铁的比色测定实验报告

铁的比色测定实验报告
铁的比色测定实验报告

铁的比色测定实验报告

试验时间:2014.05.09 报告人:武伟

一、目的要求

1.了解仪器分析。

2.学习比色法用比色法测定绘制标准曲线、测定试样浓度的方法。

3.了解分光光度仪的性能、结构及使用方法。

二、实验原理

◆仪器分析:英文:instrument analysis,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的

某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。仪器分析与化学分析(chemical analysis)是分析化学(analytical chemistry)的两个分析方法

◆比色法是根据朗伯—比尔定律发明的,朗伯比尔定律告诉我们,溶液的吸光度和溶液的厚度以及溶液的

浓度乘积成正比,如果控制溶液的厚度相同,吸光度就和溶液的浓度成正比,这样我们就可以通过测量溶液的吸光度来进一步推算溶液的浓度。

吸光度在测量时是采用和空白溶液的比值,首相测量一系列已知浓度的溶液的吸光度,绘制吸光度—浓度标准曲线,然后测量未知浓度的吸光度,再在标准曲线上找到对应的浓度值,完成测定。

◆分光光度仪的使用方法:

1)在比色皿中装入2/3体积的溶液,第一个要装空白的溶液。

2)打开分光光度仪,盖好上盖,调节好光波长,调节分光光度仪让空白组的吸光度为零,然后拉动分

光光度仪前端转换测量的手柄,依次测量不同组别的吸光度。

3)对应记录已知溶液和未知溶液的分光度,处理数据,计算未知溶液的浓度。

注意:

a)拿取比色皿时,只能用手指接触两侧的毛玻璃,避免接触光学面。同时注意轻拿轻放,防止外力对比

色皿的影响,产生应力后破损。

b)凡含有腐蚀玻璃的物质的溶液,不得长期盛放在比色皿中。

c)不能将比色皿放在火焰或电炉上进行加热或干燥箱烘烤;。

d)当发现比色皿里面被污染后,应用无水乙醇清洗,及时擦拭干净。

e)不得将比色皿的透光面与硬物或脏物接触。盛装溶液时,高度为比色皿的2/3处即可,光学面如有残

液可先用滤纸轻轻吸附,然后再用镜头纸或丝绸擦拭。

◆亚铁离子在pH=3~9的水溶液中与邻菲啰呤生成稳定的橙红色的[Fe(C12H8N2)3]2+,本实验就是用它来比

色测定亚铁离子的含量。如果用盐酸羟胺还原溶液中的高铁离子,则此法还可以用来测定总铁含量,从而求出高铁离子的含量。

◆药品说明:

邻菲啰呤

中文名称: 1,10-菲罗啉

中文别名:邻菲罗啉又叫邻二氮菲

英文名称:1,10-Phenanthroline monohydrate

英文别名:1,10-Phenanthroline hydrate

分子量:198.22

危险品标志: T N 说明

风险术语:R25; R50/53; (吞食有毒;对水生生物有极高毒性,可能在水生环境中造成长期不利影响;)安全术语:S45; S60; S61(若发生事故或感到不适立即就医;该物质及其容器需作为危险性废料处理;避免释放到环境中。)

主要用途:邻菲罗啉与亚铁离子在pH4~5的条件下生成桔红色络合物,然后用分光光度法测定铁含量。

物理化学性质:一水合物为白色结晶性粉末。熔点93~94℃,无水物熔点为117℃,溶于300份水,70份苯,溶于醇和丙酮。

能与多种过渡金属形成配合物,由于形成的配合物为螯合物,所以较为稳定。与铜形成的配合物及其衍生物因为对DNA有一定的切割活性,可以用作非氧化性核酸切割酶,进而有一定的抗癌活性。

盐酸羟胺

中文名称:盐酸羟胺

中文别名:盐酸胲; 羟基氯化胺; 氯化羟胺; 羟基氯化铵; 氢氯羟胺; 羟胺酸; 羟胺盐酸

英文名称:Hydroxylamine hydrochloride

Hydroxylammonium chloride

Oxammonium hydrochloride

分子结构:HO-NH2·HCl

分子式:HONH3Cl;

分子量:69.4

理化性质:

无色结晶,易潮解,密度:1.67。熔点:152℃(分解)。溶于水,乙醇、甘油,不溶于乙醚。无色单斜晶系结晶体。密度1.67 g/cm3(17℃)溶于热水、醇、丙三醇,不溶于醚。吸湿性强,受潮高于151℃则分解。

毒性:本品有毒,对皮肤有刺激性。半数致死量(小鼠经口)408 mg/kg。有腐蚀性。生产设备应密闭,防止跑、冒、滴、漏,操作人员应穿戴防护用具。溅及皮肤时,可用大量水冲洗。

三、实验试剂

邻菲啰呤水溶液(ω=0.0015)盐酸羟胺水溶液(ω=0.10,此溶液只能保持数日)NaAc溶液(1 mol/L)HCl溶液(6 mol/L)NH4Fe(SO4)2标准溶液(10 mg/L)

四、实验容

i.实验步骤

1)标准曲线的绘制

在五只50 mL的容量瓶中,用吸量管分别加入0.00,2.00,4.00,6.00,8.00,10.00 mL NH4Fe(SO4)2标准溶液。然后再加入5 mL 1mol/LNaAc溶液,2 mL邻菲啰呤水溶液,配制一系列浓度梯度溶液。

在510 nm的波长下,用2 cm比色皿,以试剂空白做参比测其吸光度,并以铁含量为横坐标相对应的吸光度为纵坐标,绘出A—Fe含量标准曲线。

2)总铁含量的测定

吸取25.00 mL被测试液代替标准液,其余步骤同上,测出其吸光度,和标准曲线进行对比。

3)亚铁含量的测定

不加盐酸羟胺,步骤同上。

附:公式及计算过程

根据吸光度和铁含量的关系公式,可以计算出:

c(Fe2+) = 2×0.112?1.0×10?4

0.2011

= 1.113 mg/L c(Fe) = 2×

0.270?1.0×10?4

0.2011

= 2.684 mg/L

五、思考题

1.从实验测出的吸光度求铁含量的根据是什么?

答:根据朗伯比尔定律,吸光度和溶液厚度以及溶液浓度的乘积成正比,我们控制溶液的厚度相同,测得的吸光度就和溶液的浓度成正比,通过和已知试液的吸光度的对比,就可以推算出位置试液的吸光度。

2.如果试液测得的吸光度不再标准曲线围之怎么办?

答:将试液按照确定比例稀释,使稀释后的溶液在标准曲线的围以,然后在根据比例推算原来溶液的浓度。在本次试验中,测定总铁含量和亚铁含量都是有稀释两倍的。

3.如试液中含有某种干扰离子,它在测定波长下也有一定的吸光度,该如何处理?

答:调换检测波长;将干扰离子除去在检测;或衍生化样品,改变其吸收波长。

六、心得体会

时光匆匆而过,一转眼一学期的实验就过去了,我跟朋友开玩笑说,这学期什么都没有留下,就留下了好多的实验报告,足见这些实验在我生活中的比重。在众多的实验中,无机与分析实验,又是最为印象深刻的一个,不仅仅是因为在这个实验上花的时间比较多(其他的实验一个是果蝇杂交实验,主要是到时间了换一下培养管,等待后代出现,还有就是有机寥寥数周的实验),我同时深深的感觉到,这是我最快乐的一个实验,我很喜欢课上的氛围,甚至慢慢喜欢上了呆在那间实验室,这也是我很期待的时光。

分析化学是一个很精细的项目,很多教科书上一笔带过的东西,到了实际的实验中都是不可缺少的环节,真的很帮助人提高细致的素养,不管你做什么,这都是需要的。回想起初的刚做实验时的不知所措,到后来慢慢从容,再到最后的享受实验过程,就像你爱上了一个人,一开始你不了解她的时候,跟人家在一起会紧,后来慢慢熟悉了,就什么都可以聊得开了,再到后来进入臻境,浑然天成,“有时候会突然忘了,我依然爱着你”。而这几乎又是所有发现,成长,获得的过程,我没那么厉害,可以透过一粒沙看到整个世界,但是至少现在透过一个实验看到了生活。

大半白纸不能浪费了不是?有的没的还得写下去。

那天被老师问到“我这个老师怎么样”,我的回答是“很贴心”,咱今天就好好唠唠这个话题。

咱先夸夸你们博士这伙人,就拿我接触过的人来说,我感觉虽然都是研究生,博士的水平要比硕士高出一个明显可见的水平,博士这群人吧,言谈举止之中都透露着一种知识上的厚度,而且博士们都带给了我一种豁达中不失智慧的感觉,感觉它们对付问题很轻松,但是我后来想想明白,或许不是他们看起来很轻松,或许是他们更努力,他们并不是用相同的时间把事情做的更好,或许是下了更大的功夫,人和人的智力能相差多少呢,或许不是博士们都很努力认真细致,而是因为他们认真细致努力,他们才成为了博士。

说完了博士们,再说说您这个博士。我觉得您一定是一个很热爱生活的人,如果不是,那您也一定是一个很会苦中作乐的人。我知道,您自己的项目也并不轻松,但是还是肯花那么多时间等那些很慢很慢的同学,肯花那么多时间给我们那么细致地改报告,那么细致的交代给我怎么用word做出一份很好看的东西来,这是很让人感动的,做的再不好也没有被抛弃的感觉,学生们自然自己也就不会放弃,不会应付。记得有一次有机实验,鲁福身老师出去了,有一个老师给我们上了一次实验,超凶的,这也不是,那也不是,很多人做着做着就开始应付完了了事,做是做完了,有用吗?没用!说好夸你的,又想说我自己了。我自己感觉我不仅仅是学会了怎么写实验报告,我觉得我学会了怎么写报告,那些要反映出来,报告要写成让一个陌生人一看就懂的东西,因为报告是要给别人看的,不仅仅是给自己看的等等。这不再是一个无聊的抄书的过程,而且我也最讨厌没有实质涵的东西,在做报告的时候,我要想怎么改进,怎么表达架构更合理,这就是一种收获。

说的也够多的了,肯定又要花老师好多时间去看我这份又臭又长的报告,但是我决定停笔还是有另外一个原因的,我怎么不可以不给老师留个写评语的地方呢?哈哈!

测液体折射率实验报告

实验题目:表面等离激元共振法测液体折射率实验 预习报告与原始数据见纸质报告。 实验步骤: 1.调整分光计,实验部件安装和线路连接已经完成; 2.传感器中心调整 粗调:将微调座放到载物台上,固定好调节架后,在调节架中心放上准星,调节载物台锁紧螺钉使激光光斑至粗调对准处,不断调节平行光管光轴水平调节螺钉与微调座的两颗微调螺钉,使当游标盘转动一圈时,激光光斑一直照在该处; 细调:调节平行光管光轴高低调节螺钉,使激光光斑射在细调对准处,不断调节平行光管与微调座使当转动游标盘一圈时,激光光斑一直射在该处; 中心调节:继续调节平行光管光轴高低调节螺钉,使激光光斑射在准星顶尖处,再次调节使转动游标盘一圈时,激光光斑一直射在顶尖处。 3.测量前准备调节 中心调节完毕后,移去准星,放入敏感元件,将游标盘和刻度盘调节到合适位置;调整敏感元件使光垂直入射至半圆柱棱镜中的镀金属膜上,拧紧游标盘止动螺钉;转动刻度盘使刻度盘0o对准游标盘0o;拧紧转座与刻度盘止动螺钉,松开游标盘止动螺钉,从此刻开始刻度盘始终保持不动,将游标盘转回至刻度盘所示65o位置处锁定,测量前准备调节完毕。

4.测量读数 保持刻度盘和游标盘不动,转动望远镜支臂,观察功率计读数,记录其中的最大读数;保持刻度盘不动,移动游标盘从66o到88o,入射角没增加1o,记录功率计最大读数。 5.数据表格与数据处理 (1)数据表格自拟; (2)画出相对光强与入射角的关系曲线图; (3)比较不同溶液的共振角有何差异。 实验样本: 本实验采用样本为:纯净水;无水乙醇;水:乙醇=1:1的乙醇溶液。 实验数据: 1.纯净水 角度(°)666768697071 角度(°)72737475767778相对光强243273376480554581641653角度(°)7980818283848586相对光强700705713733741741758765角度(°)8788

磁化率的测定实验报告

磁化率的测定 1.实验目的 1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。 1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。 2.实验原理 2.1摩尔磁化率和分子磁矩 物质在外磁场H作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。物质0被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关: χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。化学上常用摩尔磁化率χ表示磁化程度,它与χ的关系为m 。·mol -13 M、ρ分别为物质的摩尔质量与密度。χ的单位为m式中m物质在外磁场作用下的磁化现象有三种:。当它受到=0第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,μm,相应产生一种与外磁场方向相反的感应磁矩。如同线”外磁场作用时,内部会产生感应的“分子电流圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。这种物质称为反磁性物质,如表示,且χ<0。χCuHg,,Bi等。它的χ称为反磁磁化率,用m反反第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分。这些杂乱取向的分子磁矩μ≠0子磁矩m Cr,其方向总是趋向于与外磁场同方向,在受到外磁场作用时,这种物质称为顺磁性物质,如Mn, 表示。Pt等,表现出的顺磁磁化率用χ顺χχ但它在外磁场作用下也会产生反向的感应磁矩,因此它的是顺磁磁化率χ。与反磁磁化率m顺之和。因|χ|?|χ|,所以对于顺磁性物质,可以认为χ=χ,其值大于零,即χ>0。mm顺顺反反第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。这种物质称为铁磁性物质。 对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩μ关系可由居里-郎之万公式表示:m 为真空,J·Kμ×10)mol10),、k为玻尔兹曼常数(1.3806×式中L为阿伏加德罗常数(6.022 --1231-23 0--27可作为由实验测定磁化率来研究物质内部结构,T为热力学温度。式磁导率(4π× 10((2-136)N·A 的依据。分子磁矩由分子内未配对电子数n决定,其关系如下:

熔点的测定、折光率的测定

广东工业大学 学院专业班组、学号 姓名协作者教师评定 熔点的测定、折光率的测定 (一)熔点的测定 一、实验目的 1.了解熔点测定的意义。 2.掌握测定熔点的方法。 二、实验原理 固体物质在大气压下加热熔化时的温度,称为熔点(melting point,简记为m.p.)。严格来说,熔点就是固体物质在大气压下达到固液两态平衡时的温度。 纯净的固体有机物一般都有固定的熔点,固液两相之间的变化非常敏锐,从初熔到全熔的温度范围称熔矩或熔程,一般不超过0.5~1℃。当混有杂质后,熔点就会有显著的变化,熔点降低,熔矩变宽。因此通过测定熔点,可以鉴别未知的固态有机化合物和判断有机化合物的纯度。 如果两种固体有机物具有相同或相近熔点,可以采用混合熔点来鉴别它们是否为同一化合物。若是两种不同化合物,通常会使熔点下降(也有例外),如果是相同化合物则熔点不变。 三、实验仪器与药品 申光牌WRS-1A数字熔点仪,上海精密科学仪器有限公司物理光学仪器厂 桂皮酸:又称肉桂酸;β-苯丙烯酸;3-苯基-2-丙烯酸。不溶于冷水,溶于热水、乙醇、乙醚、丙酮和冰醋酸。 五、实验装置图

六、实验步骤 1、样品的装填将熔点管开口向下插入粉末中,装取少量药品。然后将熔点管竖立起来,在桌面上礅几下,使样品落入管底,重复几次。最后取一支长约30~40cm的玻璃管,垂直于一干净的表面皿上,将熔点管(开口端向上)从玻璃上端自由落下3~5次,使管内装入高约3mm紧密结实的样品。 2、开启电源开关,稳定20分钟。 3、通过拨盘设定起始温度(拨盘只能向下拨动),再按下起始温度按钮,输入此温度,预制灯亮,稍等,到达所需温度时,预制灯熄灭。 4、选择升温速率(一般3℃/min),把波段开关旋至所需温度。 5、插入装有样品的毛细管(直立、慢慢插入。切不可勉强插入,否则要换毛细管!),此时初熔灯熄灭。 6、调零。使电表完全指零。 7、按下升温钮,升温指标灯亮。 8、数分钟后,初熔灯先闪亮,然后出现终熔读数显示,欲知初熔读数按初熔钮即得。 注:测桂皮酸的起始温度设定为125℃,混合物的起始温度设定为90℃。 八、本实验应掌握的实验技能 九、思考题 1 可通过鉴别新化合物为已知的化合物。 2 熔点测定是对有机物的测定。 十、实验结果分析与讨论

大学物理化学实验报告-络合物的磁化率的测定

物理化学实验报告 院系化学化工学院 班级化学 061 学号 13 姓名沈建明

实验名称 络合物的磁化率的测定 日期 同组者姓名 史黄亮 室温 ℃ 气压 kPa 成绩 一、目的和要求 1、掌握古埃(Gouy )法磁天平测定物质磁化率的基本原理和实验方法; 2、通过对一些络合物的磁化率测定,推算其不成对电子数,判断这些分子的配键类型 二、基本原理 物质的磁性一般可分为三种: 顺磁性, 反磁性和铁磁性。 a .反磁性是指磁化方向和外磁场方向相反时所产生的磁效应。反磁物质的χD < 0(电子的拉摩进动产生一个与外磁场方向相反的诱导磁矩,导致物质具有反磁性)。 b. 顺磁性是指磁化方向和外磁场方向相同时所产生的磁效应,顺磁物质的 Xp > 0。(外磁场作用下,粒子如原子、分子、离子,中固有磁矩产生的磁效应)。 c. 铁磁性是指在低外磁场中就能达到饱和磁化,去掉外磁场时,磁性并不消失,呈现出滞后现象等一些特殊的磁效应。 d. 摩尔磁化率: 古埃法测定物质的摩尔磁化率( )的原理 通过测定物质在不均匀磁场中受到的力,求出物质的磁化率 。 把样品装于园形样品管中,悬于两磁极中间,一端位于磁极间磁场强度最大区域 H ,而另一端位于磁场强度很弱的区域 H 0,则样品在沿样品管方向所受的力F 可表示为: M χH F mH Z χ?=?P P D M χχχχ≈+=

其中:m 为样品质量,H 为磁场强度, 为沿样品管方向的磁场梯度。 本实验用摩尔氏盐(六水合硫酸亚铁铵)标定外磁场强度H 。测定亚铁氰化钾 和硫酸亚铁的摩尔磁化率,求金属离子的磁矩并考察电子配对状况。 三、仪器、试剂 MB-1A 磁天平(包括电磁铁,电光天平,励磁电源) 1套 软质玻璃样品管 1只 角匙 1只 漏斗 1只 莫尔氏盐(NH 4)2SO 4·FeSO 4·6H 2O (分析纯) FeSO 4·7H 2O (分析纯) K 4Fe(CN)6·3H 2O (分析纯) 四、实验步骤 1. 磁场强度(H )的测定 : 用已知摩尔磁化率的莫尔氏盐标定某一固定励磁电流时的磁场强度(H ).励磁电流变化0A →3A →→4A →→3A →0A ,分别测定励磁电流在各值下的天平的读数(4A 的值可以不读,持续2分钟左右,消磁),用同一仪器在同等条件下进行后续的测定。 具体操作如下: (1)把样品管悬于磁场的中心位置,测定空管在加励磁电流前,后磁场中的重 量。求出空管在加磁场前,后的重量变化管 ,重复测定三次读数,取平均值。 (2)把已经研细的莫尔氏盐通过小漏斗装入样品管,样品高度约为8m (此时样 品另一端位于磁场强度H=0处)。读出样品的高度,要注意样品研磨细小,装样均匀不能有断层。测定莫尔氏盐在加励磁电流前,后磁场中的重量。求出在加磁场前后的重量变化样品+管,重复测定三次读数,取平均值。 2.样品的莫尔磁化率测定: 把测定过莫尔氏盐的试管擦洗干净,把待测样品 ,分别装在样品管中,按着上述步骤(1) ,(2)分别测定在加磁场前,后的重量。求出重量的变化(管和样品+管),重复测定三次读数,取 H Z ??[]462()3K Fe CN H O ?4 2 7FeSO H O ?

大学物理实验设计性实验液体折射率测定

评分:大学物理实验设计性实验实验报告 实验题目:液体折射率测定 班级: 姓名:学号: 指导教师:

《液体的折射率测定》实验提要 实验课题及任务 《液体的折射率测定》实验课题任务方案一:光从一种介质进入另一种介质时会发生折射现象,当入射击角为某一极值(掠射)时,会产生一特殊的光学现象,能同时看到有折射光和无折射光的现象,就可以实现液体折射率的测量。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《液体的折射率测定》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解 仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶测量5组数据,。 ⑷应该用什么方法处理数据,说明原因。 ⑸实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 分光仪、钠光灯、毛玻璃与待测液体 实验提示 掠入射法测介质折射率的原理如图示3-1所示。将待测介质加工成三棱镜,用扩展光源(用钠光灯照光的大毛玻璃)照明该棱镜的折射面AB,用望远镜对棱镜的另一个折射面AC进行观测。在AB界面上图中光线a、b、c的入射角依次增大,而c光线 i。在棱镜中再也不可能有折射角为掠入线(入射角为 90),对应的折射角为临界角 c i的光线。在AC界面上,出射光a、b、c的出射角依次减小,以c光线的出射角大于 c 'i为最小。因此,用望远镜看到的视场是半明半暗的,中间有明显的明暗分界线。证

磁化率的测定

华南师范大学实验报告学生姓名学号 专业化学(师范)年级班级 课程名称结构化学实验实验项目磁化率的测定 实验类型□验证□设计√综合实验时间2013年10月29日 实验指导老师彭彬实验评分 【实验目的】 1.掌握古埃(Gouy)磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d电子的排布情况和配位体场的强弱。 【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B为: B=H+4πI= H+4πκH(1) 式中,I称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H称为物质的体积磁化率。I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=ΚM/ρ称为摩尔磁化率(M是物质的摩尔质量)。这些数据可以从实验中测得。在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。 不少文献中按宏观磁性质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质几类。其中,χm<o,这类物质称为反磁性物质。χm>o,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则

在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ 0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F=g )m -m (空样? (4) 式中,样m ?为样品管加样品在有磁场和无磁场时的质量差;空m ?为空样品管在有磁场和无磁场时的质量差;g 为重力加速度。 则有,2 2AH F = κ 而 ρκχM = m ,h m A 样品 =ρ,h 为样品高度,A 为样品管截面积,m 样品为样品质量。 ()2 2m m gh m -m 2m 2H M M AH F M 样品空 样样品??= ==ρκχ (5) 只要测量样品重量的变化。磁场强度H 以及样品高度h ,即可根据式(5)计算样品的摩尔磁化率。 其中,莫氏盐的磁化率符合公式: 4-10*1 T 1938 .1m ∧+=χ (6) (3)简单络合物的磁性与未成对电子

掠入射法测量棱镜的折射率实验报告

一、实验名称:掠入射法测量棱镜的折射率 二、实验目的: 掠入射法测定棱镜的折射率。 三、实验器材: 分关计、钠光灯(波长0=589.3nm λ)、棱镜、毛玻璃。 四、实验原理: 如图所示为掠入射法。用单色扩展光源照射到棱镜AB 面上,使扩展光源以约90角掠入射到棱镜上。当扩展光源从各个方向射向AB 面时,以90入射的光线的内折射角最 大,为2max i ,其余入射角小于90的,折射角必小于2max i ,出射角必大于1min i ',而大于90的入射光不能进入棱镜。这样,在AC 侧面观察时,将出现半明半暗的视场。明暗视场的交线就是入射角190i =的光线的出射方向。可以证明: n =掠入射法 五、实验步骤: 1、由于扩展光源辐射进棱镜的入射角度具有一定的范围,因此在AC 出射面观察出射光时,可看到入射角满足1min 190i i <<的入射光线产生的各种方向的出射光形成一个亮区,存在两条明暗交界线。合理摆放钠光灯光源与棱镜入射面的位置,在望远镜中找出这个亮区。 2、旋转载物台,使入射到棱镜入射面的光线越来越少,当光源只有入射角约90的入射光线射入棱镜,望远镜中观察到的视场将由亮区慢慢收窄成为一条清晰的细亮线,此时的亮线就是入射角190i =的光线的出射方向。记录此时亮线的角度1min i 。 3、测量棱镜的顶角α,计算棱镜折射率。 六、实验数据记录:

棱镜顶角的测量数据 最小出射角测量数据 七、 数 据 处 理: 1、由棱镜顶角的测量数据可得: 平均值59.51559.537601659.502= =59.5384 α'''' +++' 2、测量不确定度 所以59.53804'ααα'=±?=± 3、由最小出射角测量数据可得: 平均值1min 39.518'3902'3906'39.508' 3928'4 i +++'== 所以1min 1min 1min 3928'04'i i i '''=±?=± 4、由 n =可得: 所以 1.590.07n n n =±?=±

大学物理实验报告系列之空气折射率的测定

【实验名称】 空气折射率的测定 【实验目的】 1、了解空气折射率与压强的关系; 2、进一步熟悉迈克尔逊干涉仪的使用规范; 【实验仪器】 迈克尔逊干涉仪(动镜:100mm ;定镜:加长);压力测定仪;空气室(L=95mm );气囊(1个);橡胶管(导气管2根) 【实验原理】 1、等倾(薄膜)干涉 根据实验7“迈克尔逊干涉仪调节和使用”可知,(如图1所示)两束光到达O 点形成的光程差δ为: δ=2L 2 -2L 1 =2(L 2 -L 1 ) 若在L2臂上加一个为L 的气室,如图2所示,则光程差为: δ=2(L 2 -L )+2n L -2L 1 δ=2(L 2 -L 1 )+2(n-1)L (2) 保持空间距离L 2 、L 1 、L 不变,折射率n 变化时,则δ 随之变化,即条纹级别也随之变 化。(根据光的干涉明暗条纹形成条件,当光程差δ=kλ时为明纹。)以明纹为例有 δ1 =2(L 2 -L 1 )+2(n 1 -1)L =k 1 λ δ2 =2(L 2 -L 1 )+2(n 2 -1)L =k 2 λ 令:Δn =n 2-n 1,m =(k 2-k 1),将上两式相减得折射率变化与条纹数目变化关系式。 2ΔnL=mλ (3) 2、折射率与压强的关系 若气室内压强由大气压p b 变到0时,折射率由n 变化到1,屏上某点(观察屏的中心O 点)条纹变化数为m b ,即 n-1=m b λ/2L (4) 通常在温度处于15℃~30℃范围内,空气折射率可用下式求得: 设从压强p b 变成真空时,条纹变化数为m b ;从压强p 1变成真空时,条纹变化数为m 1;从压强p 2变成真空时,条纹变化数为m 2;则有 根据等比性质,整理得 将(4)、(5)整理得 式中p b 为标况下大气压强,将p 2→p 1时,压强变化记为Δp (=p 1-p 2),条纹变化记为m (=m 1-m 2),则有 3、测量公式

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

磁化率实验报告1

磁化率的测定 08材化2 叶辉青200830750230 1 实验目的 1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。 1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 1.3 了解磁天平的原理与测定方法。 1.4 熟悉特斯拉计的使用。 2 实验原理 2.1 磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度H′与外磁场强度H 之和称为该物质的磁感应强度B,即 B=H+H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。物质的磁化可用磁化强度I来描述,H′=4πI。对于非铁磁性物质,I与外磁场强度H成正比 I=KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物质的磁性质,它的定义是 χm=K/ρ(3) χM=MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm 和χM的单位分别是cm3/g和cm3/mol,磁感应强度SI单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.2 分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM=χ顺+χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子 永久磁矩的关系服从居里定律

实验报告测量玻璃折射率

实验报告:测量玻璃折射率 高二( )班 姓名: 座号: 【实验目的】 1、明确测定玻璃砖的折射原理 2、知道测定玻璃砖的折射率的操作步骤 3、会进行实验数据的处理和误差分析 【实验原理】 如图所示,要确定通过玻璃砖的折射光线,通过插针法找出跟入射光线AO 对应的出射光线O 1B ,就能求出折射光线OO 1和折射角θ2, 再根据折射定律就可算出玻璃的折射率n=2 1 sin sin θθ。 【实验器材】 平木板、 白纸、 玻璃砖1块、 大头针4枚、 图钉4个、 量角器(或三角板或直尺)、 铅笔 【实验步骤】 1、把白纸用图钉钉在木板上。 2、在白纸上画一条直线ad 作为玻璃砖的上界面,画一条线段AO 作为入射光线,并过O 点 画出界面ad 的法线NN 1。 3、把长方形的玻璃砖放在白纸上,使他的一个长边ad 跟严格对齐,并画出玻璃砖的另一个 长边bc.。 4、在AO 线段上竖直插上两枚大头针P 1P 2. 5、在玻璃砖的ad 一侧再插上大头针P 3,调整眼睛观察的视线,要使P 3 恰好能挡住P 1P 2在 玻璃中的虚像。 6、用同样的方法在玻璃砖的bc 一侧再插上大头针P 4,使P 4能同时挡住P 3本身和P 1P 2的虚 像。 7、记下P 3、P 4的位置,移去玻璃砖和大头针。过P 3、P 4引直线O 1B 与bc 交于O 1点,连接 OO 1,OO 1就是入射光线AO 在玻璃砖内的折射光线的方向。入射角θ1=∠AON ,折射角θ2=∠O 1ON 1 8、用量角器量出入射角θ1和折射角θ2。查出入射角和折射角的正弦值,记录在表格里。

9、改变入射角θ1,重复上述步骤。记录5组数据,求出几次实验中测得的 2 1 sin sin θθ的平均值,就是玻璃的折射率。 【注意事项】 1、用手拿玻璃砖时,手只能接触玻璃砖的毛面或棱,不能触摸光洁的光学面,严禁把玻璃砖 当尺子画玻璃砖的另一边bc 。 2、实验过程中,玻璃砖在纸上的位置不可移动. 3、玻璃砖要选用宽度较大的,宜在5厘米以上,若宽度过小,则测量折射角度值的相对误差 增大;用手拿玻璃砖时,只能接触玻璃毛面或棱,严禁用玻璃砖当尺子画界面; 4、入射角i 应在15°~75°范围内取值,若入射角α过大。则由大头针P 1、P 2射入玻璃中的光 线量减少,即反射光增强,折射光减弱,且色散较严重,由玻璃砖对面看大头针的虚像将暗淡,模糊并且变粗,不利于瞄准插大头针P 3、P 4。若入射角α过小,折射角将更小,测量误差更大,因此画入射光线AO 时要使入射角α适中。 5、上面所说大头针挡住大头针的像是指“沉浸”在玻璃砖里的那一截,不是看超过玻璃砖上方 的大头针针头部分,即顺P 3、P 4的方向看眼前的直线P 3、P 4和玻璃砖后的直线P 1、P 2的虚像是否成一直线,若看不出歪斜或侧移光路即可确定。 6、大头针P 2、P 3的位置应靠近玻璃砖,而P 1和P 2、P 3和P 4应尽可能远些,针要垂直纸面, 这样可以使确定的光路准确,减小入射角和折射角的测量误差。 【实验数据】 实验数据处理的其他方法:

透明薄片折射率测定实验报告

透明薄片折射率的测定 迈克尔逊干涉仪是用分振幅的方法实现干涉的光学仪器,设计十分巧妙。迈克尔逊发明它后,最初用于著名的以太漂移实验。后来,他又首次用之于系统研究光谱的精细结构以及将镉(Cd)的谱线的波长与国际米原器进行比较。迈克尔逊干涉仪在基本结构和设计思想上给科学工作以重要启迪,为后人研制各种干涉仪打下了基础。迈克尔逊干涉仪在物理学中有十分广泛的应用,如用于研究光源的时间相干性,测量气体、固体的折射率和进行微小长度测量等。 【实验目的】 1. 掌握迈克尔逊干涉仪的结构、原理和调节方法; 2. 熟悉白光的干涉现象 4. 学习一种测量透明薄片折射率的方法。 【实验仪器】 迈克尔逊干涉仪,He-Ne 激光器,扩束镜,小孔光阑,透明薄片,白光光源 【实验原理】 一、透明薄片折射率的测量原理 干涉条纹的明暗决定于光程差与波长的关系,用白光光源只有在d=0的附近才能在M 1 和 M 2′交线处看到干涉条纹,这时对各种光的波长来说,其光程差均为2/λ(反射时附加2/λ),故产生直线黑纹,即所谓中央黑纹,两旁有对称分布的彩色条纹。d 稍大时,因对各种不同波长的光满足明暗条纹的条件不同,所产生的干涉条纹明暗互相重叠,结果就显不出条纹来。因而白光光源的彩色干涉条纹只发生在零光程差附近一个极小的范围内,利用这一点可以定出d =0的位置。利用白光的彩色干涉条纹可以测量透明薄片的 图1 透明薄片折射率测定 二、点光源干涉条纹的特点 不论平面镜M 1往哪个方向移动,只要是使距离d 增加,圆条纹都会不断从中心冒出来并扩大,同时条纹会变密变细。反之,如果使距离d 减小,条纹都会缩小并消失在中心处,同时条纹会变疏变粗。这表明0=d (即两臂等长)是一个临界点。当往同一个方向不断地移动1M 时,只要经过这个临界点,看到的现象就会反过来(见图2)。因此,实现点光源的非定域干涉后,最好先把两臂的长度调成有明显差别(0>>d ),避免在移动1M 时不小心通过了临界点,造成不必要的麻烦。 用眼睛观察 M 2

磁化率的测定实验报告

华 南 师 范 大 学 实 验 报 告 课程名称 结构化学实验 实验项目 磁化率的测定 一、【目的要求】 1.掌握古埃(Gouy )磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。 二、【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A ·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B 为: B =H +4πI = H +4πκH (1) 式中,I 称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H 称为物质的体积磁化率。I 和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=Κm/ρ称为摩尔磁化率。这些数据是宏观磁化率。在顺磁、反磁性研究中常用到χ和χm ,帖磁性研究中常用到I 、σ。 物质在外磁场作用下的磁化有三种情况 1.χm <o ,这类物质称为逆磁性物质。 2.χm >o ,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F= g )m -m (空样?

实验四 旋光度和折光率的测定

实验四旋光度和折光率的测定 一、实验目的 1、了解旋光仪的构造、使用方法,掌握旋光度的测定原理与方法。 2、了解阿贝折光仪的构造,使用方法,掌握有机物折光率的测定原理和方法。 二、实验原理 1、旋光度:某些有机物因具有手性分子,能使偏光振动平面旋转,这种性质称为物质的旋光性。具有旋光性的物质称为旋光性物质或光学活性物质。旋光性物质使偏光振动平面旋转的角度称为旋光角,旋光角附上旋转方向叫旋光度,常以α表示;使偏光振动平面向左旋转的为左旋,用(一)或ι表示;使偏光振动平面向右旋转的为右旋,用(+)或d表示。 2、旋光仪构造 旋光度可用旋光仪来测定,其构造一般包括: a.单色光源:产生单色光,一般用钠光灯 b.起偏镜:产生偏振光 c.半波片:将偏振光束分成三分视场 d.样品管:盛放样品溶液 e.检偏镜 f.目镜 g.刻度盘 3、旋光度的大小除决定于物质的本性外,还与测定时的条件有关。旋光度随溶液的浓度或液体的密度d、测定时的温度t,所用光的波长λ,盛液管的长度ι及溶剂的性质等因素而改变。为比较物质的旋光性,需以一定条件下的旋光度作为基准。通常规定:1cm3含1g旋 t表光性物质的溶液放在1dm长的盛液管中测得的旋光度叫做该物质的比旋光度,并用[α] λ示,对某一物质来说,比旋光度是一个定值,它与旋光度的关系如下: α 纯液体的比旋光度[α]λt= d l. α 溶液的比旋光度[α]λt= c l. 比旋光度是物质特性常数之一。因此可以通过测定旋光度,来鉴定旋光性物质的纯度和含量;也可与其它方法结合起来确定未知物是何种物质。

4、折光率:光在空气中的速率和在另一物质中的速率之比称为折光率。 一种介质的折光率(n)就是光线从真空进入这种介质时入射角(α)和折射角(β)的正旋光度 折光率是有机化合物重要的特性常数。固体、液体和气体都有折光率,它不仅作为物质纯度的标准,也可用来鉴定未知物。 物质的折光率随入射光的波长与测定时的温度不同而变化。通常温度升高1℃,折光率降低3.5—5.5×10-14,光源一般采用钠光源。 5、阿贝折射仪的构造 结合仪器具体讲解,主要有放大镜、刻度尺、望远镜、消色镜、直角棱镜、反射镜等。 三、仪器与试剂 1、仪器 WZX-1光学度盘旋光仪、阿贝折光仪 2、试剂蒸馏水、10%葡萄糖、未知浓度的葡萄糖溶液、重蒸馏水、丙酮、待测液 四、实验步骤 1、旋光度的测定 (1)预热开始测量前,须将电源开关推到“开”的位置,预热5—10min,直至钠光灯已充分受热。 (2)旋光仪零点的校正在测定样品前,必须先校正旋光仪零点。先将旋光管洗净,装上蒸馏水,使液面凸出管口,将玻璃盖沿管口边缘轻轻平推盖好,不能带入气泡。然后旋上螺丝帽盖,使之不漏水。但注意不可旋得过紧,以免玻璃盖产生扭力而影响读数正确性。将已装好蒸馏水的样品管擦干,放入旋光仪内,罩上盖子。将标尺盘调到零点左右,调节手轮使视场亮度达到一致,此时读数应为零,由于使用者对其感觉不一,此读数可能为某一数值(即为初读数)记下读数。重复操作至少5次,取其平均值即为零点。若零点相差太大,应重新校正。 (3)旋光度的测定取已准确配制的10%葡萄糖液,按上述方法装入已洗净的旋光管中(先用蒸馏水洗干净,再用所测溶液洗涤几次)。把旋光管放入旋光仪里,转动手轮,使三部分亮度不同的视场重新调至亮度一致为止,记下读数。这时所得的读数与零点(初读数)之间的差值,即为该溶液的旋光度。再记下旋光管的长度及溶液的浓度,然后按公式计算其比旋光度。 取未知浓度的葡萄糖溶液,按同样的方法测定旋光度,然后利用上边求出的比旋光度计

磁化率-实验报告

一、实验目的与要求 1、测定物质的摩尔磁化率,估计待测金属配合物中心离子的未成对电子数,判断分子配键的类型。 2、掌握磁天平测定磁化率的原理和方法。 二、实验原理 1、摩尔磁化率和分子磁化率 在外磁场作用下,由于电子等带电粒子的运动,物质会被磁化而感应出一个附加磁场。这个附加磁场H’的强度由物质的磁化率χ决定:H’=4χχ为物质的体积磁化率,反映物质被磁化的难易程度,化学上常用摩尔磁化率χ m 表示磁化程度:,单位为。 对于顺磁性物质,摩尔顺磁磁化率与分子磁矩关系有: 顺 (为真 空磁导率,由于反磁化率较小,所以χ 反 忽略作近似处理) 顺磁性物质与为成对电子数n的关系:(为玻尔磁子,=9.273×10-21erg·G-1 =9.273×10-28J·G-1 =9.273×10-24 J·T-1) 2、摩尔磁化率的测定 样品在非均匀磁场中受到的作用力F可近似为: 在非均匀磁场中,顺磁性物质受力向下所以增重;而反磁性物质受力向上所以减重。测定时在天平右臂加减砝码使之平衡。设△m为施加磁场前后的称量,则: 所以: Δy样品管加样品后在施加磁场前后的称量差(g);Δ 为空样品管在施加磁场前后的称量差(g);g为重力加速度(9.8m·s-2);h为样品高度(cm);y样品的摩尔质量(g·mol-1);y样品的质量(g);y磁极中心磁场强度(G)。 磁场强度H可由特斯拉计或CT5高斯计测量。应该注意,高斯计测量的实际 上是磁感应强度B,单位为T(特斯拉),1T=104高斯。磁场强度H可由 B =μ H 关系式计算得到,H的单位为A·m-1。也可用已知磁化率的硫酸亚铁铵标定。 在精确的测量中,通常用莫尔氏盐来标定磁场强度,它的摩尔磁化率与温度的关系为 三、实验用品 1、仪器 分析天平、高斯计、玻璃样品管、研钵、角匙、玻璃棒 2、试剂 莫氏盐(NH 4) 2 SO 4 ·FeSO 4 ·6H 2 O、亚铁氰化钾 K 4 [Fe(CN) 6 ]·3H 2 O、硫酸亚铁FeSO 4 ·7H 2 O。 四、实验步骤

[实用参考]大学物理实验报告册-测三棱镜的折射率

用分光计测棱镜折射率 实验日期-----实验组号----实验地点----报告成绩 [实验目的] 1.———— 2.———— [实验仪器] 1.分光计的结构,主要由------------、------------、-------------和------------组成。 2.平行光管由------和----------组成。 3.望远镜主要由-----,-------和-------组成。 4.读数装置由-------与---------组成.刻度盘分为360°,最小刻度为-------。在刻度盘内同一直径的两端各装一个游标为了消除刻度盘与分光计中心轴线之间的--------- [实验原理摘要] 最小偏向角,用δmin 表示,棱镜玻璃的折射率n 与棱镜顶角A 、最小偏向角δmin 有如下关系. n [实验内容及步骤] 1. 分光计的调整:为了测准入射光与出射光传播方 向之间的角度,分光计的调整必须做到----------------------------------------------------------------;-----------------------------------------------;-----------------------------------------------。 调整顺序 (1)目测粗调 (2)调节望远镜: a.调整--------看清目镜中十字叉丝; b.开小灯泡电源开关; c 按图2放置平面镜,当需要改变平面镜的倾斜度时,只要调节螺丝B 1或螺丝B 3. d.旋转------,使平面镜偏离望远镜一小角度,从望远镜外侧在平面镜内寻找绿光斑 图1 三棱镜的折射 图2 B 1 B 2 B 3

磁化率的测定实验报告记录(华南师范大学物化实验)

磁化率的测定实验报告记录(华南师范大学物化实验)

————————————————————————————————作者:————————————————————————————————日期:

磁化率的测定 一、实验目的 (1)掌握古埃磁天平测定物质磁化率的实验原理和技术。 (2)通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数,并判断d电子的排布情况和配位体场的强弱。 二、实验原理 2.1物质的磁性 物质在磁场中被磁化,在外磁场强度H的作用下,产生附加磁场。该物质内部的磁感应强度B为: B=H+4πI=H+4πκH (1)式中,I称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H称为物质的体积磁化率。I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=κM/ρ称为摩尔磁化率(M是物质的摩尔质量)。这些数据都可以从实验测得,是宏观磁性质。在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。 不少文献中按宏观磁性质,把物质分成反磁性物质。顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质积累。其中,顺磁性物质χm>0而反磁性物质的χm<0。 2.1古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。为了测量不同温度的数据,要使用变温、恒温和测温装置。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场强度为零处。 样品在磁场中受到一个作用力。 dF=κHAdH (2) 式中,A表示圆柱玻璃管的截面积。 样品在空气中称量,必须考虑空气修正,即 dF=(κ-κ0HAdH)(3) κ0表示空气的体积磁化率,整个样品的受力是积分问题: (4)因H0H,且忽略κ0,则 (5) 式中,F可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F=(Δm样-Δm空)g 式中,Δm 样为样品管加样品在有磁场和无磁场时的质量差;Δm 空 为空样品

测定三棱镜折射率实验报告_0

测定三棱镜折射率实验报告 各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟! 【实验目的】利用分光计测定玻璃三棱镜的折射率;【实验仪器】分光计,玻璃三棱镜,钠光灯。【实验原理】最小偏向角法是测定三棱镜折射率的基本方法之一,如图10所示,三角形%26#8197;ABC%26#8197;表示玻璃三棱镜的横截面,AB和AC是透光的光学表面,又称折射面,其夹角a称为三棱镜的顶角;BC%26#8197;为毛玻璃面,称为三棱镜的底面。假设某一波长的光线%26#8197;LD%26#8197;入射到棱镜的%26#8197;AB%26#8197;面上,经过两次折射后沿%26#8197;ER%26#8197;方向射出,则入射线%26#8197;LD%26#8197;与出射线%26#8197;ER%26#8197;的夹

角%26#8197;%26#8197;称为偏向角。图10三棱镜的折射由图10中的几何关系,可得偏向角(3)因为顶角a满足,则(4)对于给定的三棱镜来说,角a是固定的,随和而变化。其中与、、依次相关,因此实际上是的函数,偏向角也就仅随而变化。在实验中可观察到,当变化时,偏向角有一极小值,称为最小偏向角。理论上可以证明,当时,具有最小值。显然这时入射光和出射光的方向相对于三棱镜是对称的,如图11所示。您正浏览的文章由第一'范文网整理,版权归原作者、原出处所有。图11最小偏向角若用表示最小偏向角,将代入(4)式得(5)或(6)因为%26#8197;,所以%26#8197;,又因为%26#8197;,则(7)根据折射定律得,(8)将式(6)、(7)代入式(8)得:(9)由式(9)可知,只要测出入射光线的最小偏向角及三棱镜的顶角,即可求出该三棱镜对该波长入射光的折射率n.【实验内容与步骤】1.调节分光计按实验24一1中的要求与步骤调整好分

磁化率的测定

磁化率的测定 一、实验目的 1.掌握古埃(Gouy)法测定磁化率的原理和方法。 2.测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 二、预习要求 1.了解磁天平的原理与测定方法。 2.熟悉特斯拉计的使用。 三、实验原理 1.磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H′与外磁场强度 H 之和称为该物质的磁感应强度 B,即 B = H + H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达 104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。 物质的磁化可用磁化强度 I 来描述,H′=4πI。对于非铁磁性物质,I 与外磁场强度 H成正比 I = KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物

质的磁性质,它的定义是 χm = K/ρ(3) χM = MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm和χM的单位分别是cm3?g-1和cm3?mol-1。 磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM =χ顺 + χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子永久磁矩的关系服从居里定律 (6) 式中,NA为Avogadro常数;K为Boltzmann常数(1.38×10-16erg?K-1);T为热力学温度;μm为分子永久磁矩(erg?G-1)。由此可得

相关文档
最新文档