2021届江西省丰城中学、高安二中等六校高三1月联考数学(理)试题

2021届江西省丰城中学、高安二中等六校高三1月联考数学(理)试题
2021届江西省丰城中学、高安二中等六校高三1月联考数学(理)试题

丰城中学、高安二中、上高二中、樟树中学、新余一中、

宜春中学

2021届六校联考理科数学试卷

命题人:上高二中 审题人:上高二中 2021年元2日 本试卷总分值为150分 考试时长120分钟 考试范围:高考范围

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

要求的。

1.若复数1z i i ?=-+,则复数z 的虚部为( ) A .-1

B .1

C .-i

D .i

2.已知集合{|270}A x N x =∈-<,2{|340}B x x x =--≤,则A B =( )

A .{}1,2,3

B .{}0,1,2,3

C .7

|2x x ??≤

????

D .7|02x x ??<≤

????

3.攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,也有单檐和重檐之分,多见于亭阁式建筑.如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,若此正六棱锥的侧面等腰三角形的底角为α,则侧棱与底面外接圆半径的比为( )

A .1

2cos α

B .12sin α

C .sin 3πsin

D .cos 3πcos

8

α

4.已知点P 是抛物线28y x =上的一个动点,则点P 到点(0,2)A 的距离与到抛物线准线距离之和的最小值是( ) A .5B .3

C .2

D .

55.对四组数据进行统计,获得以下散点图,关于其线性相关系数比较,正确的是( )

A .24310r r r r <<<<

B .42130r r r r <<<<

C .42310r r r r <<<<

D .24130r r r r <<<<

6.已知函数()()

2

1x

f x x x e =++,则()f x 在(0())0f ,处的切线方程为( )

A .10x y ++=

B .10x y -+=

C .210x y ++=

D .210x y -+=

7.函数()()cos 0,2f x x πω?ω??

?=+>< ???的图象如图所示,为了得到sin y x ω=的图象,只需把

()y f x =的图象上所有点( )

A .向右平移6

π

个单位长度 B .向右平移12

π

个单位长度 C .向左平移

6

π

个长度单位 D .向左平移

12

π

个长度单位

8.在()62x y x y ??

-+ ???

的展开式中,34x y 的系数是( ) A .20

B .

15

2

C .5-

D .252

-

9.若23sin 22sin 0αα-=,则πcos 24α??

+

= ??

?

( ) A .72

B .

2或72

C .22

D 2

10.在三棱锥P ABC -中,PA ⊥平面ABC ,120224BAC AP AB AC ∠====,,则三棱锥

P ABC -的外接球的表面积是( )

A .18π

B .36π

C .72π

D .40π

11.已知点M 为直线30x y +-=上的动点,过点M 引圆221x y +=的两条切线,切点分别为A ,B ,则点()0,1P -到直线AB 的距离的最大值为( )

A .

32

B .

53

C

2

D

12.已知函数1()x f x xe -=,若对于任意的(200,x e ?∈?

,函数()2

0()ln 1g x x x ax f x =-+-+在(

20,e ??内都有两个不同的零点,则实数a 的取值范围为( ). A .2

231,e e ?

?-

??

?

B .2

23,e e ?

?-∞-

??

?

C .22,e e e

e ?

?-

+ ??

?

D .21,e e ?

?-

???

二、填空题:本题共4小题,每小题5分,共20分。

13.已知x ,y 满足约束条件0

122x x y x y ≥??

+≥??+≤?

,则32z x y =+的最小值为______.

14.设向量a ,b 满足3a =,1b =,且1

cos ,6

a b =

,则2a b -=__________. 15.设1F ,2F 分别是双曲线()22

2210,0x y a b a b

-=>>的左?右焦点,若双曲线右支上存在一点P ,使

()2

2

0OP OF F P +?=,O 为坐标原点,且1

23PF

PF =,则该双曲线的离心率为__________.

16.在三棱锥A BCD -中,已知AD BC ⊥,8AD =,2BC =,10AB BD AC CD +=+=,则三棱锥ABCD 体积的最大值是______.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考

生都必须作答。第22、23题为选考题,考生根据要求作答。 17.已知数列{}n a 中,11a =,1(1)()2n

n n

n a a n N n a *++=

∈+

(1)求证:n n a ??

?

???

是等差数列; (2)若1n n n c a a +=,且数列4

3n n b n

=?,数列{}n n b c 的前n 项和为n T ,求n T 的取值范围.

18.如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE

折起,使点D 到达点P 的位置(P ?平面ABCE ).

(1)证明:AE ⊥PB ;

(2)若直线PB 与平面ABCE 所成的角为4

,求二面角A ﹣PE ﹣C 的余弦值.

19.为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:

(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;

(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次..,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;

(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为X ,求X 的分布列及期望.

20.已知椭圆()22

22:10x y M a b a b +=>>的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭

圆经过点2N ?

???. (1)求椭圆M 的方程;

(2)若直线()0y kx m k =+≠与圆22

3

:4

E x y +=

相切于点P ,且交椭圆M 于,A B 两点,射线OP 于椭圆M 交于点Q ,设OAB ?的面积与QAB ?的面积分别为12,S S . ①求1S 的最大值; ②当1S 取得最大值时,求1

2

S S 的值.

21. 定义在0,

的函数1

()(1)ln e

x f x a x x x -=--+(其中a ∈R ).

(1)若0a =,求()f x 的最大值;

(2)若函数()f x 在1x =处有极小值,求实数a 的取值范围.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

22.在平面直角坐标系xOy 中,曲线C 的参数方程为2

2x m y m

?=?=?(m 为参数).以坐标原点O 为极点,x 轴正

半轴为极轴建立极坐标系,直线l 的极坐标方程为sin cos 10ρθρθ-+=. (Ⅰ)求直线l 的直角坐标方程与曲线C 的普通方程; (Ⅱ)已知点()2,1,P 设直线l 与曲线C 相交于,M N 两点,求

11PM PN

+的值. 23.已知函数1

()||()3

f x x a a =

-∈R . (1)当2a =时,解不等式1

()13

x f x -

+≥;

(2)设不等式

1

()

3

x f x x

-+≤的解集为M,若

11

,

32

M

??

?

??

??

,求实数a的取值范围.

丰城中学、高安二中、上高二中、樟树中学、新余一中、

宜春中学

2021届六校联考理科数学试卷答案

BBAC,BDAD,BCDA 13. 2 14.

15.

1 16.

17.解:(1)

1(1)()2n

n n

n a a n N n a *++=

∈+,

1212n n n n

n a n n

a a a +++∴

==+, 112n n n n

a a ++∴

-=,1

11a

n n a ??

∴????

是以1为首项,2为公差的等差数列. 21n

n

n a ∴

=- (2)由(1)可得21

n n

a n =

-, 所以(1)

(21)(21)

n n n c n n +=

-+,

14(1)11

3(21)(21)3(21)3(21)n n n n n n b c n n n n -+=

=--+-+

21111111

11333335

3(21)3(21)3(21)

n n n n T n n n -=-

+-++

-=-???-++

因为111114803(21)3(23)3(21)(23)

n n n n n n T T n n n n ++++-=

-=>++++,

所以{}n T 是递增数列,

n T 的最小值为18

9

T =

,又因为1n T < 8

19

n T ∴≤< 18.(1)连接BD ,设AE 的中点为O ,

∵AB ∥CE ,AB =CE

1

2

=

CD , ∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形,

∴OD ⊥AE ,OB ⊥AE ,折叠后,OP AE OB AE ⊥⊥, 又OP ∩OB =O ,

∴AE ⊥平面POB ,又PB ?平面POB , ∴AE ⊥PB .

(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO 4

π

=,

又OP =OB ,∴OP ⊥OB ,

∴O 、Q 两点重合,即PO ⊥平面ABCE ,

以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P (0,03E (12,0,0),C (13

0),

∴PE =(

12,0,3

),EC =(12,32

,0), 设平面PCE 的一个法向量为1n =(x ,y ,z ),则1100n PE n EC ??=???=??,即1

3

02

13

02

x z x y ?=???

?=??,

令x 3=1n =3,﹣1,1),

又OB ⊥平面PAE ,∴2n =(0,1,0)为平面PAE 的一个法向量, 设二面角A ﹣EP ﹣C 为α,则|cosα|=|cos 12,n n <>|1212

555

n n n n ?=

=

=,

由图可知二面角A ﹣EP ﹣C 为钝角,所以cosα

5=-

19.(1)第一组数据平均数为5.050.1 5.150.2 5.250.4 5.350.3 5.24?+?+?+?=千斤/亩, 第二组数据平均数为5442325.18 5.20 5.22 5.24 5.26 5.28 5.22202020202020

?

+?+?+?+?+?=千斤/亩, 可知第一组方法较好,所以采用延长光照时间的方法;( (2)(i )对于采用延长光照时间的方法:

每亩平均产量为5.050.1 5.150.2 5.250.4 5.350.3 5.24?+?+?+?=千斤. ∴该农场一年的利润为()5.242160.22100426??--?=千元. (ii )对于采用降低夜间温度的方法: 每亩平均产量为

5.185 5.204 5.224 5.242 5.263 5.282

5.2220

?+?+?+?+?+?=千斤,

∴该农场一年的利润为()5.222160.2100424??--?=千元.

因此,该农场若采用延长光照时间的方法,预计每年的利润为426千元;若采用降低夜间温度的方法,预计每年的利润为424千元.

(3)由图可知,增产明显的大棚间数为5间,由题意可知,

X 的可能取值有0,1,2,3,

()31532091

0228C C P X ===;

()2115532035

176C C C P X ===;

()121553205

238C C C P X ===;

()353201

3114

C P X C ===.

所以X 的分布列为

所以()3551312376381144

E X

=?

+?+?

=. 20.解:(1)由题意设椭圆的上下顶点为12(0,),(0,)B b B b -,左焦点为1(,0)F c -,则121B B F △是等边三

角形,所以2b a =,则椭圆方程为222214x y b b +=,将

2N

?

代入椭圆方程,可得2221

142b b

+=,解得1b =, 所以椭圆方程为2

214

x y +=

(2)①由直线()0y kx m k =+≠与圆22

3

:4E x y +=

=22433m k =+,设1122(,),(,)A x y B x y ,

将直线()0y kx m k =+≠代入椭圆方程得,222

(14)8440k x kmx m +++-=,

222222644(14)(44)4(1644)k m k m k

m ?=-+

-=-+,

因为22433m k =+,所以2

4(131)0k ?=+>,

且2121222

844

,14

14km m x x x x k k

-+=-=++,

所以12

AB x =-=

=设点O 到直线的距离为d =

所以OAB 的面积为

221122

11

(33)(131)1224(41)

k k S AB d m x x k +++==-=≤=+, 当2233131k k +=+,得2

1

5

k =

时等号成立,所以1S 的最大值为1 ②设33(,)Q x y ,由直线()0y kx m k =+≠与圆22

3

:4

E x y +=

相切于点P ,可得OQ AB ⊥,则2211

4

y x k x y ????=-+=???,可得222

3322

44,44k x y k k ==++,

所以7

OQ ====,

因为OP =

,所以7PQ OQ OP =-=,

所以121

212111

2

OP AB OP S S PQ PQ AB === 21. (1)若0a =,则1

()e

x f x x -=-+,求导得1()e 1x f x -'=-+,

令()0f x '>,得01x <<;令()0f x '<,得1x >, 所以函数()f x 在()0,1上单调递增,在()1,+∞上单调递减, 所以1,()x f x =取得极大值也是最大值,

0max ()(1)e 10f x f ==-+=.

(2)1

1()ln 1e 1x f x a x x -??'=+-

-+ ???

,其中()01f '=, 令11()ln 1e 1x h x a x x -??=+-

-+ ???,则1

211()e x h x a x x -??'=+- ???

当0a ≤时,()0h x '<,则函数()f x '在()0,∞+上单调递减,又()01f '=, 所以()0,1x ∈时,()0f x '>,()f x 单调递增;

()1,x ∈+∞时,()0f x '<,()f x 单调递减,

即()f x 在1x =处有极大值,与题干矛盾,故0a ≤不符合题意;

当0a >时,令1

211()()e x t x h x a x x -??'==+- ???

则1

2312()e x t x a x x -??'=-

-- ??

?,显然()0t x '<, 则()h x '在()0,∞+上单调递减,而()0

(1)11e 21h a a '-=+-=. ①若1

02

a <≤

,21(1)0h a '=-≤, 故当()1,x ∈+∞时,()(1)0h x h ''<≤,此时()f x '单调递减, 所以()(1)0f x f ''<=,故()f x 在()1,+∞单调递减, 显然()f x 在1x =处不可能有极小值,故1

02

a <≤不满足题意; ②若1

2

a >

时,21(1)0h a '=->, 故当()0,1x ∈时,()(1)0h x h ''>>,此时()f x '单调递增, 所以()0,1x ∈时,()(1)0f x f ''<=,即()f x 在()0,1单调递减, 由(1)知,1e 0x x --+≤,即1e x x -≥,则e 1a a ≥+,

所以()2

11(1)e 11a h a a a a ??'+=+-??++????

()()211111a a a a ??

+-??++????≤+()()3222101a a a a +=-++<+, 因为(1)0h '>,(1)0h a '+<,所以存在()01,1x a ∈+使得0()0h x '=, 则()01,x x ∈时,()0h x '>,即()f x '

单调递增,

所以()01,x x ∈时,()(1)0f x f ''>=,即()f x 在()01,x 单调递增, 所以()f x 在()0,1单调递减,在()01,x 单调递增, 故()f x 在1x =处取得极小值.

综上所述,若()f x 在1x =处有极小值,则1

2

a >. 22.()I 由cos ,sin ,x y ρθρθ== 可得直线l 的直角坐标方程为10.x y --= 由曲线C 的参数方程,消去参数,m

可得曲线C 的普通方程为24y x =.

()II 易知点()2,1P 在直线l 上,直线l

的参数方程为22

12

x y ?

=+

???

?=+??

(t 为参数). 将直线l 的参数方程代入曲线C

的普通方程,并整理得2140t --=. 设12,t t

是方程2140t --=

的两根,则有121214t t t t +==-.

2122212

1111111

t t t PM PN t t t t t t t +∴+=+===-

47

=

=

23.(1)当2a =时,

原不等式可化为|31||2|3x x -+-≥. ①当1

3

x ≤

时, 则33012x x x -++-?≤≥,所以0x ≤; ②当

1

23

x <<时, 则32113x x x -+≥?≥-,所以12x ≤<; ⑧当2x ≥时,

则332

13

2x x x +≥?≥--,所以2x ≥. 综上所述:

当2a =时,不等式的解集为{|0x x ≤或1}x ≥. (2)由1

||()3

x f x x -

+≤, 则|31|||3x x a x -+-≤, 由题可知:

|31|||3x x a x -+-≤在11,32??

????

恒成立,

所以31||3x x a x -+-≤,即||1x a -≤,

即11a x a -≤≤+,

所以11143

12312a a a ?-≤???-≤≤??+≥

??

故所求实数a 的取值范围是14,23??

-???

?.

相关主题
相关文档
最新文档