模拟乘法器调幅实验报告

模拟乘法器调幅实验报告
模拟乘法器调幅实验报告

模拟乘法调幅(AM、DSB)

实验报告

姓名:

学号:

班级:

日期:

模拟乘法调幅(A M、DSB )模块4

一、实验目的

1、掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅方法。

2、研究已调波与调制信号以及载波信号的关系。

3、掌握调幅系数的测量与计算方法。

4、通过实验对比全载波调幅、抑止载波双边带调幅波形。

5、了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。

6、掌握用集成模拟乘法器构成调幅与检波电路的方法。

二、实验原理

调幅与检波原理简述:

调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化;而检波则是从调幅波中取出低频信号。

本实验中载波是465KHz 高频信号,10KHz 的低频信号为调制信号。 集成四象限模拟乘法器MC1496简介:

本器件的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频动态增益控制等。它有两个输入端VX 、VY 和一个输出端VO 。一个理想乘法器的输出为VO=KVXVY ,而实际上输出存在着各种误差,其输出的关系为:VO=K (VX +VXOS )(VY+VYOS )+VZOX 。为了得到好的精度,必须消除VXOS 、VYOS 与VZOX 三项失调电压。集成模拟乘法器MC1496是目前常用的平衡调制/解调器,内部电路含有8 个有源晶体管。

MC1496的内部原理图和管脚功能如下图所示:

MC1496各引脚功能如下: 1)、SIG+ 信号输入正端 2)、GADJ 增益调节端 3)、GADJ 增益调节端 4)、SIG- 信号输入负端 5)、BIAS 偏置端 6)、OUT+ 正电流输出端 7)、NC 空脚 8)、CAR+ 载波信号输入正端 9)、NC 空脚 10)、CAR- 载波信号输入负端 11)、NC 空脚 12)、OUT- 负电流输出端 13)、NC 空脚 14)、V- 负电源 实验电路说明

用MC1496集成电路构成的调幅器电路如下图所示

14131211109876

54

32

1SIG+GADJ GADJ

SIG-BIAS OUT+NC V-NC

OUT-NC CAR-NC

CAR+

图中W1用来调节引出脚1、4之间的平衡,器件采用双电源方式供电(+12V,-8V),所以5脚偏置电阻R15接地。电阻R1、R2、R4、R5、R6为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。载波信号加在V1-V4的输入端,即引脚8、10之间;载波信号Vc经高频耦合电容C1从10脚输入,C2为高频旁路电容,使8脚交流接地。调制信号加在差动放大器V5、V6的输入端,即引脚1、4之间,调制信号VΩ经低频偶合电容E1从1脚输入。2、3脚外接1KΩ电阻,以扩大调制信号动态范围。当电阻增大,线性范围增大,但乘法器的增益随之减小。已调制信号取自双差动放大器的两集电极(即引出脚6、12之间)输出。

三、实验仪器与设备

高频电子线路综合实验箱;

高频信号发生器;

双踪示波器;

万用表。

四、实验内容与步骤

1、静态工作点调测:使调制信号VΩ=0,载波VC=0,调节W1使各引脚偏置电压接近下列参考值:

R11、R12 、R13、R14与电位器W1组成平衡调节电路,改变W1可以使乘法器实现抑止载波的振幅调制或有载波的振幅调制。

为了使MCl496各管脚的电压接近上表,只需要调节W1使1、4脚的电压差接近0V即可,方法是用万用表表笔分别接1、4脚,使得万用表读数接近于0V。

2、

+12

-12

J1

J5

J3

J6

R1

1K C2

104

R2

200

R4

1K

R3

1K

R5

3.3K

R6

3.3K

R11

10K

R12

200

R13

10K

R14

200

R15

6.8K

R16

1.5K

R17

1.5K

R10

510

C1

104

C4

104

C3

104

C8

104

12

E1

10u f/16v

D2

8.2V

1

23

4

5

6

7

1

4

1

3

12

1

1

10

9

8

U1

MC1496

F1

455K

AM,DSB

SSB

3

2

1

U2A

TL082

5

6

7

U2B

TL082

TH3

TH6

C7

104

TH2

TH1

R7

1K

W1

5K

W2

20K

R8

10K

R40

1k

3、抑止载波振幅调制:J1端输入载波信号VC(t),其频率fC=465KHz,峰-峰值VCP -P =500mV 。J5端输入调制信号VΩ(t),其频率fΩ=10KHz ,先使峰-峰值VΩP -P =0,调节W1,使输出VO=0(此时ν4=ν1),再逐渐增加VΩP -P ,则输出信号VO (t )的幅度逐渐增大,于TH3测得。最后出现抑止载波的调幅信号。

输出信号峰峰值VOP -P=100mV

4、全载波振幅调制

J1端输入载波信号Vc(t) , fc=465KHz, VCP -P =500mV ,调节平衡电位器W1,使输出信号VO (t )中有载波输出(此时V1与V4不相等)。再从J5端输入调制信号,其fΩ=10KHz ,当VΩP -P 由零逐渐增大时,则输出信号VO (t )的幅度发生变化,最后出现有载波调幅信号的波形,如下图所示,记下AM 波对应Vmmax 和Vmmin ,并计算调幅度m 。分别得到

5、加大VΩ,观察波形变化,比较全载波调幅、抑止载波双边带调幅的波形.

集成电路(乘法器)构成解调器:

解调全载波信号:按调幅实验中实验内容获得调制度分别为30%,50%、100%及>100%的调幅波。将它们依次加至解调器调制信号输入端J11,并在解调器的载波输入端J8加上与调幅信号相同的载波信号,分别记录解调输出波形,并与调制信号相比。 解调抑制载波的双边带调幅信号:按调幅实验中实验内容的条件获得抑制载波调幅波,加至的调制信号输入端J11,观察记录解调输出波形,并与调制信号相比较。

m in m ax m in

m ax m m m m V V V V m +-=

计组-4位乘法器实验报告

实验4位乘法器实验报告 姓名:X XX 学号:X XX 专业:计算机科学与技术课程名称:计算机组成同组学生姓名:无 实验时间:实验地点:指导老师:XXX 一、实验目的和要求 1.熟练掌握乘法器的工作原理和逻辑功能 二、实验内容和原理 实验内容: 根据课本上例3-7的原理,来实现4位移位乘法器的设计。 具体要求:1. 乘数和被乘数都是4位 2. 生成的乘积是8位的 3. 计算中涉及的所有数都是无符号数 4.需要设计重置功能 5.需要分步计算出结果(4位乘数的运算,需要四步算出结果) 实验原理: 1.乘法器原理图

2.本实验的要求: 1.需要设计按钮和相应开关,来增加乘数和被乘数 2.每按一下M13,给一个时钟,数码管的左边两位显示每一步的乘 积 3.4步计算出最终结果后,LED灯亮,按RESET重新开始计算 三、主要仪器设备 1.Spartan-III开发板1套 2.装有ISE的PC机1台 四、操作方法与实验步骤 实验步骤: 1.创建新的工程和新的源文件 2.编写verilog代码(top模块、display模块、乘法运算模块、去抖动模块以及 UCF引脚) 3.进行编译 4.进行Debug 工作,通过编译。

5.. 生成FPGA代码,下载到实验板上并调试,看是否与实现了预期功能 操作方法: TOP: module alu_top(clk, switch, o_seg, o_sel); input wire clk; input wire[4:0] switch; output wire [7:0] o_seg; // 只需七段显示数字,不用小数点 output wire [3:0] o_sel; // 4个数码管的位选 wire[15:0] disp_num; reg [15:0] i_r, i_s; wire [15:0] disp_code; wire o_zf; //zero detector initial begin i_r <= 16'h1122; //0x1122 i_s <= 16'h3344; //0x3344 end alu M1(i_r, i_s, switch[4:2], o_zf, disp_code); display M3(clk, disp_num, o_seg, o_sel); assign disp_num = switch[0]?disp_code:(switch[1] ? i_s : i_r); endmodule

5模拟乘法混频

模拟乘法混频 一、实验目的 1. 进一步了解集成混频器的工作原理 2. 了解混频器中的寄生干扰 二、实验原理及实验电路说明 混频器的功能是将载波为vs (高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。例如在调幅广播接收机中,混频器将中心频率为535~1605KHz 的已调波信号变换为中心频率为465KHz 的中频已调波信号。此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。 混频器的电路模型如图1所示。 图1 混频器电路模型 混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。本振用于产生一个等幅的高频信号VL ,并与输入信号 VS 经混频器后所产生的差频信号经带通滤波器滤出。目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。本实验采用集成模拟相乘器作混频电路实验。 图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。 V s V

+12 -12 J7J8 J9 C12104 C11104 C7104 C15104 C8104 R101K R11200 R12820 R13820 R71K R14100 R153.3K R163.3K R216.8K R20510 R171k F24.5M D28.2V C16104 TH6 TH7 TH8 TH9 TP5 SIG+ 1 G N A D J 2 G N A D J 3 SIG- 4 B I A S 5 OUT+6NC 7CAR+8 NC 9CAR- 10 NC 11OUT-12 NC 13V E E 14 U1 MC1496 图2 MC1496构成的混频电路 MC1496可以采用单电源供电,也可采用双电源供电。本实验电路中采用+12V ,-8V 供电。R12(820Ω)、R13(820Ω)组成平衡电路,F2为4.5MHz 选频回路。本实验中输入信号频率为 fs =4.2MHz ,本振频率fL =8.7MHz 。 为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压VS 和本振电压VL 外,不可避免地还存在干扰和噪声。它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。干扰是由于混频器不满足线性时变工作条件而形成的,因此干扰不可避免,其中影响最大的是中频干扰和镜象干扰。 三、 实验仪器与设备 高频电子线路综合实验箱; 高频信号发生器; 双踪示波器; 频率计。 四、实验步骤 1. 打开本实验单元的电源开关,观察对应的发光二极管是否点亮,熟悉电路各部分元件的作用。 2、用实验箱的信号源做本振信号,将频率L f =8.7MHz (幅度V LP-P =300mV

模拟乘法器调幅(AMDSBSSB)

高频电子实验报告 实验名称: 模拟乘法器调幅(AM、DSB、SSB) 实验目的: 1. 掌握用集成模拟乘法器实现全载波调幅、抑制载波双边带调幅和音频信号单边带调幅的方法。 2. 研究已调波与调制信号以及载波信号的关系。 3. 掌握调幅系数的测量与计算方法。 4. 通过实验对比全载波调幅、抑制载波双边带调幅和单边带调幅的波形。 5. 了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。 实验内容: 1、实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 2、实现抑制载波的双边带调幅波。 3、实现单边带调幅。 实验仪器: 1、信号源模块1块 2、频率计模块1块 3、4 号板1块 4、双踪示波器1台 5、万用表1块 实验原理: 1、调幅电路的分类 按调制信号的强度:高电平调幅(集电极调幅、基极调幅)、低电平调幅(平方律调幅、斩波调幅) 按调幅波的形式:普通调幅电路、双边带调幅电路、单边带调幅电路、残留边带调幅电路

2、调幅波的数学表达式及频谱 调制信号:V Ω =V Ωmcos Ωt 载波信号:Vc=Vcmcos ωct 已调波: V o(t)= V o(1+ mcos Ωt)cos ωct 普通调幅电路 抑制载波调幅波 调幅系数或调幅度(通常写成百分数) % 100min max min max ?+-= V V V V m 3、MC1496双平衡四象限模拟乘法器 其内部电路图和引脚图如图所示。其中V1、V2与V3、V4组成双差分放大

器,V5、V6组成的单差分放大器用以激励V1~V4。V7、V8及其偏置电路组成差分放大器V5、V6的恒流源。 引脚8与10接输入电压VX ,1与4接另一输入电压Vy ,输出电压V0从引脚6与12输出。 Vx 和Vy 皆为小信号时,由于三对差分放大器(VT1,VT2,VT3,VT4及VT5,VT6)均工作在线性放大状态,则输出电压V 可近似表示为 y x y x T L V V K V V V R I V 02002=≈ 4、实验电路 用MC1496集成电路构成的调幅器电路图 图中W1用来调节引出脚1、4之间的平衡,器件采用双电源方式供电(+

模拟乘法器实验

3.12模拟乘法器 一.实验目的 1. 了解模拟乘法器的构成和工作原理。 2. 掌握模拟乘法器在运算电路中的运用。 二.实验原理 集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。 1. 模拟乘法器的基本特性 模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端,电路符号如图3-12-1所示。 u x u y o 图3-12-1 模拟乘法器的电路符号 若输入信号为x u , y u ,则输出信号o u 为: o u =k y u x u 式中: k 为乘法器的增益系数或标尺因子,单位为V 1 . 根据两个输入电压的不同极性,乘法输出的极性有四种组合,用图3-12-2所示的工作象限来说明。 图 3-12-2 模拟乘法器的工作象限 若信号x u 、y u 均限定为某一极性的电压时才能正常工作,该乘法器称为单象限乘法器;若信号x u 、y u 中一个能适应正、负两种极性电压,而另一个只能适应单极性电压,则为二象限乘法器;若两个输入信号能适应四种极性组合,称为四象限乘法器。

2. 集成模拟乘法器 集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍BG314集成模拟乘法器。 (1) BG314内部结构如图3-12-3所示,外部电路如图3-12-4所示: 1 8 43 7 6 5142+ 9 121110 13 7 图3-12-3 BG314内部电路

模拟乘法器的应用-低电平调幅

模拟乘法器的应用 ——低电平调幅 一、实验目的 1、掌握集成模拟乘法器的工作原理及其特点 2、进一步掌握集成模拟乘法器(MC1596/1496)实现振幅调制、同步检波、混频、倍频的电路调整与测试方法 一、实验内容 1、普通振幅调制 2、用模拟乘法器实现平衡调制 三、实验仪器 低频信号发生器高频信号发生器频率计稳压电源万用表示波器 四、实验原理 1、MC1496/1596 集成模拟相乘器 集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB乘法检波器、AM调制解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。 MC1496的内部电路继引脚排列如图所示 MC1496型模拟乘法器只适用于频率较低的场合,一般工作在1MHz以下的频率。双差分对模拟乘法器MC1496/1596的差值输出电流为

MC1595是差值输出电流为 式中,为乘法器的乘法系数。 MC1496/1596使用时,VT 1至VT 6的基极均需外加偏置电压。 2.乘法器振幅调制原理 X 通道两输入端8和10脚直流电位均为6V ,可作为载波输入通道;Y 通道两输入端1和4脚之间有外接调零电路;输出端6和12脚外可接调谐于载频的带通滤波器;2和3脚之间外接Y 通道负反馈电阻R 8。若实现普通调幅,可通过调节10k Ω电位器RP 1使1脚电位比4脚高错误!未找到引用源。,调制信号错误!未找到引用源。与直流电压错误!未找到引用源。叠加后输入Y 通道,调节电位器可改变错误!未找到引用源。的大小,即改变调制指数M a ;若实现DSB 调制,通过调节10k Ω电位器RP 1使1、4脚之间直流等电位,即Y 通道输入信号仅为交流调制信号。为了减小流经电位器的电流,便于调零准确,可加大两个750Ω电阻的阻值,比如各增大10Ω。 MC1496线性区好饱和区的临界点在15-20mV 左右,仅当输入信号电压均小于26mV 时,器件才有良好的相乘作用,否则输出电压中会出现较大的非线性误差。显然,输入线性动态范围的上限值太小,不适应实际需要。为此,可在发射极引出端2脚和3脚之间根据需要接入反馈电阻R 8=1k Ω,从而扩大调制信号的输入线性动态范围,该反馈电阻同时也影响调制器增益。增大反馈电阻,会使器件增益下降,但能改善调制信号输入的动态范围。 MC1496可采用单电源,也可采用双电源供电,其直流偏置由外接元器件来实现。 1脚和4脚所接对地电阻R 5、R 6决定于温度性能的设计要求。若要在较大的温度变化范围内得到较好的载波抑制效果(如全温度范围-55至+125),R 5、R 6一般不超过51Ω;当工作环境温度变化范围较小时,可以使用稍大的电阻。 R 1-R 4及RP 1为调零电路。在实现双边带调制时,R 1和R 2接入,以使载漏减小;在实现普通调幅时,将R 1及R 2短路(关闭开关S 1、S 2),以获得足够大的直流补偿电压调节范围,由于直流补偿电压与调制信号相加后作用到乘法器上,故输出端产生的将是普通调幅波,并且可以利用RP 1来调节调制系数的大小。 5脚电阻R 7决定于偏置电流I 5的设计。I 5的最大额定值为10mA ,通常取1mA 。由图可1 21562()()()22T y T i i i th th V R V υυυ=-≈

8位乘法器实验报告

6.2 8位乘法器的设计 1.实验目的 (1)熟悉isEXPERT/MAX+plusisEXPERT/MAX+plus II/Foudation Series 软件的基本使用方法。 (2)熟悉GW48-CK EDA实验开发系统的基本使用方法。 (3)学习VHDL基本逻辑电路的综合设计。 2.实验内容 设计并调试好由8位加法器构成的以时序逻辑方式设计的8位乘法器。此乘法器通过判断被乘数的位值为1还是零,并通过乘数的左移与上一次和相加的方法,实现了8位乘法的运算,并用GW48-CK EDA实验开发系统进行硬件验证。 3.实验条件 (1)开发设备:Lattice ispEXPERT。 (2)实验设备:GW48-CK EDA实验开发系统。 (3)拟用芯片:ispLSI1032E PLCC-84或EPF10K10LC84-3或XCS05/XL PLCC84以及运算控制电路和外部时钟。 4.实验设计 1)系统的原理框图

2)VHDL源程序 (1)选通与门模块的源程序ANDARITH.VHD LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; ENTITY ANDARITH IS PORT(ABIN: IN STD_LOGIC; DIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0); DOUT: OUT STD_LOGIC_vector(7 DOWNTO 0)); END ENTITY ANDARITH; ARCHITECTURE ART OF ANDARITH IS BEGIN PROCESS(ABIN,DIN)IS BEGIN FOR I IN 0 TO 7 LOOP DOUT(I)<=DIN(I)AND ABIN; END LOOP; END PROCESS; END ARCHITECTURE ART; (2)16位锁存器的源程序REG16B.VHD LIBRARY IEEE;

乘法器应用电路

第6章 集成模拟乘法器及其应用 6.1集成模拟乘法器 教学要求: 1.掌握集成模拟乘法器的基本工作原理; 2.理解变跨导模拟乘法器的基本原理; 3.了解单片集成模拟乘法器的外部管脚排列及外接电路特点。 一、集成模拟乘法器的工作原理 (一)模拟乘法器的基本特性 模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。其符号如下图所示,K 为乘法器的增益系数。 1.模拟乘法器的类型 理想乘法器—对输入电压没有限制, u x = 0 或 u y = 0 时,u O = 0,输入电压的波形、幅度、极性和频率可以是任意的 。 实际乘法器—u x = 0 , u y = 0 时,u O 1 0,此时的输出电压称为输出输出失调电压。u x = 0,u y 1 0 (或 u y = 0,u x 1 0)时,u O 1 0,这是由于u y (u x )信号直接流通到输出端而形成的,此时 的输出电压为u y (u x )的输出馈通电压。 (二)变跨导模拟乘法器的基本工作原理 变跨导模拟乘法器是在带电流源差分放大电路的基础上发展起来的,其基本原理电路如下图所示。

在室温下,K为常数,可见输出电压u 与输入电压u y、u x的乘积成正比,所以差分放大电路具有乘法功 O 能。但u y必须为正才能正常工作,故为二象限乘法器。当u Y较小时,相乘结果误差较大,因I C3随u Y而变,其比值为电导量,称变跨导乘法器 . 二、单片集成模拟乘法器 实用变跨导模拟乘法器由两个具有压控电流源的差分电路组成,称为双差分对模拟乘法器,也称为双平 衡模拟乘法器。属于这一类的单片集成模拟乘法器有MC1496、MC1595等。MC1496内部电路如下图所示。

模拟乘法器调幅AM、DSB、SSB实验报告

模拟乘法器调幅(AM、DSB、SSB)实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验十二模拟乘法器调幅(AM、DSB、SSB) 一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅。抑止载波双边带调幅和单边带调幅的方法。 2.研究已调波与调制信号以及载波信号的关系。 3.掌握调幅系数的测量与计算方法。 4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。 5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。 二、实验内容 1.调测模拟乘法器MC1496正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。 4.实现单边带调幅。 三、实验原理 幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 1.集成模拟乘法器的内部结构 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。所以目前无线通信、广播电视等方面应用较多。集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。 (1)MC1496的内部结构 在本实验中采用集成模拟乘法器MC1496来完成调幅作用。MC1496是四象限模拟乘法器。其内部电路图和引脚图如图12-1所示。其中V1、V2与V3、V4组成双差分放大器,以反极性方 式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可 图12-1 MC1496的内部电路及引脚图 正可负,以此实现了四象限工作。V7、V8为差分放大器V5与V6的恒流源。 (2)静态工作点的设定 1)静态偏置电压的设置

Protel课程设计模拟乘法器调幅电路

目录 1 模拟乘法器电路的原理及设计 (1) 1.1 课程设计性质 (1) 1.2 课程设计目的 (1) 1.3 课程设计内容及要求 (1) 1.4 课程设计基本原理 (1) 1.4.1 基本原理: (1) 1.4.2 集成模拟乘法器MC1496 (2) 1.4.3 幅度调制 (5) 1.4.4 设计原理图说明 (5) 2 Protel绘制原理图 (6) 2.1 模拟乘法器调幅电路原理图的绘制 (6) 2.2 Protel具体绘制步骤 (6) 2.3 模拟乘法器调幅电路元件布局 (10) 2.4 电路原理图 (10) 3 模拟乘法器调幅电路PCB制作 (11) 3.1 PCB简要说明 (12) 3.2 封装 (12) 3.3 布局与自动布线 (13) 3.4 自动布线结果: (15) 3.5 设置敷铜 (16) 4 总结体会 (18) 参考文献 (19)

1 模拟乘法器电路的原理及设计 1.1 课程设计性质 综合设计性试验,本课程设计涉及的主要学科分支为通信电子线路。 1.2 课程设计目的 1. 掌握用集成模拟乘法器实现全载波 调幅、抑止载波双边带调幅的方法。研究已调 波与调制信号以及载波信号的关系。 2. 通过实验对比全载波调幅、抑止载波双边带调幅波形。 3. 了解并掌握模拟乘法器(MC 1496)的工作原理,掌握调整与测量其特性参数的方 法 4. 熟悉并巩固Protel 软件画原理图,以及Multisum 仿真软件进行仿真,独立完整地 设计一定功能的电子电路,以及仿真和调试等的综合能力。 1.3 课程设计内容及要求 1. 绘制具有一定规模、一定复杂程度的电路原理图*.sch (自选)。可以涉及模拟、数字、高频、单片机等等电路。 2. 绘制电路原理图相应的双面印刷版图*.pcb 。 本课设内容与要求:主要利用MC 1496设计幅度调制器,在已知电源电压为 +12V 和-12V 下,工作频率MHz f 100≈,设计幅度调制器,要求输出功率:mW P O 50≥,效率%50>η 1.4 课程设计基本原理 1.4.1 基本原理: 幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。本实验中载波是由实验箱的高频信号源产生的10MHz 高频信号,利用DDS 信号发生器输出1KHz 的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。

模拟乘法器调幅(AM、DSB、SSB)实验报告

实验十二模拟乘法器调幅(AM、DSB、SSB) 一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅。抑止载波双边带调幅和单边带调幅的方法。 2.研究已调波与调制信号以及载波信号的关系。 3.掌握调幅系数的测量与计算方法。 4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。 5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。 二、实验内容 1.调测模拟乘法器MC1496正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。 4.实现单边带调幅。 三、实验原理 幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 1.集成模拟乘法器的内部结构 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。所以目前无线通信、广播电视等方面应用较多。集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。 (1)MC1496的内部结构 在本实验中采用集成模拟乘法器MC1496来完成调幅作用。MC1496是四象限模拟乘法器。其内部电路图和引脚图如图12-1所示。其中V1、V2与V3、V4组成双差分放大器,以反极性方 式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可 图12-1 MC1496的内部电路及引脚图 正可负,以此实现了四象限工作。V7、V8为差分放大器V5与V6的恒流源。 (2)静态工作点的设定 1)静态偏置电压的设置

基于BG314乘法器调幅电路的Multisim仿真.docx

基于BG314乘法器调幅电路的Multisim 仿真

0引言 在无线通信系统屮,为了将信号从发射端传输到接收端,必须进行调制和解调。振幅调制是调制的一?种,其原理框图如下。它是利用调制信号去控制高频率的载波信号,使载波的振幅随调制信号的变化而变化。其调制过程是把调制信号 的频谱从低频段搬移到载频两侧,即产牛了新的频率分量,通常采用具有相乘特 性的非线性器件都可以实现调幅。本文通过Multisim软件仿真基于模拟乘法器 BG314的调幅电路系统。 1模拟乘法器BG314 BG314是在MCI596基础上发展出的MCI595的国内型号。其原理电路如下图所示:

经过分析可知, BG314具有如下特点: 1. 输入电压只包含两个输入电压乘积项,没有多余的成分; 2. 乘积系数与外接负载电阻R 成正比,与外接反馈电阻&和R 、成反比,并与 恒流源?成反比; 3?通过平衡差分对的补偿作用,乘积系数与晶体管参数U 「无关,不受温度变 化的影响; 4.输入电压IL 和Uy 既可以是正值,也可以是负值,故称为四象限模拟乘法器。 它的输入山和Uy,输出U 。均可达±10V 很大的线性动态范围。 2振幅调制器的仿真测试 下图是用BG314乘法器构成的调幅电路的仿真图。其屮109端口接入高频载 波,104接入低频的调制波;图屮电位器起着平衡调节的作用,它控制着输出载 波分量的泄漏,当电位器匕完全调平衡时,载漏接近为零,可以调成双边带振 幅调制电路。 12V 51 kQ 在输入端加20mv/l()kHz 的调制波和25mV/750kHz 的载波,调节滑动变阻器观察输出 20m Vrms 10kHz 0° Ext Trig 1椚 *1 5 TOZ TO9 106 100nF 108 1010 ro : 2TO12 TO11 2s 4 0 ______ I2S ——? ------- /\AAr- 8.2kQ roio 7 T °.U, g ——/WV- 8.2kQ 3 >>> O k 3 51 kQ 3.3kQ 3.3kQ 13 g ◎ i 104 105 § I XI ,3kQ 25mVrms 750kHz 750Q 17 :750a 18

实验三---集成乘法器幅度调制实验

实验三---集成乘法器幅度调制实验

高频实验报告实验名称:集成乘法器幅度调制实验 南京理工大学紫金学院电光系一、实验目的

a) 通过实验了解集成乘法器幅度调制的工作原理,验证普通调幅波(AM ) 和抑制载波双边带调幅波(AM SC DSB -/)的相关理论。 b) 掌握用集成模拟乘法器MC1496实现AM 和DSB-SC 的方法,并研究调制信 号、载波信号与已调波之间的关系。 c) 掌握在示波器上测量与调整调幅波特性的方法。 二、实验基本原理与电路 1.调幅信号的原理 (一) 普通调幅波(AM )(表达式、波形、频谱、功率) (1).普通调幅波(AM )的表达式、波形 设调制信号为单一频率的余弦波: t U u m Ω=ΩΩcos ,载波信号为 : t U u c cm c ωcos = 普通调幅波(AM )的表达式为AM u =t t U c AM ωcos )()cos 1(t m U a cm Ω+=t c ωcos 式中, a m 称为调幅系数或调幅度。 由于调幅系数a m 与调制电压的振幅成正比,即 m U Ω越大, a m 越大,调幅波 幅度变化越大, 一般 a m 小于或等于1。如果 a m >1,调幅波产生失真,这种情况称为过调幅。 未调制状态调制状态 m a Ucm ω0 Ω 图3-1 调幅波的波形 (2). 普通调幅波(AM )的频谱 普通调幅波(AM )的表达式展开得: t U m t U m t U u c cm a c cm a c cm AM )cos(2 1 )cos(21cos Ω-+Ω++ =ωωω 它由三个高频分量组成。将这三个频率分量用图画出,便可得到图

模拟乘法混频实验报告

模拟乘法混频实验报告 姓名: 学号: 班级: 日期:

模拟乘法混频 一、实验目的 1. 进一步了解集成混频器的工作原理 2. 了解混频器中的寄生干扰 二、实验原理及实验电路说明 混频器的功能是将载波为vs (高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。例如在调幅广播接收机中,混频器将中心频率为535~1605KHz 的已调波信号变换为中心频率为465KHz 的中频已调波信号。此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。 混频器的电路模型如图1所示。 图1 混频器电路模型 混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。本振用于产生一个等幅的高频信号VL ,并与输入信号 VS 经混频器后所产生的差频信号经带通滤波器滤出。目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。本实验采用集成模拟相乘器作混频电路实验。 图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。 V s V

+12 -12 J7J8 J9 C12104 C11104 C7104 C15104 C8104 R101K R11200 R12820 R13820 R71K R14100 R153.3K R163.3K R216.8K R20510 R171k F24.5M D28.2V C16104 TH6 TH7 TH8 TH9 TP5 SIG+ 1 G N A D J 2 G N A D J 3 SIG- 4 B I A S 5 OUT+6NC 7CAR+8 NC 9CAR- 10 NC 11OUT-12 NC 13V E E 14 U1 MC1496 图2 MC1496构成的混频电路 MC1496可以采用单电源供电,也可采用双电源供电。本实验电路中采用+12V ,-8V 供电。R12(820Ω)、R13(820Ω)组成平衡电路,F2为4.5MHz 选频回路。本实验中输入信号频率为 fs =4.2MHz ,本振频率fL =8.7MHz 。 为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压VS 和本振电压VL 外,不可避免地还存在干扰和噪声。它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。干扰是由于混频器不满足线性时变工作条件而形成的,因此干扰不可避免,其中影响最大的是中频干扰和镜象干扰。 三、 实验仪器与设备 高频电子线路综合实验箱; 高频信号发生器; 双踪示波器; 频率计。 四、实验步骤 1. 打开本实验单元的电源开关,观察对应的发光二极管是否点亮,熟悉电路各部分元件的作用。

Booth乘法器实验报告

运算器部件实验:Booth乘法器 班级:软件工程 一、实验目的 理解并掌握乘法器的原理。 二、实验原理 Booth算法是一种十分有效的计算有符号数乘法的算法。算法的新型之处在于减法也可用于计算乘积。Booth发现加法和减法可以得到同样的结果。因为在当时移位比加法快得多,所以Booth发现了这个算法,Booth算法的关键在于把1分类为开始、中间、结束三种,如下图所示 当然一串0或者1的时候不操作,所以Booth算法可以归类为以下四种情况: Booth算法根据乘数的相邻2位来决定操作,第一步根据相邻2位的4中情况来进行加或减操作,第二部仍然是将积寄存器右移,算法描述如下: (1)根据当前为和其右边的位,做如下操作: 00: 0的中间,无任何操作; 01: 1的结束,将被乘数加到积的左半部分; 10:1的开始,积的左半部分减去被乘数; 11: 1的中间,无任何操作。 (2)将积寄存器右移1位。 因为Booth算法是有符号数的乘法,因此积寄存器移位的时候,为了保留符号位,进行算术右移。同时如果乘数或者被乘数为负数,则其输入为该数的补码,若积为负数,则输出结果同样为该数的补码。

三、实验步骤 (1)打开QuartusII (2)将子板上的JTAG端口和PC机的并行口用下载电缆连接,打开试验台电源。 (3)执行Tools→Programmer命令,将booth_multiplier.sof下载到FPGA 中。 (4)在实验台上通过模式开关选择FPGA-CPU独立调试模式010. (5)将开关CLKSEL拨到0,将短路子DZ3短接且短路子DZ4断开,使FPGA-CPU 所需要的时钟使用正单脉冲时钟。 四、实验现象 五、具体代码实现 端口声明: port ( clk: in std_logic; md : in std_logic_vector(3 downto 0); mr : in std_logic_vector(3 downto 0);

混频器仿真实验报告

混频器仿真实验报告 一.实验目的 (1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力; (2)掌握multisim实现混频器混频的方法和步骤; (3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。 二.实验原理以及实验电路原理图 (一).晶体管混频器电路仿真 本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。 电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。(3)本振信号与基极偏压Eb共同构成时变工作点。由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。 工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。 在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。 (二).模拟乘法器混频电路 模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。 三.实验内容及记录 (一).晶体管混频器电路仿真 1、直流工作点分析 使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。 注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。 2、混频器输出信号“傅里叶分析” 选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为: 基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。在图中指出465KHz中频信号频谱点及其它谐波成分。 注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。

模拟乘法器调幅(AM、DSB、SSB)

模拟乘法器调幅(AM、DSB、SSB) 一、实验目的 1. 掌握用集成模拟乘法器实现全载波调幅、抑止载波双边带调幅和单边带调幅的方法。 2. 研究已调波与调制信号以及载波信号的关系。 3. 掌握调幅系数的测量与计算方法。 4. 通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。 5. 了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。 二、实验内容 1. 调测模拟乘法器MC1496正常工作时的静态值。 2. 实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3. 实现抑止载波的双边带调幅波。 4. 实现单边带调幅。 三、实验原理及实验电路说明 幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 1.集成模拟乘法器的内部结构 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。所以目前无线通信、广播电视等方面应用较多。集成模拟乘法器常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。 (1)MC1496的内部结构 在本实验中采用集成模拟乘法器MC1496来完成调幅作用。MC1496是四象限模拟乘法器,其内部电路图和引脚图如图11-1所示。其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可正可负,以此实现了四象限工作。V7、V8为差分放大器V5与V6的恒流源。 图11-1 MC1496的内部电路及引脚图 2)静态工作点的设定 (1)静态偏置电压的设置 静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V,小于或等于最大允许工作电压。根据MC1496的特性参数,对于图11-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即:

模拟乘法器1496实验报告

实验课程名称:_高频电子线路

五.实验原理与电路设计仿真 1、集成模拟乘法器1496的内部结构 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍MC1496集成模拟乘法器。 (1)MC1496的内部结构 MC1496 是目前常用的平衡调制/解调器。它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。 (a)1496内部电路 (b)1496引脚图 图1 MC1496的内部电路及引脚图 它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。 各引脚功能如下: 1:SIG+ 信号输入正端 2: GADJ 增益调节端 3:GADJ 增益调节端 4: SIG- 信号输入负端 5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端 9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端 13: NC 空脚 14: V- 负电源 (2)Multisim建立MC1496电路模块 启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。被选择的电路部分由周围的方框标示,表示完成子电路的选择。为了能对子电路进行外部连接,需要对子电路添加输入/输出。单击Place / HB/SB Connecter 命令或使用Ctrl+I 快捷操作,屏幕上出现输入/输出符号,

模拟乘法器调幅实验报告

模拟乘法调幅(AM、DSB) 实验报告 姓名: 学号: 班级: 日期:

模拟乘法调幅(A M、DSB )模块4 一、实验目的 1、掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅方法。 2、研究已调波与调制信号以及载波信号的关系。 3、掌握调幅系数的测量与计算方法。 4、通过实验对比全载波调幅、抑止载波双边带调幅波形。 5、了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。 6、掌握用集成模拟乘法器构成调幅与检波电路的方法。 二、实验原理 调幅与检波原理简述: 调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化;而检波则是从调幅波中取出低频信号。 本实验中载波是465KHz 高频信号,10KHz 的低频信号为调制信号。 集成四象限模拟乘法器MC1496简介: 本器件的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频动态增益控制等。它有两个输入端VX 、VY 和一个输出端VO 。一个理想乘法器的输出为VO=KVXVY ,而实际上输出存在着各种误差,其输出的关系为:VO=K (VX +VXOS )(VY+VYOS )+VZOX 。为了得到好的精度,必须消除VXOS 、VYOS 与VZOX 三项失调电压。集成模拟乘法器MC1496是目前常用的平衡调制/解调器,内部电路含有8 个有源晶体管。 MC1496的内部原理图和管脚功能如下图所示: MC1496各引脚功能如下: 1)、SIG+ 信号输入正端 2)、GADJ 增益调节端 3)、GADJ 增益调节端 4)、SIG- 信号输入负端 5)、BIAS 偏置端 6)、OUT+ 正电流输出端 7)、NC 空脚 8)、CAR+ 载波信号输入正端 9)、NC 空脚 10)、CAR- 载波信号输入负端 11)、NC 空脚 12)、OUT- 负电流输出端 13)、NC 空脚 14)、V- 负电源 实验电路说明 用MC1496集成电路构成的调幅器电路如下图所示 14131211109876 54 32 1SIG+GADJ GADJ SIG-BIAS OUT+NC V-NC OUT-NC CAR-NC CAR+ 126 23 14 51 1084

振幅调制器(利用乘法器)

振幅调制器(利用乘法器) 一、研究目的 1.弄清用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二个输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、基本原理 1.普通调幅波 振幅调制是用需传送的信息(调制信号)去控制高频载波的振幅,使其随调制信号线性变化。若载波信号电压为,调制信号为。 则普通调幅波的振幅为: 普通调幅波的数学表示式为: 若 单频调幅波的振幅为: 称为包络函数。 则单频调幅波的数学表示式为:

其中为调幅指数(调幅度),为比例系数。普通调幅波的波形如图5-22所示。 图1普通调幅波的波形 可以看出,已调幅波的包络形状与调制信号一样。从调幅波的波形上看出包络的最大值和最小值分别为: 故可得 图2 过调制调幅波形 普通调幅时;如果,则已调波包络形状与调制信号不一样,这种情况称为过调制,过调制的波形如图5-23所示。

载波分量并不包含信息,调制信号的信息只包含在上下边频内。实际上,调制信号是包含多个频率的复杂信号,如调幅广播所传送的语音信号频率约为50Hz至4.5kH Z,调制后,各个语音频率产生各自的上边频和下边频,迭加后形成上边频带和下边频带,且上、下边频幅度相等且成对出现。 调幅过程实质上是一种频谱搬移过程。经过调制后,调制信号的频谱由低频被搬移到载频附近,成为上、下边频带。 2.抑制载波的双边带调幅 因为载波不包含信息,为了减小不必要的功率浪费,可以只发射上、下边频,而不发射载波,称为(抑制载波的双边带调幅信号)用DSB表示。这种信号的其数学表示式为 双边带调幅信号的振幅为,而普通调幅波高频信号的振幅为,显 然双边带的振幅有正有负,而普通调幅波在时振幅不可能出现负值。单频调制的双边带调幅波各信号波形如图5-24所示。 图3双边带调幅信号的波形 双边带信号的包络仍然是随调制信号变化的, 但它的包络已不能完全准确地反映低频调制信号的变化规律。双边带信号在调制信号的负半周,已调波高频与原载波反相,调制信号的正半周,已调波高频与原载频同相;双边带信号的高频相位在调制电压过零点处跳变180度。另外, 双边带调幅波和普通调幅波所占有的频谱宽度是相同的,为2Fmax。 因为双边带信号不包含载波,所以发送的全部功率都载有信息,功率有效利用率高。 3.单边带调幅 双边带调幅波两个边带都包含调制信号的信息,所以可以进一步把其中的一个边带抑制掉,而只发射一个边

相关文档
最新文档