数值分析第一章练习

数值分析第一章练习
数值分析第一章练习

第一章习题

一、填空题

1、为了使计算 3

2)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为 ,为了减少舍入误差,应将表达式

19992001-改写为 。

2、若a=2.42315是2.42247的近似值,则a 有( )位有效数字.

3、求方程011015.02=--x x 的根,要求结果至少具有6位有效数字。已知

0099.10110203≈,则两个根为=1x ,=2x .(要有计算过程和结果)

4、近似值*0.231x =关于真值229.0=x 有( )位有效数字;

5*x 的相对误差的( )倍;

6、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );

7、计算方法主要研究( )误差和( )误差;

8、722,

141.3,142.3分别作为π的近似值有 , , 位有效数字。 9、设A 0.231x =是真值0.229T x =的近似值,则A x 有_______位有效数字。 10、按四舍五入原则数2.7182818与8.000033具有五位有效数字的近似值分别为 和 。

11、-43.578是舍入得到的近似值,它有 ( ) 位有效数字,相对误差限为

( )。

二、选择题

1、用1+3

x 近似表示31x +所产生的误差是( )误差。 A. 舍入 B. 观测 C. 模型 D. 截断

2、-324.7500是舍入得到的近似值,它有( )位有效数字。

A. 5

B. 6

C. 7

D. 8

3、用s *=2

1g t 2表示自由落体运动距离与时间的关系式 ( g 为重力加速度 ), s t 是在时间t 内的实际距离,则s t - s *是( )误差。

A. 舍入

B. 观测

C. 模型

D. 截断

4、舍入误差是( )产生的误差。

A. 只取有限位数

B.模型准确值与用数值方法求得的准确值

C. 观察与测量

D.数学模型准确值与实际值

5、3.141580是π的有( )位有效数字的近似值。

A. 6

B. 5

C. 4

D. 7

三、计算题

1、为了使20的近似值的相对误差限小于0.1%,要取几位有效数字?

2、设x>0,x*的相对误差为δ,求f(x)=ln x 的误差限。

3、为了使20的近似值的相对误差限小于0.1%,要取几位有效数字?

四、简述题

1、叙述在数值运算中,误差分析的方法与原则是什么?

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

数值分析习题与答案

第一章绪论 习题一?1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得?有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1)?(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)?(2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用 :式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newto n插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值??误差限 ,因,

故? 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 ?误差限,故? 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式(5.8), ?令 因?得 3. 若,求和.

解:由均差与导数关系 ?于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有?而当P=n +1时 ?于是得 5. 求证. 解:解:只要按差分定义直接展开得 ? 6. 已知的函数表

数值分析习题解答4

第四章 数值积分方法与数值微分 (习 题) 1.直接验证梯形公式(1.2)与中矩形公式(1.3)具有1次代数精度,而辛甫生公式(1.4)则具有3次代数精度. 解 梯形公式: ?+-≈ b a b f a f a b dx x f )]()([2 )(. 矩形公式: ?+-≈b a b a f a b dx x f )2 ()()(. 以上两求积公式以 ,1)(=x f x 代入公式两边,结果相等,而以2 )(x x f = 代入公式两边,其结果不相等.故梯形公式的代数精度等于1. Simpson 公式: ? +++-≈ b a b f b a f a f a b dx x f )]()2 (4)([6)(. 容易验证:以2 ,,1)(x x x f =分别代入Simpson 公式两边,结果相等。 以3 )(x x f =代入 左边= )(444 13a b dx x b a -=? 右边=[ ] 32 322322332 3 3 3 36246b ab b a a a b b b a a a b +++-=??? ?????+??? ??++- = ).(4 144 a b - Simpson 公式两边,结果相等。而以4 x 代入Simpson 公式两边,其结果 不相等。故Simpson 求积公式的代数精度为3. □ 3.对于? =h dx x f I 30 )(的数值积分公式? = h h dx x p I 30 )(,其中)(x p 为对)(x f 在 h h x 2,,0=进行插值的2次多项式.证明:)()0(8 354h O f h I I h +'''?=-. 证明: )(x P 为)(x f 于h h x 2,,0=进行插值的二次多项式,则: )()()(x R x P x f += 其中: )2()(! 3) ()(h x h x x f x R --'''=ξ. 求积分公式误差 ? ?-= h h dx x P dx x f f E 3030 )()()( ? --'''=h dx h x h x x f 30 )2()(! 3) (ξ

第五章习题解答_数值分析

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解: (1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用 134,,x x x ===,9156,,y y y ===构造如下差商表: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 ()()()02222 03-x 150 x x x -=117513506563-04.()()()(..).x f L R L x N x x x --≈= -≈- ()()()3222203-154 x x -=1175135-1.0938-04 .()()()(..)x x f N R x L x N x x x --≈=-≈- 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑ ②00110001211()()(,,,)()()n k i i i n n k l x k n x x x k n =?=?==??-=+? ∑ 其中01,,,n x x x 为互异的插值节点。 证明: ①由Lagrange 插值多项式的误差表达式10 1()()()()()!n n i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值分析1-4习题及答案

1、 0.1%,要取几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 2、若* 12.30x =是经过四舍五入得到的近似数,则它有几位有效数字? ( c ) (a) 2 (b) 3 (c) 4 (d) 5 3、已知n +1个互异节点(x 0,y 0), (x 1,y 1),…, (x n ,y n )和过这些点的拉格朗日插值基函数l k (x )(k =0,1,2,…,n ),且ω(x )=(x -x 0) (x -x 1)… (x -x n ).则n 阶差商f (x 0,x 1,…, x n )= ( ) (a) ∑=n k k k y x l 0 )( (b) ∑='n k k k k x l y 0)( (c) ∑=n k k k x y 0)(ω (d) ∑='n k k k x y 0)(ω 4、已知由数据(0,0),(0.5,y ),(1,3),(2,2)构造出的三次插值多项式 33()6 P x x y 的 的系数是,则 等于 ( ) (a) -1.5 (b) 1 (c) 5.5 (d) 4.25 5、设(0,1,2,3,4)i x i =为互异结点,()i l x 为拉格朗日插值基函数,则 4 2 () ()i i i x x l x =-∑等于 ( a ) (a) 0 (b) 1 (c) 2 (d) 4 4()[,],()()(),()(),( )(), ' () ' (),22 ()()_________________________f x C a b H x a b a b H a f a H b f b H f H a f a f x H x ∈++====-=设是满足下列插值条件的三次多项式:则插值余项 1、 是以0,1,2为节点的三次样条函数,则b=-2,c=3 2、 已知(1)0,(1)3,(2)4,f f f =-=-=写出()f x 的牛顿插值多项式 2()P x =___2537 623x x +-__,其余项表达式 R(x)=__() (1)(1)(4) [1,4]6 f x x x ξξ'''-+-∈-_______________________ 3、 确定求积公式1 0121 ()(1)(0)'(1)f x dx A f A f A f -≈-++? 中的待定参数,使其代数精度 尽量高,则A 0=_ 29__________, A 1=__169________, A 2=_29 _______,代数精度=__2_________。

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析习题

习题1 1. 填空题 (1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免 误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字. 3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差. 4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限. 95123450304051104000003346087510., ., , ., .x x x x x -==?===? 5. 证明1.2.3之定理1.1. 6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。(假定钢珠为标准的球形) 7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差. 8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字. 9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有 r r xf x f x k x k f x εε'≈= () (())(),() 其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2 x π ≈时是病态问题. 11. 定义多元函数运算 1 1 1,,(),n n i i i i i i S c x c x εε====≤∑∑其中 求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:

《数值分析》第五章答案

习题5 1.导出如下3个求积公式,并给出截断误差的表达式。 (1) 左矩形公式:?-≈b a a b a f dx x f ))(()( (2) 右矩形公式:))(()(a b b f dx x f b a -≈? (3) 中矩形公式:?-+≈b a a b b a f dx x f ))(2 ( )( 解:(1) )()(a f x f ≈, )()()()(a b a f dx a f dx x f b a b a -=≈?? (2) )()(b f x f ≈,??-=≈b a b a a b a f dx b f dx x f ))(()()( )()(2 1)()()()(2 ηηξf a b dx b x f dx b x f b a b a '--=-'=-'=??,),(,b a ∈ηξ (3) 法1 )2 ( )(b a f x f +≈ , 法2 可以验证所给公式具有1次代数精度。作一次多项式 )(x H 满足 )2()2( b a f b a H +=+,)2 ()2(b a f b a H +'=+',则有 2 )2 )((!21)()(b a x f x H x f +-''= -ξ, ),(b a ∈ξ 于是 2.考察下列求积公式具有几次代数精度: (1) ?'+ ≈1 )1(2 1 )0()(f f dx x f ; (2) )3 1()31()(1 1f f dx x f +- ≈?-。 解: (1)当1)(=x f 时,左=1,右=1+0=1,左=右; 当x x f =)(时,左21= ,右=2 1 210=+,左=右; 当2 )(x x f =时,左=3 1 ,右=1,左≠右,代数精度为1。

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值计算第四章课后习题答案

()()()()()()()()()收敛较慢 代入上式得:将解: 收敛速度次并分析该迭代公式的迭代的根求方程 取试用迭代公式∴≠<<*'*+++-='∴+*+*=*∴=+?+?? ? ??===++= =∴++= ==-++=++=++014.01022220||10 2202613381013202132020 132010212010220. 2.0 20102110220 4.1222 222212012123021x x x x x x x x x x x x x x x x x x x x x x x x k k k k k k k ?????? )))()()()[]()()[])49998.0cos 215.0cos 2 1,022,00cos 2 102 12,0210,2,0.cos 2 10sin 2 11,cos 2 113cos 2 12; 1.0cos 2 12.4120101==== ==->-=<-=-=>+='-===-+x x x x x x x f f x x x f x x f x x x f x x x x k k 则 取上有一个根在所以上在为单调递增函数故则令解: 位有效数字求出这些根,精确到用迭代公式分析该方程有几个根给定方程ππππ

500 .0105.0102.0||3412≈*?

数值分析第五章学习小结【计算方法】

第五章最小二乘法与曲线拟合小结 一、本章知识梳理 1、 从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差 (i=0,1,…,m) (i=0,1,…,m)绝对值的最大值,即误差向量 的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差 平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合 中常采用误差平方和来度量误差 (i=0,1,…,m)的整体大小。 数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函 数类中,求,使误差(i=0,1,…,m)的平方和最小,即 从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小 的曲线(图6-1)。函数称为拟合函数或最小二乘解,求拟合 函数的方法称为曲线拟合的最小二乘法。 2、多项式拟合 假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得 (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。 显然 为的多元函数,因此上述问题即为求的极值问题。由多元函数求极值的必要条件,得 (2) 即

(3) (3)是关于的线性方程组,用矩阵表示为 (4) 式(3)或式(4)称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。 从式(4)中解出 (k=0,1,…,n),从而可得多项式 (5) 可以证明,式(5)中的满足式(1),即为所求的拟合多项式。我 们把称为最小二乘拟合多项式的平方误差,记作 由式(2)可得 (6) 多项式拟合的一般方法可归纳为以下几步: (1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n; (2) 列表计算和; (3) 写出正规方程组,求出; (4) 写出拟合多项式。 在实际应用中,或;当时所得的拟合多项式就是拉格朗日或牛 顿插值多项式。 3、曲线拟合: 曲线拟合,即把一组数据拟合为曲线,需遵循最小二乘法。常用双曲线型和指数型函数。

数值分析 第五章习题

第五章 习 题 1. 用高斯消去法解方程组 123234011921261x x x ????????????=??????????????????? 2. 用LU 分解,将第1题中的系数矩阵分解为L 和U 的乘积,L 是对角线元素为1的下三角矩阵,U 是上三角矩阵. 3. 用平方根法和T LDL 分解为求解方程组 123121332522334x x x x x x x ++=??+=??+=? 4. 证明 (1)两个下三角矩阵的乘积仍为下三角矩阵. (2)下三角矩阵之逆仍为下三角矩阵. 5. 用列主元素消去法解方程组 1231231 233472212320x x x x x x x x x ?+=???+?=?????=? 取4位数字计算. 6. 对四阶Hilbert 矩阵为系数的方程组 12341234 1234 12341111 234111102345111103456111104 567x x x x x x x x x x x x x x x x ?+++=???+++=???+++=???+++=? 试求其系数方程组A 的条件数()cond A ∞并分析方程组的性态。 7. 如果A 是一个对称正定矩阵,且带宽为21m +,证明在A 的三角分解T A LL =中出现的矩阵L 也是带状矩阵. 8. 设有三对角方程组

11121 2122232 b x c x d a x b x c x d +=+++= (121111) 1n n n n n n n n n n n n a x b x c x d a x b x d ???????++=+= 其系数矩阵有严格对角优势. 试写出用LU 分解求其解的计算公式. 9. 画出2R 中满足下列不等式的集合. (1)11x ≤ (2)21x ≤ (3)1x ∞≤ 10. 求证1I ≥,11A A ?≥. 11. 试证明2 21A A A ∞≤ 12. 对矩阵 2100121001210012A ????????=???????? 求A ∞,2A ,1A 和2()Cond A . 13. 比较下面两个方程组的解. 123123123111 2311102341110345x x x x x x x x x ?++=???++=???++=?? ,1231231231.000.500.3310.500.330.2500.330.250.200x x x x x x x x x ++=??++=??++=?

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析第五章答案

数值分析第五章答案 【篇一:数值分析第五版计算实习题】 第二章 2-1 程序: clear;clc; x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:); or j=2:n %求差商 for i=n:-1:j c(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end end syms x df d; df(1)=1;d(1)=y1(1); for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i)*df(i); end disp(4次牛顿插值多项式); p4=vpa(collect((sum(d))),5) %p4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, variational);%调用三次样条函数 q=pp.coefs; disp(三次样条函数); for i=1:4 s=q(i,:)*[(x-x1(i))^3;(x-x1(i))^2;(x-x1(i));1]; s=vpa(collect(s),5) end x2=0.2:0.08:1.08; dot=[1 2 11 12]; figure ezplot(p4,[0.2,1.08]); hold on y2=fnval(pp,x2); x=x2(dot);

y3=eval(p4); y4=fnval(pp,x2(dot)); plot(x2,y2,r,x2(dot),y3,b*,x2(dot),y4,co); title(4次牛顿插值及三次样条); 结果如下: 4次牛顿插值多项式 p4 = - 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 三次样条函数 x∈[0.2,0.4]时, s = - 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04 x∈[0.4,0.6]时,s = 0.44643*x^3 - 1.3393*x^2 + 0.45*x + 0.92571 x∈[0.6,0.8]时,s = - 1.6964*x^3 + 2.5179*x^2 - 1.8643*x + 1.3886 x∈[0.8,1.0]时,s =2.5893*x^3 - 7.7679*x^2 + 6.3643*x - 0.80571 输出图如下 2-3(1) 程序: clear; clc; x1=[0 1 4 9 16 25 36 49 64]; y1=[0 1 2 3 4 5 6 7 8];%插值点 n=length(y1); a=ones(n,2); a(:,2)=-x1; c=1; for i=1:n c=conv(c,a(i,:)); end q=zeros(n,n); r=zeros(n,n+1); for i=1:n [q(i,:),r(i,:)]=deconv(c,a(i,:));%wn+1/(x-xk) end dw=zeros(1,n); for i=1:n dw(i)=y1(i)/polyval(q(i,:),x1(i));%系数 end p=dw*q; syms x l8; for i=1:n

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

数值分析习题

第一章 绪论 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5 105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 Λ14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算) 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5* =,已知 cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差限与相对误差 限。(误差限的计算) 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算) 8 设?-=1 1 dx e x e I x n n ,求证: (1))2,1,0(11Λ=-=-n nI I n n (2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。(计 算方法的比较选择)

第二章 插值法 习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。 1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。(拉格朗日插值) 2 已知9,4,10=== x x x y ,用线性插值求7的近似值。(拉格朗日线性插值) 3 若),...1,0(n j x j =为互异节点,且有 试证明 ),...1,0()(0 n k x x l x n j k j k j =≡∑=。 (拉格朗日插值基函数的性质) 4 已知352274.036.0sin ,333487.034.0sin ,314567.032.0sin ===,用抛物线插值计算3367.0sin 的值并估计截断误差。(拉格朗日二次插值) 5 用余弦函数x cos 在00=x ,4 1π=x ,2 2π= x 三个节点处的值,写出二次拉格朗日插值 多项式, 并近似计算6 cos π及其绝对误差与相对误差,且与误差余项估计值比较。(拉格朗 日二次插值) 6 已知函数值212)6(,82)4(,46)3(,10)1(,6)0(=====f f f f f ,求函数的四阶均差 ]6,4,3,1,0[f 和二阶均差]3,1,4[f 。(均差的计算) 7 设)())(()(10n x x x x x x x f ---=Λ求][1,0p x x x f Λ之值,其中1+≤n p ,而节点 )1,1,0(+=n i x i Λ互异。(均差的计算) 8 如下函数值表 建立不超过三次的牛顿插值多项式。(牛顿插值多项式的构造) 9求一个次数小于等于三次多项式)(x p ,满足如下插值条件:2)1(=p ,4)2(=p , 3)2(='p ,12)3(=p 。(插值多项式的构造) 10 构造一个三次多项式)(x H ,使它满足条件1)1(,1)2(,0)1(,1)0(='===H H H H (埃

数值分析第五章学习小结

第五章学习小结 姓名:张亚杰班级:机械1505班学号:S2******* 一、本章学习体会 本章的内容与实际关联很大,可以解决很多工程实际问题。1、主要有两方面内容:插值与逼近。插值即是由已知数据通过某种多项式求出在特定区间的函数值。逼近即是用简单函数近似代替复杂函数,如何在给定的精度下,求出计算量最小最佳的多项式,是函数逼近要解决的问题。2、插值中样条插值比较难,需要花一定的时间。逼近主要是必须使选择的多项式计算出的误差最小。 3、我个人觉得本章的难点是样条插值与最佳平方逼近。 二、知识构图: 因为本章内容较多,故本次知识架构图分为三部分:插值、正交多项式和逼近。 1、插值:

2、正交多项式和逼近的知识总结采取以下方式: 一、正交多项式 1、正交多项式的概念与性质 若在区间上非负的函数满足 (1)对一切整数存在; (2)对区间上非负连续函数,若 则在上,那么,就称为区间上的权函数。 常见的权函数有 2、两个函数的内积 定义:给定[](),(),,()f x g x C a b x ρ∈是上的权函数,称 为函数()f x 与()g x 在[a,b]上的内积。 内积的性质: (1)对称性:()(),,f g g f =; (2)数乘性:(),(,)(,)kf g f kg k f g ==; (3)可加性:()()()1212,,,f f g f g f g +=+; (4)非负性:若在[a,b]上()0f x ≠,则。 3、函数的正交 (1)两个函数的正交与正交函数系 若内积 (,)a b ()x ρ0,()b n a n x x dx ρ≥?(,)a b ()f x ()0b n a x x dx ρ=? (,)a b ()0f x ≡()x ρ(,)a b 2 ()1,()11 ()11(),0(),x x x a x b x x x x x e x x e x ρρρρρ--≡≤≤= -<<=-≤≤=≤<∞=-∞<<+∞ (,)a b (,)()()()b a f g x f x g x dx ρ=?(,)0f f >

相关文档
最新文档