机器学习算法系列(30):Scikit-Learn总结

机器学习算法系列(30):Scikit-Learn总结
机器学习算法系列(30):Scikit-Learn总结

人工智能之机器学习常见算法

人工智能之机器学习常见算法 摘要机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里小编为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为训练数据,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中垃圾邮件非垃圾邮件,对手写数字识别中的1,2,3,4等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与训练数据的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(LogisTIc Regression)和反向传递神经网络(Back PropagaTIon Neural Network) 非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means 算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预

机器视觉检测的分析简答作业及答案要点学习资料

2012研究生机器视觉课程检测及课程设计内容 一、回答下列问题: 1、什么是机器视觉,它的目标是什么?能否画出机器视觉检测系统的结构方 块图,并说出它们的工作过程原理和与人类视觉的关系? 机器视觉是机器(通常指计算机)对图像进行自动处理并报告“图像中有什么”的过程,也就是说它识别图像中的内容。图像中的内容往往是某些机器零件,而处理的目标不仅要能对机器零件定位,还要能对其进行检验。 原始数据特征向量类别标识 特征度量模式分类器 机器视觉系统的组成框图 2、在机器视觉检测技术中:什么是点视觉技术、一维视觉技术、二维视觉技 术、三维视觉技术、运动视觉技术、彩色视觉技术、非可见光视觉技术等? 能否说出他们的应用领域病句、案例?能否描述它们的技术特点? 答:点视觉:用一个独立变量表示的视觉称之为点视觉。如应用位移传感器测量物体的移动速度。 一维视觉:普通的CCD。 两维视觉:用两个独立变量表示的视觉称之为两维视觉。比如普通的CCD。 三维视觉:用三个独立变量表示的视觉称之为三维视觉。比如用两个相机拍摄(双目视觉);或者使用一个相机和一个辅助光源。 彩色视觉:用颜色作为变量的视觉称之为彩色视觉。物体的颜色是由照 射光源的光谱成分、光线在物体上反射和吸收的情况决定的。比如,一 个蓝色物体在日光下观察呈现蓝色,是由于这个物体将日光中的蓝光 反射出来,而吸收了光谱中的其他部分的光谱,而同样的蓝色物体, 在红色的光源照射下,则呈现红紫色, 非可见光视觉技术:用非可见光作为光源的视觉技术。比如非可见光成像技术。

3、机器视觉检测技术中:光源的种类有哪些?不同光源的特点是什么?光照 方式有几种?不同光照方式的用途是什么?又和技术特点和要求? 机器视觉检测技术中光源有以下几种:荧光灯,卤素灯+光纤导管,LED 光源,激光,紫外光等。几种光源的特点如下: 成本亮度稳定度使用寿命复杂设计温度影响种类名 称 荧光灯低差差一般低一般 卤素灯+光纤导管高好一般差一般差LED光源一般一般好好高低光照方式有以下几种: 背景光法(背光照射)是将被测物置于相机和光源之间。这种照明方式的优点是可将被测物的边缘轮廓清晰地勾勒出来。由于在图像中,被测物所遮挡的部分为黑色,而未遮挡的部分为白色,因此形成“黑白分明”的易于系统分析的图像。此方法被应用于90%的测量系统中。 前景光法(正面照射)是将灯源置于被测物和相机之前。又可分为明场照射和暗场照射。明场照射是为了获得物体的几乎全部信息,照射物体的光在视野范围之内几乎全部反射回去;暗场照射是为了获取物体表面的凹凸,照射物体的光在视野范围之外有部分光反射回去。 同轴光法是将灯源置于被测物和相机之间。 4、机器视觉检测系统中,光学系统的作用是什么?光学器件有哪几种,它们 各自的作用是什么?光学镜头有几种类型,它们各自有何用途?光学镜头有哪些技术参数,各自对测量有什么影响? 答:机器视觉检测系统中,光学系统用来采集物体的轮廓、色彩等信息。 光学器件主要有:镜头、成像器件(CCD和CMOS)、光圈、快门等。 镜头的作用是对成像光线进行调焦等处理,使成像更清晰;成像器件的作用是将光学图像转换成模拟电信号;光圈的作用如同人得瞳孔, 控制入射光的入射量,实现曝光平衡;快门的作用是将想要获取的光学

机器学习的十种经典算法详解

机器学习的十种经典算法详解 毫无疑问,近些年机器学习和人工智能领域受到了越来越多的关注。随着大数据成为当下工业界最火爆的技术趋势,机器学习也借助大数据在预测和推荐方面取得了惊人的成绩。比较有名的机器学习案例包括Netflix根据用户历史浏览行为给用户推荐电影,亚马逊基于用户的历史购买行为来推荐图书。那么,如果你想要学习机器学习的算法,该如何入门呢?就我而言,我的入门课程是在哥本哈根留学时选修的人工智能课程。老师是丹麦科技大学应用数学和计算机专业的全职教授,他的研究方向是逻辑学和人工智能,主要是用逻辑学的方法来建模。课程包括了理论/核心概念的探讨和动手实践两个部分。我们使用的教材是人工智能的经典书籍之一:Peter Norvig教授的《人工智能——一种现代方法》,课程涉及到了智能代理、基于搜索的求解、对抗搜索、概率论、多代理系统、社交化人工智能,以及人工智能的伦理和未来等话题。在课程的后期,我们三个人还组队做了编程项目,实现了基于搜索的简单算法来解决虚拟环境下的交通运输任务。我从课程中学到了非常多的知识,并且打算在这个专题里继续深入学习。在过去几周内,我参与了旧金山地区的多场深度学习、神经网络和数据架构的演讲——还有一场众多知名教授云集的机器学习会议。最重要的是,我在六月初注册了Udacity的《机器学习导论》在线课程,并且在几天前学完了课程内容。在本文中,我想分享几个我从课程中学到的常用机器学习算法。机器学习算法通常可以被分为三大类——监督式学习,非监督式学习和强化学习。监督式学习主要用于一部分数据集(训练数据)有某些可以获取的熟悉(标签),但剩余的样本缺失并且需要预测的场景。非监督式学习主要用于从未标注数据集中挖掘相互之间的隐含关系。强化学习介于两者之间——每一步预测或者行为都或多或少有一些反馈信息,但是却没有准确的标签或者错误提示。由于这是入门级的课程,并没有提及强化学习,但我希望监督式学习和非监督式学习的十个算法足够吊起你的胃口了。监督式学习1.决策树:决策树是一种决策支持工具,它使用树状图或者树状模型来表示决策过程以及后续得到的结果,包括概率事件结果等。请观察下图来理解决策树的结构。 从商业决策的角度来看,决策树就是通过尽可能少的是非判断问题来预测决策正确的概

机械优化设计复习总结.doc

1. 优化设计问题的求解方法:解析解法和数值近似解法。解析解法是指优化对象用数学方程(数学模型)描述,用 数学 解析方法的求解方法。解析法的局限性:数学描述复杂,不便于或不可能用解析方法求解。数值解法:优 化对象无法用数学方程描述,只能通过大量的试验数据或拟合方法构造近似函数式,求其优化解;以数学原理 为指导,通过试验逐步改进得到优化解。数值解法可用于复杂函数的优化解,也可用于没有数学解析表达式的 优化问题。但不能把所有设计参数都完全考虑并表达,只是一个近似的数学描述。数值解法的基本思路:先确 定极小点所在的搜索区间,然后根据区间消去原理不断缩小此区间,从而获得极小点的数值近似解。 2. 优化的数学模型包含的三个基本要素:设计变量、约束条件(等式约束和不等式约束)、目标函数(一般使得目 标 函数达到极小值)。 3. 机械优化设计中,两类设计方法:优化准则法和数学规划法。 优化准则法:x ;+, = c k x k (为一对角矩阵) 数学规划法:X k+x =x k a k d k {a k \d k 分别为适当步长\某一搜索方向一一数学规划法的核心) 4. 机械优化设计问题一般是非线性规划问题,实质上是多元非线性函数的极小化问题。重点知识点:等式约束优 化问 题的极值问题和不等式约束优化问题的极值条件。 5. 对于二元以上的函数,方向导数为某一方向的偏导数。 函数沿某一方向的方向导数等于函数在该点处的梯度与这一方向单位向量的内积。梯度方向是函数值变化最快的方 向(最速上升方向),建议用单位向暈表示,而梯度的模是函数变化率的最大值。 6. 多元函数的泰勒展开。 7. 极值条件是指目标函数取得极小值吋极值点应满足的条件。某点取得极值,在此点函数的一阶导数为零,极值 点的 必要条件:极值点必在驻点处取得。用函数的二阶倒数来检验驻点是否为极值点。二阶倒数大于冬,取得 极小值。二阶导数等于零时,判断开始不为零的导数阶数如果是偶次,则为极值点,奇次则为拐点。二元函数 在某点取得极值的充分条件是在该点岀的海赛矩阵正定。极值点反映函数在某点附近的局部性质。 8. 凸集、凸函数、凸规划。凸规划问题的任何局部最优解也就是全局最优点。凸集是指一个点集或一个区域内, 连接 英中任意两点的线段上的所有元素都包含在该集合内。性质:凸集乘上某实数、两凸集相加、两凸集的交 集仍是凸集。凸函数:连接凸集定义域内任意两点的线段上,函数值总小于或等于用任意两点函数值做线性内 插所得的值。数学表达:/[^+(l-a )x 2]

机器学习常见算法分类汇总

机器学习常见算法分类汇总 ?作者:王萌 ?星期三, 六月25, 2014 ?Big Data, 大数据, 应用, 热点, 计算 ?10条评论 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习:

在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习:

机器人视觉算法 参考答案

1.什么是机器视觉 【概述】 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分 CMOS 和 CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。【基本构造】 一个典型的工业机器视觉系统包括:光源、镜头、 CCD 照相机、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元等。 系统可再分为: 主端电脑(Host Computer) 影像撷取卡(Frame Grabber)与影像处理器影像摄影机 CCTV镜头显微镜头照明设备: Halogen光源 LED光源 高周波萤光灯源闪光灯源其他特殊光源影像显示器 LCD 机构及控制系统 PLC、PC-Base控制器 精密桌台伺服运动机台 【工作原理】 机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格 / 不合格、有 / 无等,实现自动识别功能。 【机器视觉系统的典型结构】 一个典型的机器视觉系统包括以下五大块: 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 2.镜头FOV(Field Of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点 / 节点⑦畸变 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。 4.图像采集卡 图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。 比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。 5.视觉处理器 视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集

机械优化设计复合形方法及源程序

机械优化设计——复合形方法及源程序 (一) 题目:用复合形法求约束优化问题 ()()()2 22 1645min -+-=x x x f ;0642 22 11≤--=x x g ;01013≤-=x g 的最优解。 基本思路:在可行域中构造一个具有K 个顶点的初始复合形。对该复合形各顶点的目标函数值进行比较,找到目标函数值最大的顶点(即最坏点),然后按一定的法则求出目标函数值有所下降的可行的新点,并用此点代替最坏点,构成新的复合形,复合形的形状每改变一次,就向最优点移动一步,直至逼近最优点。 (二) 复合形法的计算步骤 1)选择复合形的顶点数k ,一般取n k n 21≤≤+,在可行域内构成具有k 个顶点的初始 复合形。 2)计算复合形个顶点的目标函数值,比较其大小,找出最好点x L 、最坏点x H 、及此坏点 x G.. 3)计算除去最坏点x H 以外的(k-1)个顶点的中心x C 。判别x C 是否可行,若x C 为可行点, 则转步骤4);若x C 为非可行点,则重新确定设计变量的下限和上限值,即令 C L x b x a ==,,然后转步骤1),重新构造初始复合形。 4)按式()H C C R x x x x -+=α计算反射点x R,必要时改变反射系数α的值,直至反射成 功,即满足式()()()()H R R j x f x f m j x g

数字图像处理与机器视觉 2015-2016期末试卷参考答案

数字图像处理与机器视觉 2015-2016期末试卷参考答案南昌大学研究生2015,2016年第2学期期末考试试卷 试卷编号: (开)卷课程名称: 数字图像处理与机器视觉适用班级: 2015级硕士研究生姓名: 学号: 专业: 学院: 机电工程学院考试日期: 题号一二三四五六七八九十总分累分人 签名题分 10 15 15 10 20 30 100 得分 考生注意事项:1、本试卷共4页,请查看试卷中是否有缺页或破损。如有请报告以便更换。 2、使用A4答题纸,注意装订线。 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其 代号填在题前的括号内。每小题1分,共10分) ( b )1.图像与灰度直方图间的对应关系是: a.一一对应 b.多对一 c.一对多 d.都不对 ( d )2. 下列算法中属于图象平滑处理的是: a.Hough变换法 b.状态法 c.高通滤波 d. 中值滤波 ( c )3.下列算法中属于图象锐化处理的是: a.局部平均法 b.最均匀平滑法 c.高通滤波 d. 中值滤波 ( d )4. 下列图象边缘增强算子中对噪声最敏感的是: a.梯度算子 b.Prewitt算子 c.Roberts算子 d. Laplacian算子 ( b )5. 下列算法中属于点处理的是: a.梯度锐化 b.二值化 c.傅立叶变换 d.中值滤波 ( d )6.下列算子中利用边缘灰度变化的二阶导数特性检测边缘的是:

a.梯度算子 b.Prewitt算子 c.Roberts算子 d. Laplacian算子 ( c )7.将灰度图像转换成二值图像的命令为: a.ind2gray b.ind2rgb c.im2bw d.ind2bw ( d )8.数字图像处理的研究内容不包括: a.图像数字化 b.图像增强 c.图像分割 d.数字图像存储 ( d )9.对一幅100?100像元的图象,若每像元用,bit表示其灰度值,经霍夫曼编码后图象的压缩比为2:1,则压缩图象的数据量为: a.2500bit b.20000bit c.5000bit d.40000bit ( b )10.图像灰度方差说明了图像哪一个属性: a.平均灰度 b.图像对比度 c.图像整体亮度 d.图像细节 第 1 页 二、填空题(每空1分,共15分) l. 图像处理中常用的两种邻域是 4-邻域和 8-邻域。 2.图象平滑既可在空间域中进行,也可在频率域中进行。 3.常用的灰度内插法有最近邻元法、双线性内插法和三次内插法。 4. 低通滤波法是使高频成分受到抑制而让低频成分顺利通过,从而实现图像平滑。 5.Prewitt边缘检测算子对应的模板是和。 -1 -1 -1 -1 0 1 0 0 0 -1 0 1 1 1 1 -1 0 1 (不分先后) 6.图像压缩系统是有编码器和解码器两个截然不同的结构块组成的。 7.灰度直方图的纵坐标是该灰度出现的频率。 8.依据图象的保真度,图象编码可分为无失真(无损)编码和有失真(有损)编码两 种。

机器学习复习总结

机器学习复习总结 选择目标函数的表示选择函数逼近算法最终设计选择训练经验第一个关键属性,训练经验能否为系统的决策提供直接或间接的反馈第二个重要属性,学习器在多大程度上控制样例序列第三个重要属性,训练样例的分布能多好地表示实例分布,通过样例来衡量最终系统的性能最终设计执行系统用学会的目标函数来解决给定的任务鉴定器以对弈的路线或历史记录作为输入,输出目标函数的一系列训练样例。泛化器以训练样例为输入,产生一个输出假设,作为它对目标函数的估计。实验生成器以当前的假设作为输入,输出一个新的问题,供执行系统去探索。第二章一致,满足,覆盖的定义:一致:一个假设h与训练样例集合D一致,当且仅当对D中每一个样例都有h(x)=c(x),即Consistent(h,D)?("?D)h(x)=c(x)一个样例x在h (x)=1时称为满足假设h,无论x是目标概念的正例还是反例。当一假设能正确划分一个正例时,称该假设覆盖该正例。变型空间(version space):与训练样例一致的所有假设组成的集合,表示了目标概念的所有合理的变型,VS H,D={h?H|Consistent(h,D)}第三章决策树适用问题的特征:实例由“属性-值”对(pair)表示目标函数具有离散的输出值可能需要析取的描述训练数据可以包含错误训练数据可以包含缺少属性值的实例ID3算法特点:n 搜索完整的假设空间(也就是说,决

策树空间能够表示定义在离散实例上的任何离散值函数)n 从根向下推断决策树,为每个要加入树的新决策分支贪婪地选择最佳的属性。n 归纳偏置,优先选择较小的树观察ID3的搜索空间和搜索策略,认识到这个算法的优势和不足假设空间包含所有的决策树,它是关于现有属性的有限离散值函数的一个完整空间维护单一的当前假设(不同于第二章的变型空间候选消除算法)不进行回溯,可能收敛到局部最优每一步使用所有的训练样例,不同于基于单独的训练样例递增作出决定,容错性增强ID3和候选消除算法的比较ID3的搜索范围是一个完整的假设空间,但不彻底地搜索这个空间候选消除算法的搜索范围是不完整的假设空间,但彻底地搜索这个空间ID3的归纳偏置完全是搜索策略排序假设的结果,来自搜索策略候选消除算法完全是假设表示的表达能力的结果,来自对搜索空间的定义过度拟合:对于一个假设,当存在其他的假设对训练样例的拟合比它差,但事实上在实例的整个分布上表现得却更好时,我们说这个假设过度拟合训练样例定义:给定一个假设空间H,一个假设h?H,如果存在其他的假设h’?H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’的错误率比h小,那么就说假设h过度拟合训练数据导致过度拟合的原因 1、一种可能原因是训练样例含有随机错误或噪声 2、特别是当少量的样例被关联到叶子节点时,很可能出现巧合的规律性,使得一些属性恰巧可以很好地分割样例,但却与实

机器视觉基本介绍

机器视觉基本概念 2018.1.29 机器视觉系统 作用:利用机器代替人眼来做各种测量和判断。 它是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。 机器视觉系统的特点:是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。可以在最快的生产线上对产品进行测量、引导、检测、和识别,并能保质保量的完成生产任务 视觉检测:指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。是用于生产、装配或包装的有价值的机制。它在检测缺陷和防止缺陷产品被配送到消费者的功能方面具有不可估量的价值。 照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。 光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。 照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 镜头 FOV(Field of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比) 镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点/节点⑦畸变

机械优化设计方法基本理论

机械优化设计方法基本理论 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 1.2 约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束。按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束。针对优化设计设计数学模型要素的不同情况,可将优化设计方法分类如下。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

机器视觉算法开发软件----HALCON

机器视觉算法开发软件----HALCON HALCON是世界范围内广泛使用的机器视觉软件,用户可以利用其开放式结构快速开发图像处理和机器视觉软件。 HALCON提供交互式的编程环境HDevelop。可在Windows,Linux,Unix下使用,使用HDevelop可使用户快速有效的解决图像处理问题。HDevelop含有多个对话框工具,实时交互检查图像的性质,比如灰度直方图,区域特征直方图,放大缩小等,并能用颜色标识动态显示任意特征阈值分割的效果,快速准确的为程序找到合适的参数设置。HDevelop程序提供进程,语法检查,建议参数值设置,可在任意位置开始或结束,动态跟踪所有控制变量和图标变量,以便查看每一步的处理效果。当用户对于机器视觉编程代码完成后,HDevelop可将此部分代码直接转化为C++,C或VB源代码,以方便将其集成到应用系统中。 HALCON提供交互式的模板描述文件生成工具HmatchIt,。可交互式地为一个模型定义一个任意形状的感性趣区域,HmatchIt优化给出此创建模型的合适参数, 自动生成模板描述文件以供程序调用,快速为基于形状匹配和结构匹配的用户找到实现目标识别和匹配应用的合适的参数设置。 HALCON提供支持多CPU处理器的交互式并行编程环境Paralell Develop, 其继承了单处理器板HDevelop的所有特点,在多处理器计算机上会自动将数据比如图像分配给多个线程,每一个线程对应一个处理器,用户无需改动已有的HALCON程序,就立即获得显

著的速度提升。 HALCON中HDevelop Demo中包含680个应用案例,根据不同的工业领域,不同的用法和算法分类列出,用户可以根据自己的需求方便的找到相对应的类似案例,快速掌握其函数用法。 HALCON提供的函数使用说明文档,详细介绍每个函数的功能和参数用法,提供在不用开发语言(VC,VB,.NET等)下的开发手册,而且提供一些算法(例如3D)的原理性介绍,给用户的学习提供帮助。 特点:原型化的开发平台,自动语法检查; 动态察看控制和图标变量; 支持多种操作系统; 支持多CPU; 支持多种文件格式; 自动语言转化功能; 与硬件无关,可支持各种硬件; 应用领域:医学图像分析; 2D/3D测量; 立体视觉; 匹配定位; 光学字符识别; Blob分析;

机械优化设计复习总结

10. 1. 优化设计问题的求解方法:解析解法和数值近似解法。解析解法是指优化对象用数学方程(数学模型)描述,用数学解析 方法的求解方法。解析法的局限性:数学描述复杂,不便于或不可能用解析方法求解。数值解法:优化对象无法用数学 方程描述,只能通过大量的试验数据或拟合方法构造近似函数式,求其优化解;以数学原理为指导,通过试验逐步改进 得到优化解。数值解法可用于复 杂函数的优化解,也可用于没有数学解析表达式的优化问题。但不能把所有设计参数都 完全考虑并表达,只是一个近似的数学描述。数值解法的基本思路:先确定极小点所在的搜索区间,然后根据区间消去 原理不断缩小此区间,从而获得极小点的数值近似解。 2. 优化的数学模型包含的三个基本要素:设计变量、约束条件(等式约束和不等式约束)、目标函数(一般使得目标函 数达到极小值)。 3. 机械优化设计中, 两类设计方法:优化准则法和数学规划法。 k 1 k k 优化准则法:X c X (为一对角矩阵) k 1 数学规划法:X k 1 k k k X k d ( k d 分别为适当步长某一搜索方向一一数学规划法的核心) 4. 机械优化设计问题一般是非线性规划问题, 实质上是多元非线性函数的极小化问题。 的极值问题和不等式约束优化问题的极值条件。 5. 对于二元以上的函数,方向导数为某一方向的偏导数。 重点知识点:等式约束优化问题 f | X o *kCOS i d i 1 X i 函数沿某一方向的方向导数等于函数在该点处的梯度与这一方向单位向量的内积。 速上升方向),建议用 单位向量 表示,而梯度的模是函数变化率的最大值。 6. 梯度方向是函数值变化最快的方向 (最 7. 8. 9. 多元函数的泰勒展开。 f X f x 0 T f X o -X T G X o 2 f X o f X i f X 2 X , X 2 1 2 X1 X 2 2f 2f 为X 2 2 f X 1 X 2 X 1 2 f X 2 -- 2 X 2 海赛矩阵: x o 2 f ~2 X 1 2 f 2 f X l X 2 X 1 X 2 2 f 2 X 2 (对称方 阵) 极值条件是指目标函数取得极小值时极值点应满足的条件。 某点取得极值, 要条件:极值点必在驻点处取得。用函数的二阶倒数来检验驻点是否为极值点。 导数等于零时,判断开始不为零的导数阶数如果是偶次,则为极值点, 在此点函数的一阶导数为零, 极值点的必 二阶倒数大于零,取得极小值 。二阶 奇次 则为拐点。二元函数在某点取得极值的充 分条件是在该点岀的海赛矩阵正定。 极值点反映函数在某点附近的局部性质 凸集、凸函数、凸规划。 凸规划问题的任何局部最优解也就是全局最优点 中任意两点 的线段上的所有元素都包含在该集合内。 凸函数:连接凸集定义域内任意两点的线段上, 。凸集是指一个点集或一个区域内,连接其 性质: 凸集乘上某实数、两凸集相加、两凸集的交集仍是凸集。 函数值总小于或等于用任意两点函数值做线性内插所得的值。 数学表 达:f ax, 1 a x 2 f X i f X 2 0 1,若两式均去掉等号,则 f X 称作严格凸函数。凸 函数同样满足倍乘, 加法和倍乘加仍为凸函数的三条基本性质。 优化问题。 等式约束优化问题的极值条件。两种处理方法:消元法和拉格朗日乘子法。也分别称作降维法和升维法。消元法 等式约束条件的一个变量表示成另一个变量的函数。减少了变量的个数。拉格朗日乘子法是通过增加变量 约束优化问题变成无约束优化问题,增加了变量的个数。 不等式约束优化问题的极值条件。不等式约束的多元函数极值的必要条件为库恩塔克条件。库恩塔克条件: 凸规划针对目标函数和约束条件均为凸函数是的约束 :将 将等式

机器视觉算法基础(DOC)

机器视觉 基于visual C++ 的数字图像处理

摘要 机器视觉就是用机器代替人眼来做测量和判断。它通过图像摄取装置将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来获取信息。本文主要介绍的是数字图像处理中的一些简单应用,通过对图像进行滤波、增强、灰度变换、提取特征等处理来获取图像的信息,达到使图像更清晰或提取有用信息的目的。 关键字:机器视觉、灰度图处理、滤波、边缘提取、连通区域

目录 摘要 (2) 目录 (3) 1 概述 (4) 2技术路线 (4) 3实现方法 (5) 3.1灰度图转换 (5) 3.2 直方图均衡化 (6) 3.3均值滤波和中值滤波 (6) 3.4灰度变换 (7) 3.5拉普拉斯算子 (8) 4 轮廓提取 (9) 5 数米粒数目 (15) 6 存在的问题 ................................................................................................ 错误!未定义书签。 7 总结 ............................................................................................................ 错误!未定义书签。 8 致谢 ............................................................................................................ 错误!未定义书签。参考文献 . (17)

机械优化设计课程教学大纲

《机械优化设计》课程教学大纲 一.课程基本信息 开课单位:机械工程学院 英文名称:Mechanical Optimize Design 学时:总计48学时,其中理论授课36学时,实验(含上机)12学时 学分:3.0学分 面向对象:机械设计制造及其自动化,机械电子工程等本科专业 先修课程:高等数学,线性代数,计算机程序设计,工程力学,机械原理,机械设计 教材:《机械优化设计》,孙靖民主编,机械工业出版社,2012年第 5版 主要教学参考书目或资料: 1.《机械优化设计》,陈立周主编,上海科技出版社,1982年 2.《机械优化设计基础》,高健主编,机械工业出版社,2000年 3.其它教学参考数目在课程教学工作实施前另行确定 二.教学目的和任务 优化设计是60年代以来发展起来的一门新学科,它是将最优化方法和计算机技术结合、应用于设计领域而产生的一种现代设计方法。利用优化设计方法可以从众多的设计方案中寻找最佳方案,加快设计过程,缩短设计周期,从而大大提高设计效率和质量。优化设计方法目前已经在机械工程、结构工程、控制工程、交通工程和经济管理等领域得到广泛应用。在机械设计中采用最优化方法,可以加速产品的研发过程,提高产品质量,降低成本,从而达到增加经济效益的目的。学生通过学习《机械优化设计》课程,可以掌握优化设计的基本原理和方法,熟悉建立最优化问题数学模型的基本过程,初步具备对工程中的优化设计问题进行建模、编程和计算的应用能力,为以后从事有关的工程技术工作和科学研究工作打下一定的基础。 三.教学目标与要求 本门课程通过授课、计算机编程等教学环节,使学生了解优化设计的基本思想,优化设计在机械中的作用及其发展概况。初步掌握建立数学模型的方法,掌握优化方法和使用MATLAB优化工具箱能力。并具备一定的将机械工程问题转化为最优化问题并求解的应用能力 四.教学内容、学时分配及其基本要求 第一章优化设计概述(2学时) (一)教学内容 1、课程的性质、优化的含义;优化方法的发展与应用;机械优化设计的内容及目的;机械优化设计的一般过程 2、机械优化设计的基本概念和基本术语;优化设计的数学模型;优化问题的几何描述;优化设计的基本方法 (二)基本要求

机器学习10大经典算法.

1、C4.5 机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。 决策树学习也是数据挖掘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,他由他的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。决策树同时也可以依靠计算条件概率来构造。决策树如果依靠数学的计算方法可以取得更加理想的效果。决策树一般都是自上而下的来生成的。 选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。从根到叶子节点都有一条路径,这条路径就是一条“规则”。决策树可以是二叉的,也可以是多叉的。对每个节点的衡量: 1)通过该节点的记录数 2)如果是叶子节点的话,分类的路径 3)对叶子节点正确分类的比例。 有些规则的效果可以比其他的一些规则要好。由于ID3算法在实际应用中存在一些问题,于是Quilan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。相信大家对ID3算法都很.熟悉了,这里就不做介绍。 C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

几种机器学习算法原理入门教程

几种机器学习算法原理入门教程 一、机器学习的过程 机器学习的过程:从本质上来说,就是通过一堆的训练数据找到一个与理想函数(f)相接近的函数。 在理想情况下,对于任何适合使用机器学习的问题,在理论上都是会存在一个最优的函数让每个参数都有一个最合适的权重值,但在现实应用中不一定能这么准确得找到这个函数。所以,我们要去找与这个理想函数相接近的函数。只要是能够满足我们的使用的函数,我们就认为是一个好的函数。 这个训练数据的过程通常也被解释为: 在一堆的假设函数(Hypothesis set)中,它是包含了各种各样的假设,其中包括好的和坏的假设。 我们需要做的就是:从这一堆假设函数中挑选出它认为最好的假设函数(g)——这个假设函数是与理想函数(f)最接近的。

机器学习这个过程就像是:在数学上,我们知道了有一个方程和一些点的坐标,用这些点来求这个方程的未知项从而得出完整的方程。 但在机器学习上,我们往往很难解出来这个完整的方程是什么。所以,我们只能通过各种手段求最接近理想情况下的未知项取值,使得这个结果最接近原本的方程。 二、什么问题适合用机器学习解决 机器学习不是万能的,并不能解决所有的问题。 通过以上机器学习的过程可以看出来,实质上,机器学习是:通过已知经验找到规律来进行预测。 银行想知道应该发放多少贷款给某个客户时,可以根据过往成功放贷的数据找出每个贷款区间的人群特点、自身的房车资产状况等,再看看这个客户的特点符合哪个区间,以此去确定应该发放多少贷款,这就是适合用机器学习去解决的问题。

对于适合用机器学习解决的问题,台大的林轩田教授为我们总结了三个要素: 1.有规律可以学习 2.编程很难做到 3.有能够学习到规律的数据 只要满足这三个条件的问题,我们都可以挑选合适的算法去解决。 基于以上的条件,通常我们可以用机器学习解决三类问题: 1.预测(回归):根据已知数据和模型,预测不同客户应该发放的贷款 额度是多少 2.判别(分类):与预测有点类似,也是根据模型判别这个客户属于过 往哪一类客户的概率有多大 3.寻找关键因素:客户的属性非常多,通过模型我们可以找出对放贷影 响最大的因素是什么 三、几种常见的模型和算法

相关文档
最新文档