迈克耳孙-莫雷实验

迈克耳孙-莫雷实验
迈克耳孙-莫雷实验

迈克耳孙-莫雷实验

背景

“以太”(ether)是古希腊人设想的一种表示天空构成的元素,它在天空中弥散着,并且对天体的运动不产生阻碍作用。后来,在物理学思想的发展中,“以太”作为一种特殊物质被引进物理学。17世纪,法国科学家笛卡儿为了解释物体之间的作用力,特别是万有引力现象,最先赋予了以太以某种力学性质。在他看来,空间被以太这种连续的媒质所充满,物体之间的所有作用力都是通过它的应变和运动来传递的,不存在任何超距作用。当胡克和惠更斯提出光的波动说时,以太又充当了光波的载体。因为按照当时的力学理论,任何波动都是某种媒介物质的力学振动的传播。由于光可以在真空中传播,因此以太必然是充满全部空间的,包括真空和对于光是透明的各种物体之中。这样,充满整个宇宙的绝对静止的以太,就成了牛顿绝对时空观的物质框架。因而通过“以太漂移”的实验探索以太的存在状态,就成了非常重要的问题。

1728年英国天文学家布莱德雷(J.Bradley,1693-1762)所发现的“光行差”现象,可以看作是关于“以太漂移”的早期观测。但是,如果以太完全不被地球拖曳,运动着的地球就应当感到有“以太风”,这种以太风将会对从不同方向射到地球的星光产生不同的影响,这些速率不同的光线就会在通过望远镜的玻璃透镜时呈现出不同的折射率。从这种考虑出发,1810年法国科学家阿拉果(D.F.J.Arago,1786-1853)用望远镜观察来自不同方向的恒星光线,企图发现由“以太风”的作用而产生的这种效应,却意外地得出了否定的结果。1818年,菲涅耳在得知阿拉果的结果后,写信给阿拉果提出了部分拖曳假说。他指出,只要假设以太有确定的一部分被运动物质曳引,就可以同时使布莱德雷和阿拉果的实验得到解释。1871年,英国天文学家艾里(G.B.Airy,1801-1892)用充水的望远镜测量了光行差,证实了菲涅耳的预言。1851年,法国物理学家菲索(A.H.L.Fizeau,1819-1896)设计了一个实验,实验结果都证实了菲涅耳的以太部分拖曳假说。

与菲涅耳相反,英国物理学家斯托克斯(G.G.Stokes,1819-1903)却不

相信物体可以在以太中自由穿行而不生扰动。他于1845年提出了以太被运动物体全部拖曳的假说,但为了避免使来自恒星的光穿过一层层运动速度不同的以太时会受到偏折并使其速度发生改变,斯托克斯不得不对以太的性质和运动附加一些特别的假设,才能解释有关的光学现象。而这些假设又是与力学定律相矛盾的,这使他的全部拖曳假说遭遇了无法克服的困难。

关于光学多普勒效应的实验,表明在v / c 的一阶效应范围内,光学多普勒效应也仅取决于观察者和光源之间的相对运动,发现不了以太风的存在。

总之,到19世纪后期,关于以太风是否存在的问题,必须在测定出与(v /c )2成比例的二阶效应的情况下才能作出判定。但当时可利用的最大速率就是地球的周年绕日轨道速率,即30km /s ;它只为光速的10-4,所以(v /c )2 的二阶效应的数量级就是10-8。连麦克斯韦在《大不列颠百科全书》的有关条目里也表示,“考虑到等于地球轨道速度的相对于以太的速度所引起的传播时间的增量,将只有全部传播时间的一亿分之一,因而是全然觉察不到的。”

迈克耳孙-莫雷实验

1879年3月,麦克斯韦由于得到美国航海年历局的托德(C .P .Todd )寄给他的一份有关木星的天文表,写信向托德致谢。信中同时询问了通过在地球运动轨道的不同部位所进行的木卫食的观测数据,是否有足够的精确度来确定太阳系相对于以太的绝对运动速度v 。他具体设想,利用半个地球年的两个位置,分别测出两个木卫食的时间,然后把太阳系的速度考虑进去,得到两个时间差值计算式,再根据地球运动轨道的直径值就可以算出太阳系的绝对速度。托德在回信中说,由于天文数据的精确度较差,进行计算是无意义的。不过麦克斯韦在信中还指出,是否可在地面上进行某种实验,测出地球相对于以太的速度。这种实验所观测的相对时间变动可由下式计算:

)1(2222

22c

v c L v c Lc v c L v c L t +≈-=-++=, 这是一个v /c 的二阶效应。他在信中写道:“地面上一切测量光速的方法,都是使光沿同一路径返回,所以测不出地球相对于以太的速度;只有地球运动速度和光速之比的平方,才会对往返的时间产生影响,但这个量是极小的,无法观测

出来。”

麦克斯韦关于地面上双程光路实验不可能检测到(v/c)2这样微小的效应的这段话,引起了托德的年青同事迈克耳孙(A.A.Michelson,1852—1931)的强烈兴趣,决心实现麦克斯韦提出的通过二阶效应来测定以太漂移速度的想法。

迈克耳孙1852年12月19日出生于德国,四岁时就随父母移居美国。1873年以优异成绩毕业于美国海军军官学校,被聘为该校理化教官,并开始从事光速测定的研究工作。1878年他改进了傅科测光速的方法获得了良好的结果,因而被调入美国航海年历局从事光速测量工作。1880年到1882年,他赴柏林、海德堡、巴黎等地进修深造。在亥姆霍兹实验室工作期间,发明了后来以他的姓氏命名的干涉仪,并于1881年春天,进行了以太漂移的第一次观测。

实验的原理是这样的:如果地球穿行于静止以太中,按照经典速度合成法则,在地球上沿不同方向发射的光相对于地球将有不同的速度。将这些光叠加起来,就会产生干涉条纹;改变光的方向,干涉条纹也将移动。按照当时迈克耳孙的计算,在将干涉仪整个转过90 ,使它的两臂先后交替地平行和垂直于地球运动的方向时,预期干涉条纹将可移动0.08个条纹,这是这台仪器完全可以测出来的。但结果却出乎意料,只看到比预期值小得多的不规则移动。迈克耳孙由此作出结论说:“对这些结果的解释是:干涉条纹并未发生移动;所以,静止以太的假设是不正确的。”

这是第一次对二阶效应给出的明确结果,但由于实验数据比较粗糙,没有引起多少注意。在回到美国俄亥俄州担任克利夫兰应用科学院物理学教授之后,迈克耳孙又同他的朋友莫雷(E.W.Morley,1838-1923)合作,于1886年重复了菲索1851年的实验,更为精确地验证了菲涅耳的曳引系数。同年,物理学家洛伦兹发表文章,提出了一种把菲涅耳和斯托克斯两种以太理论揉合起来的新模型。他设想,在高空,以太的速度有类似斯托克斯所言的逐层分布,而在地球表面处,以太只部分地被拖曳。这就既与迈克耳孙和莫雷新近得到的曳引系数相一致,又可减小“静止以太”模型所预期的以太漂移,以接近迈克耳孙1881年干涉实验的误差量级。他还指出,迈克耳孙1881年的论文里对垂直于地球速度一臂的光程计算中,忽略了地球移动的影响。若考虑这种影响,干涉条纹只移动

0.04个条纹;如果以太只是部分地被拖曳,这个值还要减小一大半,那就可能淹没在误差范围内观测不出了。

英国物理学家瑞利(W.S.Rayleigh, 1842—1919)勋爵在看到洛伦兹的文章后,写信给迈克耳孙鼓励他重做这个实验。迈克耳孙回信说:“你的来信再次燃起了我的热情,并促使我立即开始这项工作。”迈克耳孙和莫雷对原来的实验做了重要的改进:考虑了地球的运动对垂直臂光线路径的影响;经过来回八次反射,使一臂的光路长度从原来的1.2米增加到11米;将整个装置浮架在水银池中,既避免了机械扰动,又易于旋转。于是,实验的精确度大为提高,预计可望达到0.4个条纹的移动。

1887年7月,他们完成了测量工作,结果发现:“实际观测到的(干涉条纹的)位移肯定小于预期值的二十分之一,或许还小于四十分之一。由于这个位移与速度的平方成正比,地球相对于以太的速度也许小于地球轨道运动速度的六分之一,肯定小于四分之一”。这就是历史上著名的以太漂移实验的“零结果”。从那以后许多人都不断提高精确度运用这种类型的实验,去探测地球相对于以太的速度,都得到否定的结果。运用现代的激光技术,测量到“以太漂移”的速度上限约为1km/s,最新的不同实验测得的这一上限达到1m/s的数量级。这一结果使菲涅耳和洛伦兹的理论都受到巨大的冲击。迈克耳孙对这个结果感到十分失望,原来打算在不同季节继续实验的想法也取消了。后来他就用这套仪器转向长度的精密测量工作,特别是进行了用原子光谱线的波长定义长度单位米的工作。

意义和影响

应该指出,在相对论理论变得广为人知之前,不仅迈克耳孙本人,而且科学界也不很重视迈克耳孙和莫雷所做的以太漂移实验。事实上,1907年迈克耳孙是由于发明了“光学精密仪器以及他用这些精密仪器进行的精确计量和光谱学的研究工作”而获得诺贝尔奖的。在瑞典皇家科学院的授奖致词和迈克耳孙的获奖演讲中,都没提到这个实验。

必须注意的是,在爱因斯坦创立狭义相对论之前,人们对布莱德雷到迈克耳孙的一系列实验所作的讨论与论证,都是以经典力学的速度合成法则为基础的。若采用狭义相对论中光速在不同惯性系中保持不变的原理,迈克耳孙-莫雷实验

的零结果就自然地得到解释;运用狭义相对论的速度合成公式去计算运动介质中的光速,在低速运动的近似下,也能得出含有相同曳引系数的菲涅耳公式,而无需构造任何具体的以太模型。菲索关于流水中光速的实验结果也可由相对论原理作出解释。这个例子生动地表明,同一个实验结果,却可以先后为互相对立的两个理论提供同样有力的支持。

迈克耳孙干涉仪的调节和使用实验报告

实验十四迈克耳孙干涉仪的调节与使用 迈克耳孙干涉仪在近代物理学的发展中起过重要作用。19世纪末,迈克耳孙(A、A、Michelson)与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。迈克耳孙发现镉红线(波长 λ=643、84696nm)就是一种理想的单色光源。可用它的波长作为米尺标准化的基准。她定义1m=1553164、13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。 今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然就是许多现代干涉仪的基础。 【实验目的与要求】 1、学习迈克耳孙干涉仪的原理与调节方法。 2、观察等倾干涉与等厚干涉图样。 3、用迈克耳孙干涉仪测定He-Ne激光束的波长与钠光双线波长差。 【实验仪器】 迈克耳孙干涉仪,He-Ne激光束,钠光灯,扩束镜,毛玻璃 迈克耳孙干涉仪就是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。 S-激光束;L-扩束镜;G1-分光板;G2-补偿板;M1、M2- 反射镜;E-观察屏。 图7-1迈克耳孙干涉仪光路图 从氦氖激光器发出的单色光s,经扩束镜L将光束扩束成一个理想的发散光束,该光束射到与光束成45?倾斜的分光板G1上,G1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)与(2)。这两束光沿着不同的方向射到两个平面镜M1与M2上,经两平面镜反射至G1后汇合在一起。仔细调节M1与M2,就可以在E处观察到干涉条纹。

大学物理实验(二)讲义

大学物理实验(I I)实验讲义 华中科技大学物理学院实验教学中心

目录 实验1:偏振光实验 (1) 实验2:迈克尔逊和法布里-珀罗干涉仪 (5) 实验3:振动力学综合实验 (13) 实验4:RLC电路和滤波器 (22)

实验1:偏振光实验 【实验目的】 1.观察光的偏振现象,加深对其规律认识。 2.了解产生和检验偏振光的光学元件及光电探测器的工作原理。 3.掌握一些光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方 法以及相互的转化。 【课前预习】 1.光的波动方程以及麦克斯韦方程组。 2.电磁波的偏振性及波片的性质。 【实验原理】 1、自然光与偏振光 麦克斯韦指出光波是一种电磁波,电磁波是横波。由于光与物质相互作用过程中反应比较明显的是电矢量E,故此,常用E表征光波振动矢量,简称光矢量。一般光源发射的光波,其光矢量在垂直于传播方向上的各向分布几率相等,这种光就称为自然光。光矢量在垂直于传播方向上有规则变化则体现了光波的偏振特性。如果光矢量方向不变,大小随相位变化,这时在垂直于光波传播方向的平面上光矢量端点轨迹是一直线,则称此光为线偏振光(平面偏振光),光矢量与传播方向构成的平面叫振动面如图1(a)。图1(b)是线偏振光的图示法,其中短线表示光矢量平行于纸面,圆点表示光矢量与纸面垂直。如果其光矢量是随时间作有规律的改变,光矢量的末端在垂直于传播方向的平面上的轨迹是圆或者椭圆,这样的光相应的被称为圆偏振光或者椭圆偏振光,如图1(c)。介于偏振光和自然光之间的还有一种叫部分偏振光,其光矢量在某一确定方向上最强,亦即有更多的光矢量趋于该方向,如图1(d)。任一偏振光都可以用两个振动方向互相垂直,相位有关联的线偏振光来表示。 2、双折射现象 当一束光入射到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射。冰洲石(方解石)就是典型的双折射晶体,如通过它观察物体可以看到两个像。当一束激光正入射于冰洲石时,若表面已抛光则将有两束光出射,其中一束光不偏折,即o光,它遵守通常的折射定律,称为寻常光。另一束发生了偏折,即e光,它不遵守通常的折射定律,称为非常光。用偏振片检查可以发现,这两束光都是线偏振光,但其振动方向不同,其两束光的光矢量近于垂直。晶体中可以找到一个特殊方向,在这个方向上无双折射现象,这个方向称为晶体的光轴,也就是说在光轴方向o光和e光的传播速度、折射率是相等的。此处特别强调光轴是一个方向,不是一条直线。只有一个光轴的晶体称为单轴晶体,如冰洲石,石英,红宝石,冰等,其中又分为负晶体(o光折射率大于e光折射率,即n o>n e)和正晶体(n o

迈克耳孙干涉仪实验报告

南昌大学物理实验报告 课程名称: 大学物理实验 实验名称: 迈克尔逊干涉仪 学院: 专业班级: 学生姓名: 学号: 实验地点:基础实验大楼B308 位号: 实验时间:第周星期二下午13:00开始

一、实验目的: 1.掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样. 2.区别等倾干涉、等厚干涉和非定域干涉,测定He-Ne激光波长 二、实验原理: 1.仪器的构造 图40-1为干涉仪的实物图,图40-2为其光路示意图.其中M1和M2为两平面反射镜,M1可在精密导轨上前后移动,而M2是固定的. P1是一块平行平面镜,板的第二表面(靠近P2的面)涂以半反射膜,它和全反射镜M1成45°角. P2是一块补偿板,其厚度及折射率和P1完全相同,且与P1平行,它的作用是补偿两路光的光程差,使两束光分别经过厚度和折射率相同的玻璃三次.从而白光实验时,可抵消光路.

中分光镜色散的影响. 放松刻度轮止动螺丝⑧,转动刻度轮⑦,可使反射镜M1沿精密导轨前后移动,当锁紧止动螺钉⑧,转动微量读数鼓轮⑨时,通过蜗轮蜗杆系统可转动刻度轮,从而带动M1微微移动,微量读数鼓轮最小格对应值为10?4㎜,可估读到10?5㎜,刻度轮最小分度值为10?2㎜. M1的位置读数由导轨上标尺、刻度轮和微量读数鼓轮三部分组成.反射镜M2背后有三个螺钉,用以粗调M2的倾斜度,他的下方还有两个相互垂直的微调螺丝,以便精确调节M2的方位. 2.干涉条纹的图样 由于光源性质的不同,用迈克耳孙干涉仪可观测定域干涉和非定域干涉. (1)当使用扩展的面光源时只能获得定域干涉.定域干涉因形成的干涉条纹有一定的位置而得名.定域干涉又分为等倾干涉和等厚干涉,这取决于M1和M2是否垂直,或者说M1和M2′是否平行. M2′是反射镜M2被分光板P1反射所成的虚像. (a)等倾干涉 当M1和M2′互相平行时,得到的是相当于平行平面的等倾干涉条纹,七干涉图样定位于无限远,如果在E处放一会聚透镜,并在其焦平面上放一屏,则在屏上可观察到一圆圈的同心圆.对于入射角i相同的各束光,如右图所示,其光程差均为 δ=2d cos i (40?1) 对于k级亮条纹,显然是由满足下式的入射光而成的 δ=2d cos i=kλ (40?2) 在同心圆的圆心处i=0,干涉条纹的级数最高,此时有 δ=2d=kλ (40?3) 当移动M1使间距d增加时,圆心的干涉次级增加,我们就可以看到中心条纹一个一个向外“冒出”,而当d减小时, ?.如果测出M1移动的距离?d,中心条纹将一个一个地“缩”进去.每“冒出”或“缩进”一个条纹,d就增加或减少了λ2 算出相应的“冒出”或“缩进”的条纹个数?k,就可以算出光源的波长: ? λ=2?d?k (b)等厚干涉 当M1和M2′不平行而有一个很小的角度时,行程一个楔形的空气层,这时就将出现等厚干涉条纹,如图40-3所示.当d很小时,即M1和M2′相交时,由面光源上发出的光束,经楔形空气薄层两面反射所产生的等厚干涉条纹定位于楔形

迈克尔逊干涉仪实验作业

迈克尔逊干涉仪的等倾干涉的特点 麦克尔逊干涉仪观察的等倾干涉条纹是同心圆环状。 而且移动眼睛时不会有条纹移出和移入视场。这样才能确保是等倾,即两板平行。 迈克尔逊干涉仪发明历史是什么? 迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。迈克尔逊和爱德华·威廉姆斯·莫雷使用这种干涉仪于1887年进行了著名的迈克耳孙-莫雷实验,并证实了以太的不存在。迈克尔逊干涉仪的最著名应用即是它在迈克尔逊-莫雷实验中对以太风观测中所得到的零结果,这朵十九世纪末经典物理学天空中的乌云为狭义相对论的基本假设提供了实验依据。 迈克尔逊干涉仪还可测哪些物理量? 一、传统迈克尔逊干涉仪的测量应用 1. 微小位移量和微振动的测量; 采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性2. 角度测量: 仪器的两个反射镜由三棱镜代替,反射镜组安装在标准被测转动器件的转动台上。被测转角依照正弦原理转化成反射镜组两个立体棱镜的相应线位移,而后进行干涉测量,小角度干涉仪测角分辨率达到10-3角秒量级。 3.薄透明体的厚度及折射率的同时测量 在不放薄膜时调出白光干涉条纹,而后插入透明薄膜,在薄膜与光线垂直时调出白光干涉条纹后,记录此时动镜移动的距离,再将薄膜偏转α角(45°比较方便),再调出白光干涉条纹,再记录动镜移动的距离。通过动镜这两次移动的距离和薄膜的偏转角,就可以同时计算出待测薄膜的厚度和折射率。 4.气体浓度的测量: 在迈克尔逊干涉仪的参考光路中,放入一个透明气体室,利用白炽灯做光源,在光程差为零的附近观察到对称的几条彩色条纹,中间的黑色条纹是等光程(Δ=0)精确位置。利用通入气体前后等光程位置的改变量,计算出气体的折射率,再利用气体的折射率与气体浓度的关系,计算出气体浓度。 4.引力波探测(超大型迈克尔逊干涉仪) 引力波存在是广义相对论最重要的预言,对爱因斯坦引力波的探测是近一个世纪以来最重大的基础探索项目之一。 2.光纤迈克尔逊干涉仪的应用: (1).混凝土内部应变的测量 把组成光纤迈克尔逊干涉仪的一个臂预埋到混凝土中,当混凝土内部发生膨胀、收缩或变形时,光纤迈克尔逊的白光干涉条纹发生变化,这样可以混凝土内部的一维和二维很小的应变状态进行测量,可以及时了解材料内部应变信息以及内部应变状态分布。由于光纤传感器体积小,重量轻,柔软易于布置,可埋入性好,抗拉性好,耐腐蚀性强;不改变材料结构的受力状态;测量的成本低等特点。 (2). 地震波加速度的测量 以全光纤迈克尔逊干涉仪为基础,研制出由地震敏感元件组成的单分量双光路加速度地震检

迈克尔逊干涉仪及其应用

迈克尔逊干涉仪及其应用 迈克尔逊干涉仪的应用 迈克尔逊干涉仪是一种利用分振幅法实现干涉的精密光学仪器.自1881 年问世以来,迈克尔逊曾用它完成了三个著名的实验:否定“ 以太” 的迈克尔逊—莫雷实验;光谱精细结构和利用光波波长标定长度单位.迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性.根据迈克尔逊干涉仪的基本 原理发展的各种精密仪器已广泛应用于生产和科研领域. 【预习要求】 1. 阅读实验十六,理解光的干涉、等倾干涉与等厚干涉 . 2. 了解定域干涉与非定域干涉概念 . 3. 了解迈克尔逊干涉仪的结构和使用 . 【实验目的】 1. 研究迈克尔逊干涉仪上各种光的干涉现象 . 2. 了解迈克尔逊干涉仪的应用 . 【实验仪器】 迈克尔逊干涉仪,法布里-珀罗干涉仪,氦氖激光器,钠光灯,白炽灯, 扩束镜 【实验要求】 1. 定域干涉与非定域干涉的研究 (1)观察激光产生的定域干涉与非定域干涉; (2)粗略测定激光定域等倾干涉条纹和等厚干涉条纹的定域位置(精确到 mm ); (3)观察钠光产生的定域干涉与非定域干涉 . 2. 钠光双线波长差与相干长度的测定 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用迈克耳孙干涉仪测定钠光相干长度;

(3)用迈克耳孙干涉仪考察氦-氖激光的相干长度 . 3. 钠光双线波长差的测定与考察补偿板的作用 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用法布里-珀罗干涉仪测定钠光双线波长差; (3)观察无补偿板的迈克耳孙干涉仪中条纹的特点 . 【实验提示】 1. 如何获得点光源和面光源?如何测定干涉条纹的定域位置? 2. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪中它的干涉条纹有什么特点? 测波长差的公式;能用测出的波长差计算相干长度吗?测定光源相干长度的方法,实际可能达到的精度 . 3. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪和法布里-珀罗干涉仪中它的干涉条纹各有什么特点? 4. 迈克耳逊干涉仪中补偿板有哪些作用? 5.考虑实际可能达到的精度,确定是否要用微动手轮,应如何安排测量次数,如何处理数据 . 【设计报告要求】 1 . 写明实验的目的和意义 2 . 阐明实验原理和设计思路 3 . 说明实验方法和测量方法的选择 4 . 列出所用仪器和材料 5 . 确定实验步骤 6 . 设计数据记录表格 7 . 确定实验数据的处理方法 【思考题】

浅析实验与试验,检测与检验

浅析实验与试验,检测与检验! 咱们中华语言博大精深,别说老外经常会被搞晕,咱们中国人遇到检验、检测、实验、试验这样的词语,未必都理解清楚、准确 您语文好,您先来读读试试,感受下 1.今天下雨,我骑车差点摔倒,好在我一把把把把住了! 2.来到杨过曾经生活的地方,小龙女动情地说:“我也想过过过儿过过的生活” 。 3.多亏跑了两步,差点没上上上上海的车。 4.用毒毒毒蛇毒蛇会不会被毒毒死? 5.校长说:校服上除了校徽别别别的,让你们别别别的别别别的你非别别的! 6. 人要是行,干一行行一行,一行行行行行,行行行干哪行都行。要是不行,干一行不行一行,一行不行行行不行,行行不行干哪行都不行。 有人说,每天读一遍,可以预防老年痴呆!所以强烈建议收藏好,言归正传,我们来看看技术人员逃不开的这两对词语,您理解正确了吗?

实验 VS 试验的区别 1、实验和试验的英文翻译 实验:experiment 试验:test 2、实验和试验的定义 实验(experiment): 是一种通过实际操作来探究某自然或社会规律的一种研究方法,主要强调与理论研究的方法对立。 如:双缝干涉实验、迈克尔逊-莫雷实验。 实验不完全依赖特定标准文件来判断是否成功(纯科研甚至往往没有标准),而主要是依据实验目的,设计实验的条件和方法,然后操作,来观测实验品能否达到期望(成功)的或未知的效果。

试验(test): 采用测试的手段来获取或验证某一结果的行为。 如:核试验、独立随机试验。 试验test,是依据已有的标准(国际、国家、企业标准)去验证产品或零部件或材料是否达标(比如型式试验)。也就是已知试验品“应该”到达什么结果,而进行的验证操作。 这里的“试”跟非专业用语“试一试”不是一个含义。着重在是否达标。往往属于质量管理的范畴(质量管理涉及了产品研发,生产,售后,反馈等整个过程)。 3、实验和试验的进一步解释 如果能获取的一个规律性的结论,那么是实验。 例如: 库仑扭秤实验可以得到静电相互作用服从平方反比关系; 双缝干涉实验可以得到微观粒子具有波动性; 迈克尔逊-莫雷实验可以得到地球上两个垂直方向上的光速相; LY/T 1772-2008 杨树品种分子鉴定实验方法-DNA大增片断氏度多态性法(AFLP)

迈克耳孙干涉仪实验报告

迈克耳孙干涉仪实验报告 摘要:迈克耳孙干涉仪设计精巧、用途广泛,是许多现代干涉仪的原型。本实验利用迈克耳孙干涉仪对光的干涉基本现象进行了观察,对单色光波长进行了测定,并对光场的时间相干性进行了研究。 关键词:迈克耳孙干涉仪;光的干涉;单色波波长;光场的时间相干性 The Report of Michelson Interferometer Experiment Abstract: The Michelson interferometer is the model of many modern interferometers because of its elaborate design and widespread use. The experiment observed the basic phenomenon of interference of light, measured the wavelength of monochromatic light and studied the temporal coherence of light field. Key words: Michelson interferometer; interference of light; wavelength of monochromatic light; temporal coherence of light field 1881年迈克耳孙制成第一台干涉仪。后来,迈 克耳孙利用干涉仪做了三个文明于世的实验:迈克耳孙-莫雷以太零漂移、推断光谱精细结构、用光波波长标定标准米尺。迈克耳孙在精密仪器以及用这些仪器进行的光谱学和计量学方面的研究工作上做出了重大贡献,荣获1907年诺贝尔物理奖。迈克耳孙干涉仪设计精巧、用途广泛,是许多现代干涉仪的原型,它不仅可用于精密测量长度,还可应用于测量介质的折射率,测定光谱的精细结构等。本实验利用迈克耳孙干涉仪对光的干涉基本现象进行了观察,对单色光波长进行了测定,并对光场的时间相干性进行了研究。1.实验原理及仪器介绍 1.1 迈克耳孙干涉仪简介 迈克耳孙干涉仪是根据分振幅干涉原理制成的精密实验仪器,主要由4个高品质的光学镜片和一套精密的机械传动系统装在底座上组成,其结构如图1所示。

迈克尔逊-莫雷实验

迈克尔逊-莫雷实验 一、经典时空观 存在绝对静止的参照系是经典时空观的核心。人们在原始状态下,总从自我的感觉出发认识世界。并总以自我为中心,来处理一切事物。从这点上说,哥白尼的贡献是相当伟大的。他启示了人们要站在公正的角度看问题。 “以太”(ether)一词来自古希腊亚里士多德,他以为,人们用纯粹思维可以找出制约宇宙的定律,不必要用观测去检验它。他把地上物质与天上物质人为划开,认为天上是由与地上污浊的物质不同的纯洁的物质即“以太”组成。此外他相信存在一个优越的静止状态,任何没有受到外力和冲击的物体都采取这种状态。特别是他以为地球是静止的。经典力学打破了天上与人间的不同,并且否定静止存在唯一标准。人们可以讲,物体A静止而物体B以不变的速度相对于物体A运动,或物体B静止而物体A运动,这两种讲法是等价的。 牛顿对绝对位置或被称为绝对空间的不存在感到非常忧虑,因为这和他的绝对上帝的观念不一致。事实上,即使绝对空间的不存在被隐含在他的定律中,他也拒绝接受。他思考了这样一个实验,即水桶中水的旋转。 (1) 开始时,桶旋转得很快,但水几乎静止不动。在粘滞力经过足够的时间使它旋转起来之前,水面是平的,完全与水桶转动之前一样。 (2)水和桶一起旋转,水面变成凹状的抛物面。 (3)突然使捅停止旋转,水面仍然保持凹状的抛物面。 牛顿就此分析道,在第(1)(3)阶段里,水和桶都有相对运动,而前者是水平的,而后者水面凹下:在第(2)(3)阶段里,无论水和桶有无相对运动,水面都是凹下的。牛顿由此得出结论:桶和水的相对运动不是水面凹下的原因,这个现象的根本原因是水在空间里绝对运动(即相对于牛顿的绝对空间的运动)的加速度。 绝对空间在哪里牛顿曾经设想,在恒星所在的遥远地方,或许在它们之外更遥远的地方。他提出假设,宇宙的中心是不动的,这就是他所想象的绝对空间.从现今的观点来看,牛顿的绝对空间观是不对的。不过,牛顿当时了清楚地意识到,要给惯性原理以一个确切的意义,那就必须把空间作为独立于物体惯性行为之外的原因引进来。爱因斯坦说:“对此,牛顿自己和他同时的最有批判眼光的人都是感到不安;但是人们

迈克耳孙干涉仪的调整与使用

实验五迈克耳孙干涉仪的调整与使用 【预习思考题】 1.迈克尔孙干涉仪是利用什么方法产生两束相干光的? 答:迈克尔孙干涉仪是利用分振幅法产生两束相干光的。 2.迈克尔孙干涉仪的等倾和等厚干涉分别在什么条件下产生的?条纹形状如何?随M1、M2’的间距d如何变化? 答:(1)等倾干涉条纹的产生通常需要面光源,且M1、M2’应严格平行;等厚干涉条纹的形成则需要M1、M2’不再平行,而是有微小夹角,且二者之间所加的空气膜较薄。 (2)等倾干涉为圆条纹,等厚干涉为直条纹。 (3)d越大,条纹越细越密;d越小,条纹就越粗越疏。 3.什么样条件下,白光也会产生等厚干涉条纹?当白光等厚干涉条纹的中心被调到视场中央时,M1、M2’两镜子的位置成什么关系? 答:白光由于是复色光,相干长度较小,所以只有M1、M2’距离非常接近时,才会有彩色的干涉条纹,且出现在两镜交线附近。 当白光等厚干涉条纹的中心被调到视场中央时,说明M1、M2’已相交。 【分析讨论题】 1.用迈克尔孙干涉仪观察到的等倾干涉条纹与牛顿环的干涉条纹有何不同? 答:二者虽然都是圆条纹,但牛顿环属于等厚干涉的结果,并且等倾干涉条纹中心级次高,而牛顿环则是边缘的干涉级次高,所以当增大(或减小)空气层厚度时,等倾干涉条纹会向外涌出(或向中心缩进),而牛顿环则会向中心缩进(或向外涌出)。

2.想想如何在迈克尔孙干涉仪上利用白光的等厚干涉条纹测定透明物体的折射率?答:首先将仪器调整到M1、M2’相交,即视场中央能看到白光的零级干涉条纹,然后根据刚才镜子的移动方向选择将透明物体放在哪条光路中(主要是为了避免空程差),继续向原方向移动M1镜,直到再次看到白光的零级条纹出现在刚才所在的位置时,记下M1移动的距离所对应的圆环变化数N,根据,即可求出n。

迈克耳孙干涉仪实验报告

实验名称:迈克耳孙干涉仪 实验日期:2010.12.7 实验人:缪盈盈 实验目的: 1.了解迈克耳孙干涉仪的原理、结构及调节方法. 2.研究定域干涉、非定域干涉、等倾干涉、等厚干涉及光 源的时间相干性、空间相干性. 3.利用迈克耳孙干涉仪测量氦氖激光的波长. 实验原理: 迈克耳孙干涉仪主要由两个相互垂直的全反射镜M1、M2和一个45°放置的半反射镜M组成.不同的光源会形成不同的干涉情况. 1.当光源为单色点光源时,它发出的光被M分为光强大致相同的两束光(1)和(2),如图6-22所示.其中光束(1)相当于从虚像S’发出.再经M1反射,成像于S’1;光束(2)相当于从虚像S’发出,再经M’2反射成像于S’2(M’2是M2关于M所成的像).因此,单色点光源经过迈克耳孙干涉仪中两反射镜的反射光,可看作是从S’1和S’2发出的两束相干光.在观察屏上,S’1与S’2的连线所通过点P0的程差为2d,而在观察屏上其他点P的程差约为2dcosi (其中d是M1与M’2的距离,i是光线对M1或M’2的入射角).因而干涉条纹是以P0为圆心 的一组同心圆,中心级次高,周围级次低.若M1与M2的夹角偏离90°,则干涉条纹的圆心可偏出观察屏以外,在屏上看到弧状条纹;若偏离更大而d又很小,S’1与S’2的连线几乎与观察屏平行,则相当于杨氏双孔干涉,条纹近似为直线.无论干涉条纹形状如何,只要观察屏在S’1与S’2发出的两束光的交叠区,都可看到干涉条纹,所以这种干涉称为“非

2.如果改用单色面光源照明,情况就不同了,如图6-23所示.由于面光源上不同点所发的光是不相干的,若把面光源看成许多点光源的集合,则这些点光源所分别形成的干涉条纹位置不同,它们相互叠加而最终变成模糊一片,因而在一般情况下将看不到干涉条纹.只有以下两种情况是例外:①M1与M2严格垂直,即M1与M’2严格平行,而把观察屏放在透镜的焦平面上,如图6—23(a)所示.此时,从面光源上任一点S发出的光经M1和M2反射后形成的两束相干光是平行的,它们在观察屏上相遇的光程差均为2dcosi,因而可看到清晰而明亮的圆形干涉条纹.由于d是恒定的,干涉条纹是倾角i为常数的轨迹,故称为“等倾干涉条纹”.②M1与M2并不严格垂直,即M1与M’2有一个小夹角α.可 以证明,此时从面光源上任一点S发出的光经M1和M2反射后形成的两束相干光相交于M1或M2的附近.因此,若把观察屏放在M1或M2对于透镜所成的像平面附近,如图6—23(b)所示,就可以看到面光源干涉所形成的条纹.如果夹角α较大而i角变化不大,则条纹基本上是厚度d为常数的轨迹,因而称为“等厚干涉条纹”.显然,这两种情况部只在透 镜的焦平面或像平面上才能看到清 晰的条纹,因而是“定域干涉”. 3.如果用非单色的白光为光源,情 况更不相同.无论是点光源或面光 源,要看到干涉条纹,必须满足光 程差小于光源的相干长度的要求, 即2dcosi<ΔL.对于具有连续光谱的白光,ΔL极小,因而仅d≈0时,才能看到彩色的干涉条纹.这虽然为观察白光条纹带来了困难,却为正确判断d=0的位置提供了一种很好的实验手段.

实验6-5 迈克尔逊干涉仪的原理与使用

实验6—5 迈克尔逊干涉仪的原理与使用 一.实验目的 (1).了解迈克尔逊干涉仪的基本构造,学习其调节和使用方法。 (2).观察各种干涉条纹,加深对薄膜干涉原理的理解。 (3).学会用迈克尔逊干涉仪测量物理量。 二.实验原理 1.迈克尔逊干涉仪光路 如图所示,从光源S 发出的光线经半射镜 的反射和透射后分为两束光线,一束向上 一束向右,向上的光线又经M1 反射回来, 向右的光线经补偿板后被反射镜M2反射回来 在半反射镜处被再次反射向下,最后两束光线在 观察屏上相遇,产生干涉。 2.干涉条纹 (1).点光源照射——非定域干涉 如图所示,为非定域干涉的原理图。点S1是光源 相对于M1的虚像,点S2’是光源相对于M2所成 的虚像。则S1、S2`所发出的光线会在观察屏上形 成干涉。 当M1和M2相互垂直时,有S1各S2`到点A 的 光程差可近似为: i d L cos 2=? ① 当A 点的光程差满足下式时 λk i d L ==?c o s 2 ② A 点为第k 级亮条纹。 由公式②知当i 增大时cosi 减小,则k 也减小,即条纹级数变高,所以中心的干涉条纹的级次是最高的 (2)扩展光源照明——定域干涉在点光源之前加一毛玻璃,则形成扩展光源,此时形 成的干涉为定域干涉,定域干涉只有在特定的位置才能看到。 ①.M1与M2严格垂直时,这时由于d 是恒定的,条纹只与入射角i 在关,故是等倾干涉 ②.M1与M2并不严格垂直时,即有一微小夹角,这种干涉为等厚干涉。当M1与M2夹角很小,且入射角也很小时,光程差可近似为 )21(2)2sin 1(2cos 222 i d i d i d L -≈-=≈?③ 在M1与M2`的相交处,d =0,应出现直线条纹,称中央条纹。 3.定量测量 (1).长度及波长的测量 由公式②可知,在圆心处i=0 0, cosi=1,这时 λk d L ==?2 ④ 从数量上看如d 减小或增大N 个半波长时,光程差L ?就减小或增大N 个整波长,对

【实验报告】迈克耳孙干涉仪

实验十一迈克耳孙干涉仪的调整与使用 【实验目的】 1.了解迈克耳孙干涉仪的原理、结构和调整方法。2.观察等倾和等厚干涉条纹,了解其形成条件、条纹分布特点及条纹的变化。 3.测量He-Ne 激光的波长。 【实验原理】 1.迈克耳孙干涉仪的光路 如图5.4-1 所示,图中M1 和M2 是二个精密磨光的平面镜,置于相互垂直的两臂上。 在两臂轴相交处,是一个与两臂成45°角且两面严格平行的平面玻璃板G1,其背面镀 有一层半透半反膜,称为分束板。G2与G1平行放置,其厚度和折射率与G1完全相同,但表面没有镀 图5.4-1 迈克耳孙干涉仪的简单光路 层,G2称为补偿板。从图中看出,光源S发出的光在G1后表面被分为光强近乎相等的反射光束(1)和透射光束(2),两束光经反射后,共同向E 处传播并发生干涉。反射镜M2是固定的,M1可沿臂轴方向移动,M2被G1反射所成的镜像M2 '位于M1附近,光束(2)也可以看作是从M2的虚像M2 '反射来的,用M2 '代替M2讨论问题,两束光光程不受影响。这样,可直观地看出两束光在到达观察屏E 处时的光程差与M1和 M2 '间的“空气薄膜”的厚度d有关,即M1所处位置是影响光程差的因素之一,这种干涉相当于“薄膜”干涉。 光束(1)到达E处时,共通过了G1三次,而光束(2)只在未分出前与光束(1)同时通过G1 一次,另外两次则由穿过G2 两次来得到补偿。这样,两束光在玻璃中的光程相等,因此计算两束光的光程差时,只需考虑它们在空气中的几何路程的差别。此外,用白光照明时,若只有G1,贝因为玻璃的色散,不同波长的光因折射率不同而产生的光程差无法用空气中行程弥补,而G2板的加入就能补偿各色光的光程差以获得白光的 零级干涉条纹。白光的干涉条纹在迈克耳孙干涉仪中极为有用,能够用于准确地确定零光程差的位置,进行长度的精确测量。在迈克耳孙干涉仪中,两束相干光分得较开,这便于在任一支光路里放进被研究的对象,通过白光零级条纹位置的改变来研究所放入物质的某些物理特性,如气体或其它透明物质的折射率、透明薄板的厚度等。2.各种干涉条纹的图样 (1 )点光源的非定域干涉 图5.4-2 点光源的非定域干涉 当用凸透镜对激光光束会聚后,得到的是一个线度小、强度足够大的点光源,它向空间传播的是球面波。在经M1和M2 '反射后,又得到相当于由两个虚光源S1、S2'发出 的两列满足干涉条件的球面波,S1为S经G1及M1反射后成的像,S2'为S经M2及 G1反射后成的像(等效于S经G1及M2 '反射后成的像)。两列球面波在它们相遇的空间处处相干,即在两束光相遇的全部空间内均能用观察屏接收到干涉图样,因此是非定 域干涉。非定域干涉条纹的形状随S1、S2'与观察屏E的相对位置的不同而不同。当 M1和M2 '大体平行时,E会与S1、S2'的连线垂直,此时得到圆条纹,圆心在S1、S2'连线与屏的交点O处;当M1和M2 '不平行时,S1与S2不会在一条竖直线上,则E不再与S1、S2'的连线垂直。若E 与S1、S2'的垂直平分线垂直,将得到直条纹,其它情况下则为椭圆或双曲线条纹。通常我们在测量时大都选取圆条纹的情况,下面就讨论这种非定域圆条纹的一些特性。

迈克耳孙干涉仪测光波波长

迈克耳孙干涉仪 1881年迈克耳孙(Michelson,1852—1931)制成可以测定微小长度、折射率和光波波长的第一台干涉仪。后来,他又用干涉仪做了3个闻名于世的重要实验:迈克耳孙—莫雷(Morley,1838—1923)“以太”漂移实验,实验结果否定了“以太”的存在,解决了当时关于“以太”的争论,并确定光速为定值,为爱因斯坦(Einstein,1879—1955)发现相对论提供了实验依据;迈克耳孙与莫雷最早用干涉仪观察到氢原子光谱中巴耳末系的第一线为双线结构,并以此推断光谱线的精细结构;迈克耳孙首次用干涉仪测得镉红线波长(λ=643.84696nm),并用此波长测定了标准米的长度(1m=1553164.13镉红线波长)。此外,迈克耳孙于1920年用一台高分辨率的干涉仪测量猎户星座一等变光星的直径约为太阳直径的3倍,这是人类首次精确测量太阳之外的恒星的大小。 迈克耳孙干涉仪在近代物理和近代计量技术中起了重要作用。今天迈克耳孙干涉仪已被更完善的现代干涉仪取代,但它的基本结构仍然是许多现代干涉仪的基础。 【预习重点】 (1)迈克耳孙干涉仪的构造原理和调节使用方法。 (2)薄膜的等倾干涉和等厚干涉。 (3)如何利用迈克耳孙干涉仪测量光的波长。

参考书:《光学》,母国光、战元龄编,第八章;《光学》上册,赵凯华、钟锡华编,第三章。 【仪器】 迈克耳孙干涉仪、低压钠灯、白炽灯、带“T”标志的毛玻璃片。 图33—1迈克耳孙干涉仪 1—分束器G1;2—补偿板G2;3—可动反射镜M1;4—固定反射镜M2;5—反射镜调节螺丝;6—导轨;7—水平拉簧螺丝;8—垂直拉簧螺丝;9—微调手轮;10—粗调手轮;11—读数窗口;12—光屏 迈克耳孙干涉仪是根据分振幅干涉原理制成的精密实验仪器,主要由4个高品质的光学镜片和一套精密的机械传动系统装在底座上组成(图33—1)。其中作为分束器的G1是一面镀有半透膜的平行平面玻璃板,与相互垂直的M1和

迈克耳孙干涉仪的调节和使用实验报告

实验十四 迈克耳孙干涉仪的调节和使用 迈克耳孙干涉仪在近代物理学的发展中起过重要作用。19世纪末,迈克耳孙 (A.A.Michelson )与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。迈克耳孙发现镉红线(波长λ=643.84696nm )是一种理想的单色光源。可用它的波长作为米尺标准化的基准。他定义1m=1553164.13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。 今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然是许多现代干涉仪的基础。 【实验目的与要求】 1.学习迈克耳孙干涉仪的原理和调节方法。 2.观察等倾干涉和等厚干涉图样。 3.用迈克耳孙干涉仪测定He -Ne 激光束的波长和钠光双线波长差。 【实验仪器】 迈克耳孙干涉仪,He -Ne 激光束,钠光灯,扩束镜,毛玻璃 迈克耳孙干涉仪是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。 从氦氖激光器发出的单色光s ,经扩束镜L 将光束扩束成一个理想的发散光束,该光束射到与光束成45?倾斜的分光板G 1上,G 1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)和(2)。这两束光沿着不同的方向射到两个平面镜M 1和M 2上,经两平面镜反射至G 1后汇合在一起。仔细调节M 1和M 2,就可以在E 处观察到干 S-激光束;L-扩束镜;G 1-分光板;G 2-补偿板;M 1、M 2-反射镜;E-观察屏。 图7-1 迈克耳孙干涉仪光路图

物理学史上的著名“理想实验”

物理学史上的著名“理想实验”

物理学史上的著名理想实验 在物理学发展的历史中,理想实验以其独特方式在物理学发展的许多关键时刻发挥了重要作用,直接或间接地导致了许多物理规律的发现和物理理论的建立。下面我们一起欣赏物理学史上的著名理想实验,感怀物理学家的睿智。 1伽利略的“理想斜面”实验 力与物体的运动的关系是力学的一个最基本的问题。亚里士多德认为:物体的运动是由于外力的作用,当外力的作用停止时,运动的物体就会静止,所以力是维持物体运动的原因。亚里士多德这一观点与人们的一些生活经验相一致,正是由于这样的原因,亚里士多德的观点易于被人们接受,以至于长期以来被人们奉为真理。 彻底推翻亚里士多德错误观点的是伽利略。伽利略凭借的有力武器不是数学推导,不是真实的实验,而是理想实验。伽利略设想:如图1在A点悬一单摆,拉至AB时放开,在忽略空气阻力的情况下,摆球会沿着弧线升至对面的C 处。如果在摆线经过的E或F处钉上小钉子,可以使摆球沿不同的弧线上升至同一水平高度G、H,由此得到单摆的等高性结论。 以单摆的等高性为基础,伽利略进一步设想,如图2中从A点释放一个光滑坚硬的小球,让它沿坚硬光滑的斜面AB下落。到达B点后,小球将以获得的速度沿对面的BC、BD或BE中的某一斜面上升至通过A点的水平面,比较斜面BC、BD和BE,倾角越来越小,斜面越来越长,即小球在斜面上走过的距离越来越远,运动的时间越来越长。当斜面的倾角为零而成为水平面BF时,物体由于不可能达到A点的高度而永远地运动下去。至此,伽利略得出结论:“任何速度一旦施加给一个运动着的物体,只要除去加速或减速的外因,此速度就可以保持不变……”伽利略的结论从根本上否定了亚里士多德的“力是维持物体运动的原因”的错误论断,指出力与运动的正确关系是:力是改变物体运动状态的原因。 伽利略从单摆等高性的理想实验到理想斜面实验,忽略了空气阻力和摩擦力,而这些忽略在现实中都是无法真正实现的。在真实的实验中,人们可以用各种方法减小空气阻力和摩擦力,但永远也无法彻底消除它们,因而人们无法

迈克耳孙干涉仪测光波波长

迈克耳干涉仪 1881年迈克耳(Michelson,1852—1931)制成可以测定微小长度、折射率和光波波长的第一台干涉仪。后来,他又用干涉仪做了3个闻名于世的重要实验:迈克耳—莫雷(Morley,1838—1923)“以太”漂移实验,实验结果否定了“以太”的存在,解决了当时关于“以太”的争论,并确定光速为定值,为爱因斯坦(Einstein,1879—1955)发现相对论提供了实验依据;迈克耳与莫雷最早用干涉仪观察到氢原子光谱中巴耳末系的第一线为双线结构,并以此推断光谱线的精细结构;迈克耳首次用干涉仪测得镉红线波长(λ=643.84696nm),并用此波长测定了标准米的长度(1m=1553164.13镉红线波长)。此外,迈克耳于1920年用一台高分辨率的干涉仪测量猎户星座一等变光星的直径约为太阳直径的3倍,这是人类首次精确测量太阳之外的恒星的大小。 迈克耳干涉仪在近代物理和近代计量技术中起了重要作用。今天迈克耳干涉仪已被更完善的现代干涉仪取代,但它的基本结构仍然是许多现代干涉仪的基础。 【预习重点】 (1)迈克耳干涉仪的构造原理和调节使用方法。 (2)薄膜的等倾干涉和等厚干涉。 (3)如何利用迈克耳干涉仪测量光的波长。 参考书:《光学》,母国光、战元龄编,第八章;《光学》上册,凯华、钟锡华编,第三章。 【仪器】 迈克耳干涉仪、低压钠灯、白炽灯、带“T”标志的毛玻璃片。

图33—1迈克耳干涉仪 1—分束器G 1;2—补偿板G 2 ;3—可动反射镜M 1 ;4—固定反射镜M 2 ;5 —反射镜调节螺丝;6—导轨;7—水平拉簧螺丝;8—垂直拉簧螺丝;9—微调手轮;10—粗调手轮;11—读数窗口;12—光屏 迈克耳干涉仪是根据分振幅干涉原理制成的精密实验仪器,主要由4个高品质的光学镜片和一套精密的机械传动系统装在底座上组成(图33—1)。其中 作为分束器的G 1是一面镀有半透膜的平行平面玻璃板,与相互垂直的M 1 和M 2 两个反射镜各成45°角,它使到达镀镆处的光束一半反射一半透射,分为两个 支路Ⅰ和Ⅱ(图33—2所示),又分别被M 1和M 2 反射返回分束器会合,射向 观察位置E。补偿板G 2平行于G 1 ,是一块与G 1 的厚度和折射率都相同的平行 平面玻璃。它用来补偿光束Ⅱ在分束器玻璃中少走的光程,使两光路上任何波长 的光都有相同的程差,于是白光也能产生干涉。M 2是固定的,M 1 装在拖板上。 转动粗调手轮,通过精密丝杠可以带动拖板沿导轨前后移动,导轨的侧面有毫米直尺。传动系统罩读数窗口的圆分度盘每转动1格,M 1 镜移动0.01mm,右 侧的微调手轮每转动1个分格,M 1镜只移动10-4mm,估计到10-5mm。M 1 和 M 2的背后各有3个调节螺丝,可以调节镜面的法线方位。M 2 镜水平和垂直的拉 簧螺丝用于镜面方位的微调。

迈克尔逊莫雷实验解释与改进

迈克尔逊莫雷实验的解释与改进 迈克尔逊-莫雷实验(Michelson-Morley Experiment ),是1887年迈克尔逊和莫雷在美国克利夫兰进行的用迈克尔逊干涉仪测量两垂直光的光速差值的一项著名的物理实验。测量中没有发现干涉条纹,是零结果。 一、实验简述 迈克尔逊-莫雷实验的原理如下图(1)。光源S 0发出的光,经半透明的分光镜M 分为两束,一束射向反射镜M1、另一束射向反射镜M2,两束光再分别经M1和M2反射回M ,然后再射向O 点干涉屏。S—M1段与S—M2段长度相同为L 。 图(1)迈克尔逊干涉仪 由于以太风的作用,S—M1段的时间为:22221v c L v c L t -+-=;S—M2段的时间为: v c L v c L t -++=2,这样两段就产生了时间差021≠-=?t t t ,时间差产生相位差,相位差产生干涉,于是O 点干涉屏上应出现干涉条纹。 然而,实验的结果却超出了人们的预料,是零结果。这一零结果引发了对迈克尔逊-莫雷实验的多种多样的解释,其中最著名的是洛伦兹收缩以及后来的狭义相对论。 二、零结果解释 迈克尔逊-莫雷实验的零结果,到底该如何理解释?真的有收缩效应吗?之前的很多解释基本上还停留在用刚体粒子的观念来解释波上,而波的很多属性是不能用粒子的观点来解释的,用波的观点来解释,其零结果就是正常而自然的结果了。 我们知道:光速与光源的速度无关,光波一经发出就脱离了光源而独立自主的传播,当光源向前走了而光波则留在其原始发出点的位置向外扩散。那么关键问题来了,对于地球表面的光波而言当光源走了以后其相对静止的发出点是哪里?根据麦克斯韦电磁理论以及目前为止的观测实验,可以确定这个点即是地球上光源发出光波瞬间的那个相对地球静止的点。 现在回到实验本身,在实验中仪器相对于地球表面是静止的,那么光源相对于地球表面也是静止的,这时光波发出点也就是光源所在的点,当光源S 0传到M 分光镜S 点后,可以将S 点看用是一个二次光源,那么从S 点发出的光就是以S 点为中心的环形波,如下图(2)。

大学物理实验 迈克耳孙干涉仪的调整与使用-实验要求

北京师范大学物理实验教学中心普通物理实验室 实验要求 迈克耳逊干涉仪的调整与使用 实验仪器 迈克耳逊干涉仪,溴钨灯,钠光灯 实验内容 1.调节迈克耳逊干涉仪(调出等倾干涉条纹) 调好圆条纹以后,转动微动手轮,可以看到圆心处条纹陷入(或涌出)的现象。 2.测量钠光波长 记录每隔30个干涉条纹中心“涌出”或“陷入”的M1镜位置读数,连续读取10次数据(注意在测定的过程中手轮要朝一个方向旋转)。利用逐差法计算钠光的波长,并计算所测量波长的不确定度。 3.测量钠光波长差 移动M1镜,使视场中心的视见度最小,记录M1镜的位置;沿原方向继续移动M1镜,使视场中心的视见度由最小到最大直至又为最小,再记录M1镜位置,连续测出四个视见度最小时M1镜位置。 用逐差法求Δd 的平均值d Δ,并根据22d λλΔ=Δ计算钠双线的波长差,其中589.3nm λ=。 4.(选做)根据白光干涉条纹,测量塑料薄片的厚度 以钠光灯为光源调出等厚干涉条纹。向观察者移动M1镜,条纹数约4-5条,换上白光源(溴钨灯),继续移动M1镜,直至出现彩色条纹,并使零级条纹处于视场的中央,记录M1镜的位置d 1;然后在M1光臂中垂直放入透明塑料片,彩色条纹消失,沿原方向继续移动M1镜,使视场中心重新出现彩色条纹,再记录M1镜位置d 2。 算出Δd=d 2-d 1,根据1 d t n Δ=?计算塑料片的厚度。其中塑料片折射率n≈1.7。 注意事项 1.本实验使用的钠光灯、溴钨灯外壳有高温,避免烫伤。 2.仪器上的光学元件精度极高,不能用手触摸光学镜面。 3.传动机构相当精密,使用时要轻缓小心。 4.可以用纸片挡一下光路,观察哪些光斑是来自于M1镜的,哪些光斑来自于M2镜的反射光。 5.在测量过程中,旋钮只能沿一个方向转动,即单向操作,以避免螺距空程带来的误差。 预习思考题 迈克耳逊干涉仪在物理学史上的重要意义是什么? 课后问题 1. 等倾干涉条纹为什么随光程差的增加而变密? 2. 为什么等倾干涉条纹的分布里疏外密? 3. 考虑到蜗轮蜗杆的精度只有2微米,这会对不确定度的计算产生什么影响?请重新 计算钠黄光平均波长的不确定度。

相关文档
最新文档