104 ();21f =1-f =0.145;21112122111222r f +f f =0.773r f +2f f +r f F ?= 10.7731000.7640.7731000.23104 W ?==?+? P147T1.甲基丙烯酸甲酯(1M )浓度=5-1mol L ?,5-乙基-乙烯基吡啶浓度=1-1 mol L ?,竞聚率:r1=0.40,r2=0.69; a.计算共聚物起始组成(以摩尔分数计), b.求共聚物组成和单体组成相同两单体摩尔配比。 解答:甲基丙烯酸甲酯浓度为5-1mol L ?,5-乙基-乙烯基吡啶浓度为11mol L -?; 01 5f =6,021f =6;21112122111222r f +f f =0.725r f +2f f +r f F ?= 即起始共聚物,甲基丙烯酸甲酯的摩尔分数为72.5% 由r1<1,r2<1,21112 1-r f ==0.342-r -r F ?= 两单体摩尔比= 12f 0.3417==f 0.6633

自由基聚合机理以四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发 链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成:(1)引发剂I分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。 单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约105~150kJ/mo1,反应速率小,分解速率常数约10-4~10-6s-1。初级自由基与单体结合成单体自由基这一步是放热反应,活化能低,约20~34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法继续链增长。 有些单体可以用热、光、辐射等能源来直接引发聚合。这方面的研究工作不少,苯乙烯热聚合已工业化;紫外光固化涂料也已大规模使用。 2 链增长 在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。新自由基活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。这个过程称做链增长反应,实际上是加成反应。 为了书写方便,上述链自由基可以简写成,其中锯齿形代表由许多单元组成的碳链骨架,基团所带的独电子系处在碳原子上。 链增长反应有两个特征:一是放热反应,烯类单体聚合热约55~95kJ/mol;二是增长活化能低,约20~34KJ/mol,增长速率极高,在0.01~几秒钟内,就可以便聚合度达到数千,甚至上万。这样高的速率是难以控制的,单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。 对于链增长反应,除了应注意速率问题以外,还须研究对大分子微观结构的影响。在链增长反应中,结构单元间的结合可能存在“头-尾”和“头-头”或“尾-尾”两种形式。经实验证明,主要以头-尾形式连接。这一结果可由电子效应和空间位阻效应得到解释。对一些取代基共轭效应和空间位阻都较小的单体聚合时头-头结构会稍高,如醋酸乙烯酯、偏二氟

实验二 苯乙烯悬浮聚合

实验二苯乙烯悬浮聚合 一、实验目的 1、了解悬浮聚合反应原理、特点及配方中各组分作用。 2、掌握苯乙烯悬浮聚合的实验室实施方法,搅拌、温度等各种条件对产品的颗粒度合性能的影响。 二、实验原理 虽然实验一所介绍的本体聚合是烯类单体聚合制备高分子聚合物的最简单的方法。但这种方法不是在全体情况下都适用的。特别是大型工业生产中。因为本体聚合开始除加的很少引发剂外,体系中只有单体一个组分。在聚合过程中,随着单体不断转变为聚合物大分子,体系的粘度急剧增高,聚合热的传递越来越困难,引起自动加速效应和不规则的过热点,导致产物有较宽的分子量分布和过热点的缺陷。 为了克服本体加聚过程中粘度增高和传热受阻产生的不良后果,一种办法是加入一种惰性的、可溶的、低分子量的稀释剂来减轻,这种方法就是溶液聚合。虽然溶液聚合提供了较好的热控制,减缓了自动加速效应,但溶剂很少对自由基是真正惰性的。由于溶剂常常发生链转移反应使得产物的分子量大大降低,而且聚合溶剂的除去和回收也是相当复杂和浪费的,所以在自由基加聚反应中用的较少。另一种方法是加入一种不相混溶的液体,通过强烈的搅拌使单体变成不连续的小颗粒或微珠分散在作为连续相的液体中。采用能溶解于单体相的引发剂(油溶性引发剂),使得引发、增长、终止过程均在单体微珠中进行。这样实际上每个单体微珠均成为一个独立的、微型的本体聚合反应体系,但是却把传热距离缩短到了0.2~0.5mm,从而解决了传热问题,这就是悬浮聚合。因此悬浮聚合就本质而言仍然是本体聚合。符合本体聚合的动力学规律。 悬浮聚合通常采用的连续相是水,水是最廉价易得的。而且热容高、粘度小、表面张力大,有利于形成悬浮体系。由于悬浮聚合反应热易于排除,保证了反应温度的均一性,减少了爆聚反应的可能。因此可以使用催化剂等来提高反应速率。而且制成的产品呈均匀的颗粒状,不经造粒就可以直接用于成型加工。同时解决了本体聚合难以大型化的问题,现代工业生产中采用的大型悬浮聚合釜可达200M2以上。 但是,藉强烈搅拌分散开的悬浮体系是亚稳状态的,特别是在聚合物量增加,颗粒发粘时容易凝结成团,加入少量亲水的聚合物如明胶、羟乙基纤维素、聚丙烯酰胺或聚乙烯醇,可以在单体微珠外形成一层保护胶体。加入表面活性剂和无机化合物的细粉如粘土或钙、镁的磷酸盐也能帮助稳定悬浮体系。无机化合物粉末在小珠变得发粘并倾向于粘在一起时是特别有效的,但是,当分散的颗粒过小,接近于胶体粒子大小时,聚合历程实际上就可能改变,所以必须精心选择表面活性剂避免形成乳液(参见实验三)。 采用悬浮聚合法制备的聚苯乙烯是一种透明的无定型热塑性高分子材料,其分子量分布窄。加工流动性好而适用于模压注射制品的加工,其制品有较高的透明度良好的耐热性和电绝缘性。 苯乙烯单体在引发剂过氧化二苯甲酰(可溶于苯乙烯单体而不溶于水)的作用下,以水为分散介质,聚乙烯醇为悬浮剂,按自由基型反应历程进行悬浮聚合。聚合反应历程如下:

自由基聚合习题参考答案

2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。 CH 2=CHC 6H 5:三种机理均可,共轭体系。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。 CH 2=CHOCOCH 3:醋酸乙烯酯,能,吸电子基团。 CH 2=C(CH 3)COOCH 3:甲基丙烯酸甲酯,能。 CH 3CH=CHCOOCH 3 :不能,1,2双取代,位阻效应。 CF 2=CFCl :能,结构不对称,F 原子小。 计算题 1. 甲基丙烯酸甲酯进行聚合,试由H ?和S ?来计算77℃、127℃、177℃、227℃时的平衡单体浓度,从热力学上判断聚合能否正常进行。 解:由教材P75上表3-3中查得:甲基丙烯酸甲酯H ?=mol ,S ?=mol K 平衡单体浓度:)(1]ln[ΘΘ ?-?= S T H R M e T=77℃=,=e M ]ln[*10-3 mol/L T=127℃=,=e M ]ln[L T=177℃=,=e M ]ln[L T=227℃=,=e M ]ln[L

苯乙烯的自由基和阴离子聚合及聚苯乙烯的表征

苯乙烯的自由基和阴离子聚合及聚苯乙烯 的表征 摘要:本实验以苯乙烯为原料,利用悬浮聚合和阴离子聚合两种方法来合成聚苯 乙烯,并对聚合物的分子量和力学性能进行测试。 关键字:苯乙烯悬浮聚合阴离子聚合光散射力学性能 引言 聚苯乙烯是广泛应用的聚合物材料,一般由单体苯乙烯通过自由基聚合生产。要获得窄分布的聚苯乙烯,则须通过阴离子聚合反应的方法。 自由基聚合的实施方法有本体聚合、溶液聚合、悬浮聚合和乳液聚合。本体聚合和溶液聚合也适合于阴离子聚合。 不溶于水的单体以小液滴状态悬浮在水中进行的聚合反应叫悬浮聚合,又叫珠状聚合。体系主要由四个部分组成:单体、引发剂、水和分散剂。单体液层在搅拌的剪切力作用下分散成微小液滴,粒径的大小主要由搅拌的速度决定。由于油水两相间的表面张力可使液滴粘结,必须加入分散剂降低表面张力,保护液滴,使形成的小珠有一定的稳定性。分散剂可用溶于水的聚乙烯醇、明胶等高分子或不溶水的无机盐,如CaCO3、BaSO4等。对孤立的小珠本身而言,实际上仍是本体聚合。 阴离子聚合是活性聚合和化学聚合。活性聚合技术是目前合成单分散特定分子量的聚合物的一种方法。阴离子活性聚合物的分子量可通过单体浓度和引发剂的浓度来控制:Xn= n[单体浓度]/[引发剂浓度](双阴离子引发n=2,单离子引发n=1),分子量分布指数接近1。 聚合物的分子量及其分布不但是高分子合成中的重要控制指标,也是聚合物的最基本的结构参数,它们对聚合物的力学性能和加工性能有很大影响。聚合物的分子量是一个平均值,根据统计方法的不同,可分为数均分子量、重均分子量、Z均分子量和粘均分子量。测定聚合物分子量的方法很多,不同的方法适用于测定不同的分子量范围和测出不同的平均分子量。 利用光的散射性质测定分子量和分子尺寸的方法称为光散射法,是研究高分子溶液性质的一种重要方法。 光是一种电磁波。当一束光通过介质时,组成介质的分子中的电子受到电场作用而强迫振动,成为二次光源,并向各个方向发射散射光。通常,高分子溶液的散射光强远远大于纯溶剂的散射光强。而且,散射光强与溶质分子量、溶液浓度、分子尺寸、溶剂折光指数、溶液折光指数增量等有关。在此,用瑞利因子R 来量度散射强度。

自由基聚合习题参考答案

第3章自由基聚合-习题参考答案 1、判断下列单体能否进行自由基聚合并说明理由 H2C CHCl H2C CH H2C CCl2H2C CH2H2C C H2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHCl H2C C CH3 COOCH3H2C C CN COOCH3 HC CH OC CO O 答: (1)可以。Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。 (2)可以。为具有共轭体系的取代基。 (3)可以。结构不对称,极化程度高,能自由基聚合。 (4)可以。结构对称,无诱导效应共轭效应,较难自由基聚合。 (5)不能。1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。 (6)可以。吸电子单取代基。 (7)不可以。1,1双强吸电子能力取代基。 (8)不可以。甲基为弱供电子取代基。 (9)可以。氟原子半径较小,位阻效应可以忽略不计。 (10)不可以。由于位阻效应,及结构对称,极化程度低,难自由基聚合 (11)可以。1,1-双取代。 (12)可以。1,1-双取代吸电子基团。 (13) 不可以。1,2-双取代,空间位阻。但可进行自由基共聚。 2、试比较自由基聚合与缩聚反应的特点。

答: 自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。 (2)单体加到少量活性种上,使链迅速增长。单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。 (3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。聚合一开始就有高聚物产生。 (4)在聚合过程中,单体逐渐减少,转化率相应增加 (5)延长聚合时间,转化率提高,分子量变化较小。 (6)反应产物由单体,聚合物,微量活性种组成。 (7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。 缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。 (2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。 (3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。 (4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。 (5)延长缩聚时间分子量提高,而转化率变化较小。 (6)任何阶段都由聚合度不等的同系缩聚物组成。 (7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。 3、解释下列概念: 歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合, 答: 歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。 偶合终止:两链自由基的独电子相互结合成共价键的终止反应。 引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,

实验一 苯乙烯自由基悬浮聚合

实验一苯乙烯自由基悬浮聚合 一. 实验目的 (1)通过苯乙烯单体的悬浮聚合实验,了解自由基悬浮聚合的方法和配方中各组分的作用。 (2)学习悬浮聚合的操作方法。 (3)通过聚合对聚合物颗粒均匀性和大小的控制,了解分散剂、升温速度、搅拌形式与搅拌速度对悬浮聚合的重要性。 二. 实验原理 悬浮聚合实质上是借助于较强烈的搅拌和悬浮剂的作用,通常是将不容于水的单体分散在介质水中,利用机械搅拌,将单体打散成直径为0.01~5mm的小液滴的形式进行本体聚合。在每一个小液滴内,单体的聚合过程和机理与本体聚合相似。悬浮聚合解决了本题聚合中不易散热的问题,产物易分离,清洗可以得到纯度较高的颗粒状聚合物。 主要组分有四种:单体、分散介质(水)、悬浮剂、引发剂。 1.单体:单体不溶于水,如苯乙烯、醋酸乙烯酯、甲基丙烯酸酯等。 2.分散介质:分散介质大多为水,作为热传导介质。 3.悬浮剂:调节悬浮聚合的表面张力、粘度、避免单体液滴在水相中粘结。 (1)水溶性高分子,如:天然物:明胶、淀粉;合成物:聚乙烯醇等。 (2)难溶性无机物,如:BaSO4、BaCO3、CaCO3滑石粉,粘土等。 (3)可溶性电介质:NaCl、KCl、Na2SO4等。 4.引发剂:主要为油溶性引发剂:过氧化二苯甲酰(BPO),偶氮二异丁腈(AIBN)等。 三. 主要仪器和试剂 1.实验仪器: 三口瓶(500mL)×1,球形冷凝管×1,电热锅搅拌马达与搅拌棒×1,温度计(200℃)×1,量筒(100mL, 10mL)×1,锥形瓶(100mL)×1,布氏漏斗×1,抽滤瓶×1。 2.实验试剂: 苯乙烯单体,过氧化二苯甲酰BPO,聚乙烯醇(PV A),去离子水。 四.实验步骤 1. 架好带有冷凝管、温度计、三口烧瓶的搅拌装置,如图1-1所示; 2. 分别将0.45g BPO和24mL苯乙烯加入100mL锥形瓶中,轻轻摇动至溶解后加入500ml三口烧瓶中; 3. 再将11-12 mL 0.3% PVA溶液和200mL去离子水冲洗锥形瓶与量筒后加入500mL三口烧瓶中开始搅拌和加热; 4. 在半小时内,将温度慢慢加热至85-90℃,并保持此温度聚合反应2小时后,用吸管吸少量反应液于含冷水的表面皿中观察,若聚合物变硬可结束反应;

苯乙烯的自由基和阴离子聚合及聚苯乙烯的表征

苯乙烯的自由基和阴离子聚合及聚苯乙烯的表征 武汉大学化学与分子科学学院,湖北武汉 周思锦2013301130125 摘要:聚苯乙烯是一种由苯乙烯单体通过自由基加聚反应合成的聚合物。本实验通过自由基聚合和阴离子聚合两种方式制得聚苯乙烯,并通过改变引发剂和单体的用量,合成了不同分子量的苯乙烯,初步探究了不同比例的引发剂对苯乙烯聚合的影响。 关键词:苯乙烯聚苯乙烯自由基聚合阴离子聚合分子量 0 引言 实验原理: 聚苯乙烯是广泛应用的聚合物材料,一般由单体苯乙烯通过自由基聚合生产。要获得窄分布的聚苯乙烯,则须通过阴离子聚合反应的方法。 不溶于水的单体以小液滴状态悬浮在水中进行的聚合反应叫悬浮聚合,又叫珠状聚合。体系主要由四个部分组成:单体、引发剂、水和分散剂。单体液层在搅拌的剪切力作用下分散成微小液滴,粒径的大小主要由搅拌的速度决定。由于油水两相间的表面张力可使液滴粘结,必须加入分散剂降低表面张力,保护液滴,使形成的小珠有一定的稳定性。分散剂可用溶于水的聚乙烯醇、明胶等高分子或不溶水的无机盐,如CaCO3、BaSO4等。对孤立的小珠本身而言,实际上仍是本体聚合。 阴离子聚合是活性聚合和化学聚合。活性聚合技术是目前合成单分散特定分子量的聚合物的一种方法。阴离子活性聚合物的分子量可通过单体浓度和引发剂的浓度来控制:Xn =n[单体浓度]/[引发剂浓度](双阴离子引发n=2,单离子引发n=1),分子量分布指数接近1。 聚合物的分子量及其分布不但是高分子合成中的重要控制指标,也是聚合物的最基本的结构参数,它们对聚合物的力学性能和加工性能有很大影响。聚合物的分子量是一个平均值,根据统计方法的不同,可分为数均分子量、重均分子量、z均分子量和粘均分子量。 实验目的: 1. 掌握高分子化学合成实验的基本技能和物理实验方法; 2. 掌握自由基聚合、阴离子聚合的原理及特点; 3. 了解单体的纯化、引发剂的精制及阴离子引发剂RLi 的制备方法; 4. 了解苯乙烯的性能和制法及一般用途;

相关文档
最新文档