费马猜想证明艰难历程的概述

费马猜想证明艰难历程的概述
费马猜想证明艰难历程的概述

费马猜想证明艰难历程的概述

王德忱

(黑龙江省农业科学院黑河分院)

一、费马猜想

费马猜想:又称费马大定理,是世界最著名的数论难题之一,即当n是一个大于2的正整数时不定方程z n=x n+y n为正整数等式不成立,也就是没有zxy ≠ 0的正整数解。

几何学中被誉为两大宝藏之一的“勾股定理”(另一为“黄金分割”)自史以来非常受人们重视,它的正整数解被称为“勾股弦数”。大约在公元前1900年到公元前l600年之间古巴比伦人就掌握了多组勾股弦数,公元前12世纪我国《周髀算经》也记载了“勾三股四弦五”的重大发现。古希腊数学家丢番图(330-246年)给出了勾股弦数a2+b2 = c2基本组解公式:a = 2mn、b = m2-n2、c = m2+ n2(m >n)。这些数学的辉煌成果是人类历史上杰出智慧的结晶。于是数学家们要找到a3+b3 = c3的正整数解,乃至要找到a n+b n = c n的正整数解。数论,闪烁着神秘的光环,皇冠上璀璨的明珠!

费马,1601年— 1665年生于法国。他职业最初是律师,后来为图卢兹议会议员。他博览群书,精通数国文字,掌握多门自然科学,近三十岁时钻研数学,成果累累,在数论、解析几何学、概率论等方面都有重大贡献,被誉为“业余数学家之王。他提出了许多数学定理,特别是1637年在巴契校订的希腊数学家丢番图的《算术》第2卷第8命题“把一个平方数分为两个平方数”旁边写道:“把一个立方数

分为两个立方数,一个四次幂分为两个四次幂,或一般地把一个高于二次的幂分为两个同次的幂是不可能的。关于这一点,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下”。从此z n = x n+ y n没有正整数解的“美妙的证法”吸引了许多优秀数学家及成千上万数学爱好者的痴劳寻觅。所有巨大的辛苦与付出都没能达到目的,这个问题就成了数学史上一个最深奥的谜。

为推进费马猜想的证明,布鲁塞尔和巴黎科学院数次设奖,1908年哥廷根皇家科学会悬赏10万马克(当时值200万美元)期限定为100年(至2007年)征求对费马猜想的证明。仅1909 –1911年三年间发表错误的证明论文就多达1,000余篇,由此数学刊物不再审理这方面投稿。又有著名数学家论文已发表才被发现错误。后来就自然形成一个约定:费马猜想的证明,必须由世界至少5个著名数学家承认正确推荐的论文才能发表。

二、费马猜想证明的重大意

自费马猜想提出以来370多年里,不少数学家及数学爱好者艰苦不屑地努力试图证明或否定它。当然还是希望证明它,尤其兴趣能够找到费马猜想的那个“美妙证法”。

1676年,数学家们根据费马的少量提示用“无穷递降法”证明了n=4时的情形,这一证法被公认为是费马自己的证明。1678年德国数学家莱布尼兹证明了n =4时费马猜想成立。1738年瑞士数学家欧拉也给出了n=4的证明。

1770年,欧拉证明了n=3的情形,用的是唯一因子分解定理。

1823年和1825年,法国数学家勒让德和德国数学家狄利克雷先后证明了n=5。

1832年,狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n = 7,随后得到法国数学家勒贝格的简化。

1857年,德国数学家库麦尔因第一次对一大批指数n证明了费马猜想,是19世纪贡献最大的,获得巴黎科学院的金质奖章。他从1844年起花费20多年时间创立了理想数论,证明当n<100除37、59、67三数所有奇素数费马猜想成立。

1901年,德国数学家林德曼发表了一篇17页的论文,但他的证明很快被人们指出了错误。他在1882年成功地证明了π是超越数,从而彻底解决了困惑数学家

2000多年的“化圆为方”问题。此后林德曼信心大增,夸口要解决费马猜想。1907年他又发表了一篇长达63页的证明,后又被推翻。

1926年,美国数学家范狄维尓证明了当n<211的奇素数时费马猜想成立。此后数学家们证明奇素数n的值不断扩大:1954年n<2521、1955年n<4001、……

法国数学家勒贝格提交了一个证明,但因有漏洞被否决。世界著名数学家高斯、柯西、阿贝尔等等都付出了极大的努力研究费马猜想,但没有结果。19世纪和20世纪初最具影响力的德国数学家希尔伯特也研究过,但没有进展。他说:“费马猜想是一只会下金蛋的鸡”,因为费马猜想地研究促进了数学发展。

1955年,日本数学家谷山丰猜测及韦依和志村五郎进一步精确化而形成了所谓“谷山–志村猜想”,这个猜想使费马猜想的证明又向前迈进了一步。

1976年,德国数学家瓦格斯塔夫用大型计算机证明了n<125000,更加推进了证明速度。

1983年,德国数学家法尔廷斯证明了一条重要猜想——“莫代尔猜想”,即x2 +y2= 1这样的方程至多有有限个有理数解。由于这一贡献,他获得了被誉为数学诺贝尔奖的菲尔兹奖。

1985年,美国数学家罗瑟用大型计算机证明了n<41000000。

1985年,德国数学家弗雷指出了“谷山–志村猜想”与费马猜想之间的关系;他提出了一个“假定费马猜想不成立”的命题,这一命题与“谷山–志村猜想”矛盾,如果同时证明了这两个命题,就证明了费马猜想。

1986年,美国数学家里贝特证明了弗雷“假定费马猜想不成立”的命题。于是为要证明费马猜想只需证明“谷山–志村猜想”成立,由此否定“假定费马猜想不成立”的命题,从而证明费马猜想成立。

1993年6月,英国数学家怀尔斯于一次学术讲演后宣告:他证明了费马猜想,《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》为题报道了费马猜想被证明的消息。一夜之间,怀尔斯成为了二十世纪世界上最伟大的数学家,甚至是唯一的一个数学家,荣耀得无人能及。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”,许多大学都举行狂欢和游行,在芝加哥甚至出动了警察上街维持秩序的局面。但经6个数学教授

对他的证明审察发现有漏洞。怀尔斯又经过一年多的拼搏,于1994年9月完成了证明。1995年一本《数学年刊》篇幅长达130页刊登了他的论文,著名数学家评价说这是人类智力活动的一曲凯歌。他获得了九项国际数学大奖:1、菲尔兹数学奖(特别贡献奖);2、美国国家科学院数学奖(100万美元);3、沃尔夫奖;4、瑞典科学院舍克奖;5、法国费马奖;6、美国数学会科尔奖;7、欧洲奥斯特洛夫斯基奖;8、邵逸夫奖(100万美元);9、哥廷根皇家科学会100年期限的10万马克悬赏(领奖时贬值到5万美元)。但是,怀尔斯的论文深奥难懂,仅仅使几个数学家能够看明白,当然不是费马猜想的美妙证法。

据资料介绍:一位法国著名的哲学家说,费马大定理是人类思维的极限,是人类的思维能力不能解决的。有人叹言:费马写的那个非常美妙的证法是怎样的,将成为所遗下的一个迷!甚至一些数学家怀疑:费马当年根本就没有美妙的证法,即使可能有个“证法”也一定是错误的,他凭直觉做出的猜想当然结论是正确的。但也有一些数学家认为,费马可能真的得出了一个“非常美妙的证法”,必定是以17世纪的人们所掌握的数学技巧为基础的,也就是初等数学方法的证明。美国数学家阿米尔﹒艾克赛尔所著《费马大定理——解开一个古代数学难题的秘密》中在阐述怀尔斯证明难度之后说:不能因为(怀尔斯)这一证明复杂与先进,就表示不可能有一个简单的证明。所以这些数学家们相信,只要能够找到费马原来的证明,那么仍然可以获得声名与荣誉。

在几百年研究费马猜想的过程中,数学家的有关工作丰富了数论的内容,不少新的数学分支和新的工具被发明和推广(如代数数论等),为数学增加不少活力。现在,仍然有大量的数学爱好者在为费马猜想美妙的证法而百折不挠地艰辛探索,实现费马猜想的美妙证法才是真正奏响人类伟大智慧完美的凯歌。

三、笔者研究费马猜想的经过

王德忱:职业会计师,业余时间自学、研究数学一些问题。1980年前后经常为社会青年、高考青年、高初中学生等做数学辅导。在讲课过程中有学员提出勾股定理正整数解公式是怎样得到的?经查资料,被誉为“代数学鼻祖”的古希腊数学家丢番图发现了x2+y2 = z2勾股数组解的公式是x = 2ab、y = a2-b2、z = a2+b2,然而究竟是如何得到这组代数式子的,人们无从知晓。也就是说这个求解勾股弦数公式

是怎么得到的千百年来还是一个谜。为讲明这一问题笔者经认真探索发现:

( z y )2 - ( x y )2 = 1

( z y - x y )( z y + x y ) = 1

由此设互为倒数分数能够解出勾股弦数公式。于是联想到费马猜想,如果用这种方法n >2时将其转化为一元方程形式,可能或者一定能由某些规律发现费马猜想的“美妙证明”。从此开始了探索费马猜想艰难而漫长的里程。

1987年证明完成了一稿。在向各大学院校和数学刊物寄发100余封稿件中得到了《东北数学》编辑部总编的重视,已通知补写了英文摘要,结果最后没能成功。总编复信写道:象这类稿件我们是不会给审阅的,但一看你的证明方法独特,我们才组织了专家鉴定。1999年11月费马猜想研究又成一稿。这时查询有关信息才知道费马猜想已被英国数学家怀尔斯用高等数学证明了。但是,怀尔斯的证明绝不是费马的美妙证法。所以,费马猜想“美妙证明”必须继续向前推进!

2005年8月《关于x n + y n = z n 问题的初等数学证明》于《中国数学在线 数学爱好者论坛》网站刊出,随即发布《悬赏10,000元人民币 否定一个数学证题》的文告,三年包括多家网站转帖网友(也有讲师、教授等数学专业工作者)总计点击数20,000余次,有意义的学术回帖400多条,经过复杂激烈地深入研讨没有能否定这一证明者,同时在争论中发现不完善之处又不断地进行了无数次修改。2008年12月30日最后定稿再次通过各数学及有关网站发文,悬赏10,000元人民币否定费马猜想“美妙证明”。2010年悬赏增至20,000元人民币,且郑重向全世界宣告:费马猜想“美妙证明”存在!为论述更确切精炼,步骤更直接简明,2013年4-7月再修《费马猜想初等数学一般性证明》新作,篇幅不过3页、字数少于2千,证明关键依据一个人们早就普遍所熟知而最基本的“方根存在唯一性定理”,也就是方根性质定理。当年费马一时的想法,大概的证明,肯定要更加简短,因而任何怀疑费马猜想“美妙的证法”都会被事实不攻自破。为费马猜想“美妙证明”得到世人公认,笔者将在自己 hlheihedechen 的博客 上不断地发布有关公告。

(2013年8月17日)

哥德巴赫 庞加莱猜想

哥德巴赫猜想(Goldbach Conjecture)大致可分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。考虑把偶数表示为两数之和,而每一个数又是若干素数之积。把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。1966年陈景润证明了"1+2"成立,即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和"。 这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture)。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为两个奇素数之和;每个大于等于9的奇数,都可表示为三个奇素数之和。其实,后一个命题就是前一个命题的推论。哥德巴赫(Goldbach ]C.,1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年,到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职。1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:"我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数(就是质数)之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。" 欧拉回信说:―这个命题看来是正确的‖。但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。现在通常把这两个命题统称为哥德巴赫猜想。 哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。关于偶数可表示为a个质数的乘积与b个质数的乘积之和(简称―a + b‖问题)进展如下: 1920年,挪威的布朗证明了―9 + 9‖。1924年,德国的拉特马赫证明了―7 + 7‖。

世界数学难题——费马大定理

世界数学难题——费马大定理 费马大定理简介: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 [编辑本段] 理论发展 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

“费马点”说明及例举

费马点 费马(Pierre de Fermat,1601--1665)法国业余数学家,拥有业余数学之王的称号,生于博蒙德罗曼。其父曾任法国图卢兹地方法院的法律顾问。本人身为律师,曾任图卢兹议会的顾问30多年。他的一系列重要科学研究成果,都是利用业余时间完成的。 他是解析几何的发明者之一.在数学方面作出了卓越的贡献,早年主要研究概率论,对于数论和解析几何都有深入研究。他对微分思想的运用比牛顿和莱布尼兹还要早,在他所著《求最大值和最小值的方法》一书中,已对微分理论进行了比较系统的探讨。他把直线平面坐标应用于几何学也早于笛卡儿,在其所著〈平面及空间位置理论的导言〉中,最早提出了一次方程代表直线,二次方程代表截线,对一次与二次方程的一般形式,也进行了研究。费 马还研究了对方程 2 21y ax= +整数解的问题。得出了求导数所有约数的系统方法。 所谓的“费马点”就是法国著名数学家费马在给数学朋友的一封信中提出关于三角形的一个有趣问题:“在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.”让人家想,并自称已经证明了。这是费马通信的一贯作风。当时欧洲所有数学家对他都十分头疼的。人们称这个点为“费马点”。还有象著名的费马大定理也是这样,给欧拉的信中提出的,自称已经“有了非常巧妙的证明”。可到死也没告诉人家这个所谓证明。结果困扰世界数学界一百多年。直到去年才解决。 著名的费马大定理是费马提出的至今尚未解决的问题。1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不 可能把任一个次数大于2的方幂表示成两个同方幂的和。” 即: )3 (,2≥ = +n z y x n n 无整 数解。1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。 费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。 几何光学已有悠久的发展历史,由于费马原理的确立,几何光学发展到了较为完善的程度。。1621年斯涅尔总结出了光的折射定律。费马则是用数学方法证明了折射定律的主要学者之一。 费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理

数学猜想

数学猜想 四色猜想(三大数学难题之三) 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。

费马最后定理的故事

●今年6月间,德国哥庭根大学的大会堂里,500名数学家齐聚,观看普林斯顿大学数学家魏尔斯(Andrew Wiles)领取沃夫斯柯奖。沃夫斯柯是一位德国工业家的名字,他在20世纪初遗赠10万马克设立此一奖项,给予世界上头一个能解决费马最后定理之人。当时10万马克是不小的一笔数目,约等于200万美金,而几个月前由魏尔斯领到时,不过相当5万美金左右,但是这确是近世数学界的盛事,魏尔斯不只是证明了费马最后定理,也替未来的数学带来革命性新发展。费马最后定理的发明者自然是一个叫费马的人。费马(Pierre deFermat)1601年出生在法国西南方小镇。费马并不是一个数学家,他的职业是一名法官。当时为了保持法官立场的公正,通常不鼓励他们出外社交,因此每天晚上费马便钻研在他嗜好的数学之中,悠然自得。在1637年的某一天,费马正在阅读古希腊大数学家戴奥芬多斯的数学译本,忽然灵光乍现,就在书页空白处,写下有名的费马定理。费马定理的内容其实很简单,它只是基于一个方程式(X+Y=Z)。这个方程式当n等于2时,就是人们熟知的毕氏定理,中国数学上所称的勾股弦定理,其内容即直角三角形两边平方和等于其斜边的平方。如32.+42.=52.(9+16=25)。费马当时提出的难题是,当这个方程式(X+Y=Z)的n大于2时,就找不到任何整数来符合这个方程式。例如33.+43.(27+64)=91,但是91却不是任何整体的3次方。费马不仅写下了这个问题,他同时也写道,自己已经发现了证明这个问题的妙法,只是书页的空白处不够大,无法写下证明。结果他至死都没有提出他的证明,却弄得300多年来数学界群贤束手,也使他的难题得到一个费马最后定理的称号。19世纪时,法国的法兰西科学院,曾经分别两度提供金质奖章和300法郎之赏,给予任何可以解决此一难题之人,不过并没有多大进展。20世纪初捐出10万马克奖金的沃夫斯柯,事实上也是一个对费马最后定理着迷的“数痴”,据一些历史学家研究,沃夫斯柯原本一度已打算自杀,但由于对解决费马定理着迷,而放弃求死之心,因此他后来便在遗嘱中捐出巨款,原因是他认为正是费马定理救了他一命。重赏之下必有勇夫,但是解决数学难题却非人人可为。20世纪公认的德国天才数学家希伯特(D. Hilbert)就不愿去碰费马定理,他的理由是自己没那么多时间,而且到头来还可能落得失败的下场。虽然费马定理还是让许多数学家萦怀于心,但是他们看这个难题就有如化学家看炼金术一样,只是一个古老的浪漫梦。秘密钻研7年突破难题最后解决这个世纪难题的魏尔斯,早在1936年他10岁之时,便有着挑战费马定理的浪漫梦想,他在英国桥剑地方的图书馆中读到这个问题,便决心一定要找出证明方法。他学校的老师并不鼓励他浪费时间于这个不可能之事,大学老师也试图劝阻他,最后他进了英国剑桥大学数学研究所,他的指导教授指引他转入数学中比较主流的领域做椭圆曲线。魏尔斯自己也没有料到,这个由古希腊起始的数学研究训练,最后会导致他再回到费马定理之上。1927年,日本数学家谷山丰提出一个讨论椭圆曲线的数学结构,后来在美国普林斯顿大学的日本数学家志村五郎,再将这个结构发展得更为完备。这个被称为“志村—谷山猜想”的数学结构,居然成为化繁为简,通向解决费马定理的绝妙佳径。1984年德国萨兰大学的数学家佛列发展出一种很奇特也很简单的关联,将“志村—谷山猜想”和费马定理扯在一块,佛列提出的关联经过好几位数学家的努力,最后终于证明了如果要证明费马最后定理,可以经由证明“志村—谷山猜想”来完成。魏尔斯是1993年在英国剑桥大学,正式宣布他已解决费马最后定理,在此之前他已秘密的工作达7年之久,原因不只是怕受到公众压力,也害怕其他数学家抄袭他的想法,在这段期间,魏尔斯连和太太去度蜜月中都未能从“附魔”脱身。最后的结果是魏尔斯并不需要证明整个的“志村—谷山猜想”,他只要证明一些特定的椭圆形曲线是具备某种特性。但是这些特定的椭圆曲线还是有无穷多个,因此证明技巧上依然十分困难。魏尔斯基本上利用了数学上常用的归纳法,他的办法有点像推倒骨牌的游戏,如果要推倒无限多张的骨牌,你必须确知的乃是一张骨牌倒下时,一定会碰到的下张骨牌。魏尔斯在1993年6月23日觉得他的证明已十分完整,于是便在剑桥大学牛顿数学研究所的研讨会上正式宣布。300年悬案终有解300多年数学悬案终于解决,不只数学界哗然震惊,数学门墙之外的社会大众亦感

费马点问题(含答案)

费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵AH=BH=AB=12. ∴∠AGH=120°, ∠HGP=60°. ∴A、G、P三点一线。 再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ∴∠PHD=30°,.

在△HGB和△HPD中 ∵HG=HP ∠GHB=∠PHD; HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. ∴G、P、D三点一线。 ∴AG=GP=PD,且同在一条直线上。 ∵GA+GH+GB=GA+GP+PD=AD. ∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。 例2:已知:△ABC是等腰三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°。 求证:GA+GB+GC最小

最新中国著名数学家资料

中国著名数学家资料 工作到最后一天的华罗庚(1910—1985) 1985年6月12日,在东京一个国际学术会议上,75岁的华罗庚教授用流利的英语,作了十分精彩的报告。当他讲完最后一句话,人们还在热烈鼓掌时,他的身子歪倒了。 华罗庚出生于江苏省金坛县一个小商人家庭,从小喜欢数学,而且非常聪明。一天老师出了一道数学题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”“23!”老师的话音刚落,华罗庚的答案就脱口而出,老师连连点头称赞他的运算能力。可惜因为家庭经济困难,他不得不退学去当店员,一边工作,一边自学。18岁时,他又染上伤寒病,与死神搏斗半年,虽然活了下来,但却留下终身残疾——右腿瘸了。 1930年,19岁的华罗庚写了一篇《苏家驹之代数的五次方程不成立的理由》,发表在上海《科学》杂志上。清华大学数学系主任熊庆来从文章中看到了作者的数学才华,便问周围的人,“他是哪国留学的?在哪个大学任教?”当他知道华罗庚原来是一个19岁的小店员时,很受感动,主动把华罗庚请到清华大学。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。 抗日战争时期,华罗庚白天在西南联大任教,晚上在昏暗的油灯下研究。在这样艰苦的环境中,华罗庚写出了20多篇论文和厚厚的一本书《堆垒素数论》。他特别注意理论联系实际,1958年以后,他走遍了20多个省市自治区,动员群众把优选法用于农业生产。记者在一次采访时问他:“你最大的愿望是什么?”他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作到最后一天,实现了自己的诺言。

哥德巴赫猜想的证明思路

哥德巴赫猜想的证明方法 引言 数论之位数运算,一个新的的概念,一个新的方向,一个新的课题。希望广大数学爱好者能参加到这个课题的研究中,从中发现更多的理论,解决更多的问题。 目录 一、哥德巴赫猜想的证明思路 1、哥德巴赫猜想证明引入的一些符号代表含义 2、素数定理代数表达式 3、哥德巴赫猜想的证明 第一章哥德巴赫猜想的证明思路 通过证明一任意大偶数可拆分2素数之和的数量呈增长趋势来证明哥德巴赫猜想成立 一、哥德巴赫猜想证明引入的一些符号代表含义 1、n,(n≥1;n∈自然数) 2、Pn≈π(x)任意正整数n包含的素数数量 3、Pn1,(0,m)区间内素数数量 4、Pn2,(m,2m)区间内素数数量 5、Pm,任意正整数n包含的素数类型数量 5、(γ,γ=-0.0674243197727122)素数分布系数 6、(λ,λ=0.615885*********)素数类型中素数与伪素数等差比例

系数。 7、logn,以n为底的对数 8、H,小于等于n的所有素数类型的组合数量 9、H1,小于等于n的素数类型组合数量 10、Hn,取值为n时可拆分素数对数量 11、HAL,偶数类型1 12、HBL,偶数类型2 13、HCL,偶数类型3 14、HDL,偶数类型4 15、(m,2m 2m=n)相对区间 16、Hnx=Pn2*(Pn2*2+1)*H1/H,相对区间内两素数组合下限 17、HALx,偶数类型1组合下限 18、HBLx,偶数类型2组合下限 19、HCLx,偶数类型3组合下限 20、HDLx,偶数类型4组合下限 21、Hns=Pn1*(Pn1*2+1)*H1/H,相对区间内两素数组合上限 22、HALs,偶数类型1组合上限 23、HBLs,偶数类型2组合上限 24、HCLs,偶数类型3组合上限 25、HDLs,偶数类型4组合上限 二、素数定理代数表达式 1、Pn=π(x)≈(0.8n/3)/{γ+λ*(logn-2)+1}

盘点我国古今伟大的数学家

盘点我国古今伟大的数学家 1、祖冲之,字文远[公元429-500年] 祖籍范阳郡道县[今河北省涞水县北]人。他生活在南北朝时代,出身于天文、历算世家,是刘宋王朝奉朝请祖朔之的儿子。他历任徐州从事吏、公府参军、娄县令、竭者仆射、长水校尉等职。 祖日桓,祖冲之的儿子,字景烁,生卒年代无可考。 祖冲之的杰出成就主要在数学、天文历法和机械三方面,他研究过《九章算术》及刘徽注。在天文历法方面,祖之创制了《大明历》,最早把岁差引进历法。后经其子祖日桓向梁武帝两次提出修改历法,说可以纠正何承天元嘉历法的疏远,政府终于公元510年起,用大明历法推算历书。 祖冲之父子的数学成就十分丰富,《缀术》是他们的代表作,唐初被列入《算经十书》之一,可惜,现在已失传。在其它的著作中,我们可知他们的数学成就有圆周率、球体积和开带从立方等三个方面。祖之提出了3.1415926<π<3.1415927,更得出了圆周率的密率——355/113[现称祖率]比西方早1000年。祖日桓亦解决了魏晋时期刘徽未解决的问题——计算球体的体积,其中运用到「幂势既同,则积不容异」的原理[现称刘祖原理或祖日桓原理]该原理在西方直到十七世纪才由意大利数学家卡瓦列利[bonaventuracavalieri 公元1598-1647年]发现,比祖日桓晚一千一百多年。

祖冲之亦曾造指南车、欹器、千里船、水碓磨等机械,经过试验都有成效。 2、张衡[公元78-139年] 字平子,东汉南阳西鄂[今河南南召]人。历任郎中、太史令、尚书郎。富文采、善机巧、尤精天文历算。创制水运浑象和地动仪,着有《灵宪》、《算罔论》等。在他的《灵宪》中取用π=730/232[3.1466],又在他的球体积公式中取用π= [3.162],又曾应用重差术于他的宇宙模型之中。 3、刘徽[约公元3世纪] 刘徽注《九章算术》,同时又撰有《重差》一卷,《重差》后来印成单行本改称为《海岛算经》,在注文中,刘徽用语言来讲清道理,用图形来解释问题[析理以辞,解体用图]。他不是只停留在对《九章》的注释上,而是更上一层楼,在注释的同时提出了许多创造性见解,例如为阐述几何命题,证明几何定理,创造了「以盈补虚法」,更为计算圆周率提出了「割圆术」:刘徽从最简单的正六边形开始,由正192边形的面积得到π=151/50或3.14。不过他更进一步算出3.14 <π<3.14 ,后来在另一个地方,刘徽用他的方法,继续演算到3072边形,并且得到他的最佳值——一个相当于3.14159的数。 「割圆术」是我国数学史上首次将极限概念用于近似计算。此外,刘徽的「齐同术」和「方程新术」等,是对《九章算术》方法的进一步阐述与补充。在注释《九章》的同时,刘徽深感有创立新的测量方法的必要,于是提出了重差术,撰《重差》一卷。

WILES证明费马大定理的成功时间为何其说不一

WILES证明费马大定理的成功时间为何其说不一? WILES证明费马大定理的成功时间为何其说不一? 他的证明是否又被发现“漏洞”? 在《征服费马定理的最后竞赛》中真正夺冠的应该是哪国人? 1993年,国内新闻媒体说:350多年的数学难题被美国普林斯顿大学数学教授wiles证明。《黑龙江日报》在《科技世界》版头条发表了哈工大青年数学家曹珍富的文章《英国数学家证明了费尔马大定理》(副题:困扰人类350多年的数学难题今朝有解)。但是。几年后(1997)这位青年数学家又在《生活报》发文说:wiles是1995年证明成功的。 1994年,《中国青年报》发文说:wiles迫于社会舆论压力不得不透漏真情,说他遇到了料想不到的困难,还需要做很多工作。 1995年,《参考消息》(4月5日)载文《征服费马定理的最后竞赛》中说:wiles的证明被发现“漏洞”,他自己“堵不上”,想找合作者……。 2000年,哈工大理学院院长说:wiles最后成功的时间是1996年1月。 2002年,中科院一位院士在《教育台》的《学术报告厅》中宣讲时说wiles是1994年证明成功。 Wiles证明费尔马大定理成功的时间为何其说不一? 还有更加令人不解的: 一、2003年,远方出版社出版的《数理化之谜》中说:千古之谜费马大定理,至今尚无人完全证明。 二、2007年,哈尔滨出版社出版的《数学的故事》中说:30年前,美国数学家大卫·曼福特证明了“如果不定方程有整数解,那么这种解是非常少的”。这是目前关于“费尔马问题”最好的研究成果。 为什么这两本书中,对wiles的证明成功却“只字皆无”?莫非wiles的证明又被发现了“漏洞”? 大千世界无奇不有。1993年8月1日,《松花江报》发表了一篇该报记者写的报道《谷立煌宣称证明了费尔马大定

费马大定理公式

储备公式 1.费马大定理(Fermat Last Theore m ): 当2n >时,n n n x y z +=无0xyz ≠的整数解; 当3n =时,3 3 3 x y z +=无0xyz ≠的整数解; 当4n =时,4 4 4 x y z +=无0xyz ≠的整数解; 当5n =时,5 5 5 x y z +=无0xyz ≠的整数解; 当7n =时,7 7 7 x y z +=无0xyz ≠的整数解; (2)n n n x y z n +=> 2.商高方程2 2 2 x y z +=满足(,)(,)(,)1x y y z z x ===,,x y 奇偶性不同的全体本原解为: 22222;;x pq y p q z p q ==-=+其中,p q 满足下面的条件: 0;(,)1;,p q p q p q >>=奇偶性不同 3.Fermat 无穷递降法 4.4n =时,Fermat 大定理证明过程 当4n =时,444 x y z +=无0xyz ≠的整数解; 原理:无穷递降法和毕达哥拉斯三元数组 证明:用反证法。若有正整数解,那么在所有正整数解中,必有一组解 假如存在,,x y z 满足444 x y z +=,且满足(,)(,)(,)1x y y z z x === 初等数论(P99) 定理4:不定方程:442 x y z +=无0xyz ≠的解。 证:用反证法。假若方程有正整数解,那么在全体正整数解中,必有一组解000,,x y z ,使得0z 取得最小值。我们要找出一组正整数解111,,x y z ,满足10z z <,得出矛盾。 (1)必有00(,)1x y =。若不然,就有素数00|,|p x p y 。由此及式442 x y z +=推出 42200|,|p z p z 。因此,2 000000,,x p y p z p 也是方程的正整数解,这和0z 的最小性矛盾。因此,22 000,,x y z 是方程的本原解,00,x y 必为一奇一偶,不妨设02|y ,以及00(,)1z y =

验证哥德巴赫猜想

例7-3 验证“哥德巴赫猜想” ?“哥德巴赫猜想”是数论中的一个著名难题,200多年来无数数学家为其呕心沥血,却始终无人能够证明或伪证这个猜想。 ? ?“哥德巴赫猜想”表述为:任何一个大于等于4的偶数均可以表示为两个素数之和。 ? ?1742年法国数学爱好者哥德巴赫在给著名数学家欧拉的信中提出“哥德巴赫猜想”问题。 问题的分解 求解第一步提出问题: 验证哥德巴赫猜想 ?第二步设一上限数M,验证从4到M的所有偶数是否能被分解为两个素数之和。 1. 定义一个变量X,初值为4。 2. 每次令其加2,并验证X能否被分解为两个素数之和,直到 X不小于M为止。

验证哥德巴赫猜想(续一) 第三步如何验证X是否能被分解为两个素数之和。 1.从P=2开始; 2.判别X—P是否仍为素数: 3.若是,打印该偶数的分解式。 4.否则,换更大的素数,再继续执行2.。

如此循环,直到用于检测的素数大X/2且X 与其之差仍不是素数,则打印“哥德巴赫猜想”不成立。 验证哥德巴赫猜想(续二) 第四步生成下一个素数。 (1)当前素数P加1 (2)判别P是否是素数; (3)若是素数,返回P;

(4)否则,P加1,继续执行( 2)。 验证哥德巴赫猜想(续三) ?经过四步分解精化,将“验证哥德巴赫猜想”这个命题已经分解为计算机可以求解的数学模型了。 ? ?剩下的问题就是编程求解了。如何编程是程序设计课程要解决的问题。 哥德巴赫猜想算法分析

1) 用“筛选”法生成素数表PrimeList[M]。先在素数表中产生0到M-1的所有自然数,然后将已确定的所有素数的倍数置0(求模取余为0)。 2,3,5,7,11,13,17,19,21,23,29,31... 2) 这样一来,素数表中有许多0,为找下一个素数,要跳过这些0。 3) 分解0到M-1之间的所有偶数; ①循环(x

研究性学习内容

1.华罗庚 自学成材的天才数学家,中国近代数学的开创人!! 在众多数学家里华罗庚无疑是天分最为突出的一位!! 华罗庚通过自学而成为世界级的数学家,他是解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域的中都作出卓越贡献。在这些数学领域他或是创始人或是开拓者! 从某种意义上他也是位传奇数学家,一生最高文凭是初中,早年在美国取得巨大成就后,闻知新中国成立后,发出"粱园随好,非久居之处"呼吁在国外的科学家学成回去报效祖国,跟他同时代在闻讯回国的科学家,许多都为中国做出了巨大贡献,其中最著名的有: 导弹之父钱学森:为中国火箭,导弹做出贡献 两弹元勋邓稼先:为中国创立了原子弹,氢弹等; 回国后华罗庚开创了中国的近代数学,并建立了中科院数学研究所,培养了大批数学家如陈景润,王元等号称华学派,后来致力于应用数学,将数学应用于工业生产,推广"优选法"和"统筹法"! 由于华罗庚的重大贡献,有许多用他的名字命名的定理,如华引理、华不等式、华算子与华方法。 另外华罗庚还被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。 美国著名数学家贝特曼著文称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院院士”。 2.陈省身----微分几何之父 陈省身,汉族,美籍华人,国际数学大师、著名教育家、中国科学院外籍院士,“走进美妙的数学花园”创始人,20世纪世界级的几何学家。少年时代即显露数学才华,在其数学生涯中,几经抉择,努力攀登,终成辉煌。他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。 美国国家科学院院士(1961年), 第三世界科学院创始成员(1983年), 英国皇家学会国外会员(1985年), 意大利国家科学院外籍院士(1988年), 法国科学院外籍院士(1989年)。 1994年当选为中国科学院首批外籍院士。 现代微分几何的开拓者,曾获数学界终身成就奖----沃尔夫奖! 他对整体微分几何的卓越贡献,影响着半个多世纪的数学发展。 他创办主持的三大数学研究所,造就了一批承前启后的数学家。 在微分几何领域有诸多贡献,如以他命名的"陈空间","陈示性类","陈纤维从" 一位数学家说道“陈省身就是现代微分几何。”这也许是对他的最好评价!! 3.中国现代数学家——苏步青 苏步青,浙江平阳人,出生于1902年9月,中国现代杰出的数学家。从小的时候起,苏步青就立下大志。中学毕业后赴日本深造。先入东京高等工业学校,后转入日本东北帝国大学数学系,1927年毕业之后进入该校研究生院,1931年获理学博士学位。

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

4、现代物理学对于统一场论研究的基本思路

4、现代物理学对于统一场论研究的基本思路 1968 年,一个重大的历史时刻提前一个世纪到来了,意大利物理学家维尼基亚诺随手翻阅了一本数学书,找到了数学家欧拉于1771 年研究过的一条函数,他把它应用到“雷吉轨迹”的问题做了计算,结果发现它能很好地描述核子中许多强相对作用力的效应。不久,南部阳一郎、萨思金和尼尔森三人分别证明了维尼基亚诺模型在描述粒子的时候,它等效于描述一根一维的“弦”。这是量子研究的一个重大突破。量子向来只被看成是粒或点,现在却被描述成为一根“弦”了。这个偶然的发现把量子的研究步伐推进了一个世纪。因按正常的科研步伐,这个问题要到21 世纪中叶才可能发现。到了1984年,施瓦茨和格林取得了一个伟大的突破,也是第一次超弦革命。他们对量子弦的描述图像是:任何粒子其实都不是传统意义上的点,而是开放或闭合(头尾相接而成环)的弦,它有十维,其中六维蜷缩在大一点的另一头,人类只能感知四维,这四维就是我们的生活时空。1995 年爱德华·威顿完善了超弦的理论。这时,爱因斯坦的统一场论又出现新的转机。如果人们能找出控制超弦的那种最终的力,统一场论就能成立。 最近20年来统一场论的研究主要有四条道路: 第一条道路即所谓的“弦论”。大约在公元前387年,希腊哲学家柏拉图认为,几何学研究是通向认识宇宙本质的道路。卡拉比猜想是在1954年召开的国际数学家大会上,意大利几何学家卡拉比提出:在封闭的空间中,有无可能存在没有物质分布的引力场。这就是著名的卡拉比猜想。卡拉比认为自己的猜想是正确的,但是,包括他自己在内,没有人能证实。然而,几乎所有的数学家都认为,卡拉比是错的,包括年轻的丘成桐在内。在1973年初,丘成桐花了相当多的时间,证明卡拉比猜想是错的;几个月后丘成桐认为自己最终得出了卡拉比猜想是错误的证明时,一个有顶级几何学家参加的大型会议1973年8月在斯坦福大学召开,丘成桐就将自己的想法告诉了卡拉比。当天晚上7点卡拉比带来了几个来自宾夕法尼亚州的同事。丘成桐讲了大约一个小时,大家也认为可以停止一相情愿地认为卡拉比是正确的想法。 但在当年10月,卡拉比和丘成桐都发现其证明思想有一些问题。于是,丘成桐开始寻找别的例子来证明卡拉比是错的。两个星期后,仍发现证明总会在最后崩溃……这时,丘成桐才对卡拉比猜想有更深刻的理解,认为它应该是正确的;也开始发明新工具,来理解卡拉比猜想。1975年丘成桐最终解决了整个问题,然后到宾夕法尼亚大学去见卡拉比。他们又一起再到纽约大学找数学家路易斯·尼伦伯格讨论这个问题。之后几个月里,丘成桐写了证明卡拉比猜想的论文。这一年,丘成桐27岁。卡拉比猜想的证明,让丘成桐一举

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

相关文档
最新文档