matlab编程实现二分法-牛顿法-黄金分割法-速下降matlab程序代码

matlab编程实现二分法-牛顿法-黄金分割法-速下降matlab程序代码
matlab编程实现二分法-牛顿法-黄金分割法-速下降matlab程序代码

matlab编程实现二分法-牛顿法-黄金分割法-最速下降matlab 程序代码

作者:

日期: 2

- 4 2

用二分法求解min f(t) t 2t 4t t I1,1 .5]内的极小值点,要求准1.

fun cti on [t d]=erfe nfa(a,b)

k=1; %记录循环次数

while abs(a-b)>0.0005

c=(a+b)/2;

C(k)=c; %存储每次循环中点c的值

if ff(c)<0

a=c;

end

if ff(c)==0

t1=c;

break;

end

if ff(c)>0

b=c;

end

k=k+1;

end

t=(a+b)/2; %最终符合要求的值

d=f(t); %最优解

C

k

fun cti on y=f(t)

y=t A4-2*t A2-4*t;

fun cti on y=ff(t)

y=4*tA3-4*t-4;

运行结果

>> [t d]=erfe nfa(1,1.5)

C =

Colu mns 1 through 9

1.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.3262

1.3252

Colu mn 10

1.3247

11

1.3250 d =

-5.7290

初始区间[0, 3],收敛精度0.5 2.黄金分割法f (x)=x3-2x+1

fun cti on [t,f]=hua ngji nfen ge(a,b)

m=1-(sqrt(5)-1)/2;

t2=a+m*(b-a)

f2=g(t2);

t1=a+b-t2

f1=g(t1);

while abs(t1-t2)>0.5

if f1

a=t2;

t2=t1

f2=f1;

t1=a+b-t2

f1=g(t1);

else

b=t1;

t1=t2

f仁f2;

t2=a+m*(b-a) f2=g(t2);

end

end

t=(t1+t2)/2;

f=g(t);

fun cti on y=g(t)

y=t A3-2*t+1;

运行结果

> [t,f]=hua ngji nfen ge(0,3)

t2 =

1.1459 t1 =

1.8541

t1 =

1.1459 t2 =

0.7082 t =

0.9271 f =

-0.0574

>>

. 2 , 3.用牛顿法求解min f(x) 9x sin x 1初始迭代点为x o =O.4, 点后第5位小数

fun cti on [t1,d]=Newto n( t0)

t=t0-ff(t0)/fff(t0);

k=1; %己录迭代次数

T(1)=t; %存储迭代点

while abs(t-t0)>0.000005

t0=t;

t=t0-ff(t)/fff(t);

k=k+1;

T(k)=t;

end

t1=t0;

d=f(t1);

k

T

fun cti on y=f(x)

y=9*x A 2-s in (x)-1;

fun cti on y=ff(x)

y=18*x-cos(x);

fun cti on y=fff(x)

y=18+s in (x);

运行结果

要求准确到小数

>> [t1,d]=Newt on (0.4)

T =

0.0586 0.0555 0.0555 t1 =

0.0555 d =

-1.0277

>>

2

4.最速下降法验证课本上的例题求解min f(

x)9x sinx

x0=0.4,要求准确到小数点后第5位小数

fun cti on [G,g,X,F]=zuisu(X0)

F(1)=f(X0); %存储x点处的值

G(:,1)=h(X0); %存储梯度向量

g(1)=norm(G(:,1)); %存储梯度模长

X(:,1)=X0; %存储x值

A=[2,0;0,8];

for j=1:2

X(:,j+1)=X(:,j)-(G(:,j)'*G(:,j))/(G(:,j)'*A*G(:,j))*G(:,j);

F(j+1)=f(X(:,j+1));

G(:,j+1)=h(X(:,j+1));

g(j+1)=norm(G(:,j+1));

end

if (G(:,2)'*G(:,1)<1E-10& G(:,3)'*G(:,2)<1E-10)

disp([ '相邻两搜索方向是正交的’])

end fun cti on y=f(X) y=X(1)A2+4*X(2)A2;

fun cti on n=h(X) n=[2*X(1),8*X (2)]';

运行结果

>> [G,g,X,F]=zuisu(X0) 1

初始迭代点为

相邻两搜索方向是正交的

G =

2.0000 1.4769 0.2215

8.0000 -0.3692 0.8862

g =

8.2462 1.5224 0.9134 X =

1.0000 0.7385 0.1108

1.0000 -0.0462 0.1108

F =

5.0000 0.5538 0.0613 >>

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

牛顿插值法matlab程序解析

牛顿插值法在MATLAB 中的实现 经过n+1个不同的插值点12n+1,,x x x …,,构造牛顿插值公式 1211231212n+112n =[,]()[,,]()()[,,]()()()N f x x x x f x x x x x x x f x x x x x x x x x -+--++---(x )……… 注:牛顿插值法中,用到了插值公式 %我们以二次牛顿插值公式为例解析牛顿插值法的matlab 程序 function[c,d]=newpoly(x,y) %这里x 为3个节点的横坐标组成的向量,即()123,,x x x x =,y 为纵坐标的组成向量,即()()()()123,,y f x f x f x = %c 为所得的牛顿插值多项式的系数组成的向量 n=length(x); %测量向量x 的长度,即向量x 中元素i x 的个数,赋值给n ,所以n=3,注:这里的“n ”仅为变量,和公式中的次数n 不一样 d=zeros(n,n); d=zeros(3,3) %把变量d 定义为一个n 行,n 列的零矩阵,此矩阵用来储存各阶差商,格式完全等同于书中21页的表 d(:,1)=y ’; %此句是把向量y 的转置,即123()()()f x y f x f x ?? ?= ? ?? ?,赋值给零矩阵d 的第一列 %下面运用两个for 循环来构造书中21页的差商表 %第一个循环(父循环),循环变量为k for k=2:n %用来表示零矩阵d 中的第几行 %第二个循环(父循环),循环变量为k for j=k:n %用来表示零矩阵d 中的第几列 d(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1)); %差商公式,其中d(k,j)表示零矩阵d 中的第k 行,第j 列的元素,d(k,j-1),d(k-1,j-1)等也类似,它们代表的元素随着双循环而变化,x(k-1)表示1k x -,这种计算差商的方法是根据差商表的排列位置而得来,具体解释见下面。 end end %下面以二次牛顿插值公式为例解析双循环构造差商表,让我们先来看看构造好的差商表 121232312333 () () [,] ()[,][,,]X f x d f x f x x f x f x x f x x x ????=??????

matlab实现数值分析报告插值及积分

Matlab实现数值分析插值及积分 摘要: 数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在实际生产实践中,常常将实际问题转化为数学模型来解决,这个过程就是数学建模。学习数值分析这门课程可以让我们学到很多的数学建模方法。 分别运用matlab数学软件编程来解决插值问题和数值积分问题。题目中的要求是计算差值和积分,对于问题一,可以分别利用朗格朗日插值公式,牛顿插值公式,埃特金逐次线性插值公式来进行编程求解,具体matlab代码见正文。编程求解出来的结果为:=+。 其中Aitken插值计算的结果图如下: 对于问题二,可以分别利用复化梯形公式,复化的辛卜生公式,复化的柯特斯公式编写程序来进行求解,具体matlab代码见正文。编程求解出来的结果为: 0.6932 其中复化梯形公式计算的结果图如下:

问题重述 问题一:已知列表函数 表格 1 分别用拉格朗日,牛顿,埃特金插值方法计算。 问题二:用复化的梯形公式,复化的辛卜生公式,复化的柯特斯公式计算积分,使精度小于5。 问题解决 问题一:插值方法 对于问题一,用三种差值方法:拉格朗日,牛顿,埃特金差值方法来解决。 一、拉格朗日插值法: 拉格朗日插值多项式如下: 首先构造1+n 个插值节点n x x x ,,,10 上的n 插值基函数,对任一点i x 所对应的插值基函数 )(x l i ,由于在所有),,1,1,,1,0(n i i j x j +-=取零值,因此)(x l i 有因子 )())(()(110n i i x x x x x x x x ----+- 。又因)(x l i 是一个次数不超过n 的多项式,所以只 可能相差一个常数因子,固)(x l i 可表示成: )())(()()(110n i i i x x x x x x x x A x l ----=+- 利用1)(=i i x l 得:

matlab编程实现二分法,牛顿法,黄金分割法,最速下降matlab程序代码

用二 4224min ()f t t t t =--[,.]t ∈内的极小值点,要求准 1. function [t d]=erfenfa(a,b) k=1; %记录循环次数 while abs(a-b)>0.0005 c=(a+b)/2; C(k)=c; %存储每次循环中点c 的值 if ff(c)<0 a=c; end if ff(c)==0 t1=c; break ; end if ff(c)>0 b=c; end k=k+1; end t=(a+b)/2; %最终符合要求的值 d=f(t); %最优解 C k function y=f(t) y=t^4-2*t^2-4*t; function y=ff(t) y=4*t^3-4*t-4; 运行结果 >> [t d]=erfenfa(1,1.5) C = Columns 1 through 9 1.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.3262 1.3252 Column 10 1.3247 k = 11

t = 1.3250 d = -5.7290 2.黄金分割法 f (x)=x3-2x+1 初始区间[0, 3],收敛精度0.5 function [t,f]=huangjinfenge(a,b) m=1-(sqrt(5)-1)/2; t2=a+m*(b-a) f2=g(t2); t1=a+b-t2 f1=g(t1); while abs(t1-t2)>0.5 if f1 [t,f]=huangjinfenge(0,3) t2 = 1.1459 t1 = 1.8541

0.618法的matlab实现

实验报告 实验题目: 0.618法的MATLAB实现学生姓名: 学号: 实验时间: 2013-5-13

一.实验名称: 0.618法求解单峰函数极小点 二.实验目的及要求: 1. 了解并熟悉0.618法的方法原理, 以及它的MATLAB 实现. 2. 运用0.618法解单峰函数的极小点. 三.实验内容: 1. 0.618法方法原理: 定理: 设f 是区间],[b a 上的单峰函数, ] ,[ ,)2()1(b a x x ∈, 且)2()1(x x <. 如果)()()2()1(x f x f >, 则对每一个],[)1(x a x ∈, 有)()()2(x f x f >; 如果)()()2()1(x f x f ≤, 则对每一个] ,[) 2(b x x ∈, 有)()()1(x f x f ≥. 根据上述定理, 只需选择两个试探点, 就可将包含极小点的区间缩短. 事实上, 必有 如果)()()2()1(x f x f >, 则],[)1(b x x ∈; 如果)()() 2()1(x f x f ≤, 则][)2(x a x ,∈. 0.618 法的基本思想是, 根据上述定理, 通过取试探点使包含极小点的区间(不确定区间)不断缩短, 当区间长度小到一定程度时, 区间上各点的函数值均接近极小值, 因此任意一点都可作为极小点的近似. 0.618 法计算试探点的公式: ). (618.0),(382.0k k k k k k k k a b a a b a -+=-+=μλ 2. 0.618法的算法步骤: ①置初始区间],[11b a 及精度要求0>L , 计算试探点1λ和1μ, 计算函数值)(1λf 和)(1μf . 计算公式是 ).(618.0 ),(382.011111111a b a a b a -+=-+=μλ 令1=k . ②若L a b k k <-, 则停止计算. 否则, 当)()(k k f f μλ>时, 转步骤③; 当)()(k k f f μλ≤时, 转步骤④. ③置k k a λ=+1, k k b b =+1, k k μλ=+1,)(618.01111++++-+=k k k k a b a μ, 计算函数值)(1+k f μ, 转步骤⑤.

拉格朗日插值、牛顿插值的matlab代码

实验五多项式插值逼近 信息与计算科学金融崔振威201002034031 一、实验目的: 拉格朗日插值和牛顿插值的数值实现 二、实验内容:p171.1、p178.1、龙格现象数值实现 三、实验要求: 1、根据所给题目构造相应的插值多项式, 2、编程实现两类插值多项式的计算 3、试分析多项式插值造成龙格现象的原因 主程序 1、拉格朗日 function [c,l]=lagran(x,y) %c为多项式函数输出的系数 %l为矩阵的系数多项式 %x为横坐标上的坐标向量 %y为纵坐标上的坐标向量 w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if k~=j v=conv(v,poly(x(j)))/(x(k)-x(j)) %对多项式做卷积运算end end l(k,:)=v; end c=y*l; 牛顿插值多项式主程序 function [p2,z]=newTon(x,y,t) %输入参数中x,y为元素个数相等的向量 %t为插入的定点 %p2为所求得的牛顿插值多项式 %z为利用多项式所得的t的函数值。 n=length(x); chaS(1)=y(1); for i=2:n x1=x;y1=y; x1(i+1:n)=[];

y1(i+1:n)=[]; n1=length(x1); s1=0; for j=1:n1 t1=1; for k=1:n1 if k==j %如果相等则跳出循环 continue; else t1=t1*(x1(j)-x1(k)); end end s1=s1+y1(j)/t1; end chaS(i)=s1; end b(1,:)=[zeros(1,n-1) chaS(1)]; cl=cell(1,n-1); %cell定义了一个矩阵 for i=2:n u1=1; for j=1:i-1 u1=conv(u1,[1 -x(j)]); %conv()用于多项式乘法、矩阵乘法 cl{i-1}=u1; end cl{i-1}=chaS(i)*cl{i-1}; b(i,:)=[zeros(1,n-i),cl{i-1}]; end p2=b(1,:); for j=2:n p2=p2+b(j,:); end if length(t)==1 rm=0; for i=1:n rm=rm+p2(i)*t^(n-i); end z=rm; else k1=length(t); rm=zeros(1,k1); for j=1:k1 for i=1:n rm(j)=rm(j)+p2(i)*t(j)^(n-i); end

matlab编程实现求解最优解

《现代设计方法》课程 关于黄金分割法和二次插值法的Matlab语言实现在《现代设计方法》的第二章优化设计方法中有关一维搜索的最优化方法的 一节里,我们学习了黄金非分割法和二次插值法。它们都是建立在搜索区间的优先确定基础上实现的。 为了便于方便执行和比较,我将两种方法都写进了一个程序之内,以选择的方式实现执行其中一个。下面以《现代设计方法》课后习题为例。见课本70页,第2—7题。原题如下: 求函数f(x)=3*x^2+6*x+4的最优点,已知单谷区间为[-3,4],一维搜索精度为0.4。 1、先建立函数f(x),f(x)=3*x^2+6*x+4。函数文件保存为:lee.m 源代码为:function y=lee(x) y=3*x^2+6*x+4; 2、程序主代码如下,该函数文件保存为:ll.m clear; a=input('请输入初始点'); b=input('请输入初始步长'); Y1=lee(a);Y2=lee(a+b); if Y1>Y2 %Y1>Y2的情况 k=2; Y3=lee(a+2*b); while Y2>=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a+k*b); end A=a+b;B=a+k*b; elseif Y1=Y3 %直到满足“大,小,大”为止 k=k+1; Y3=lee(a-k*b); end A=a-k*b;B=a; else A=a;B=a+b; %Y1=Y2的情况 end disp(['初始搜索区间为',num2str([A,B])])%输出符合的区间 xuanze=input('二次插值法输入0,黄金分割法输入1');%选择搜索方式 T=input('选定一维搜索精度'); if xuanze==1 while B-A>T %一维搜索法使精度符合要求 C=A+0.382*(B-A);D=A+0.618*(B-A); %黄金分割法选点

matlab牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα (1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)= f (0x )+f[10x x ,](0x -x ) f[x, 0x ]= f[10x x ,]+f[x,10x x ,] (1x -x ) …… f[x, 0x ,…x 1-n ]= f[x, 0x ,…x n ]+ f[x, 0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n )+ f[x, 0x ,…x n ,x ]) (x 1n +ω= N n (x )+) (x n R 其中

N n (x )= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n ) (2) )(x n R = f(x)- N n (x )= f[x, 0x , (x) n ,x ]) (x 1n +ω (3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,] (k=0,1,2,……,n ) (4) 把(4)代入(1)得到满足插值条件N )() (i i n x f x =(i=0,1,2,……n )的n 次Newton 插值多项式 N n (x )=f (0x )+f[10x x ,](1x -x )+f[210x x x ,,](1x -x )(2x -x )+……+f[n 10x x x ??,](1x -x )(2x -x )…(1-n x -x ). 其中插值余项为: ) ()! () ()()()(x 1n f x N -x f x R 1n 1 n n +++==ωξ ξ介于k 10x x x ??,之间。 三、程序设计 function [y,A,C,L]=newdscg(X,Y,x,M) % y 为对应x 的值,A 为差商表,C 为多项式系数,L 为多项式 % X 为给定节点,Y 为节点值,x 为待求节点 n=length(X); m=length(x); % n 为X 的长度 for t=1:m

牛顿插值MATLAB算法

MATLAB程序设计期中作业 ——编程实现牛顿插值 成员:刘川(P091712797)签名_____ 汤意(P091712817)签名_____ 王功贺(P091712799)签名_____ 班级:2009信息与计算科学 学院:数学与计算机科学学院 日期:2012年05月02日

牛顿插值的算法描述及程序实现 一:问题说明 在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 二:算法分析 newton 插值多项式的表达式如下: 010011()()()()()n n n N x c c x x c x x x x x x -=+-+???+--???- 其中每一项的系数c i 的表达式如下: 12011010 [,,,][,,,] [,,,]i i i i i f x x x f x x x c f x x x x x -???-???=???= - 即为f (x)在点01,,,i x x x ???处的i 阶差商,([]()i i f x f x =,1,2,,i n = ),由差商01[,,,]i f x x x ???的性质可知: () 010 1 [,,,]()i i i j j k j k k j f x x x f x x x ==≠???=-∑∏ 牛顿插值的程序实现方法: 第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、 、。 第二步:计算牛顿插值多项式中01[,,,]i f x x x ???011()()()i x x x x x x ---???-,1,2,,i n = ,得到n 个多项式。

用MATLAB实现最速下降法-牛顿法和共轭梯度法求解实例

题目和要求 最速下降法是以负梯度方向最为下降方向的极小化算法,相邻 两次的搜索方向是互相直交的。牛顿法是利用目标函数)(x f 在迭代点k x 处的Taylor 展开式作为模型函数,并利用这个二次模型函数的极小 点序列去逼近目标函数的极小点。共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向k d 仅仅是负梯度方向k g -与上一次接待 的搜索方向1-k d 的组合。 运行及结果如下: 最速下降法: 题目:f=(x-2)^2+(y-4)^2 M 文件: function [R,n]=steel(x0,y0,eps) syms x ; syms y ; f=(x-2)^2+(y-4)^2; v=[x,y]; j=jacobian(f,v); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0; n=0; syms kk ; while (temp>eps) d=-T; f1=x1+kk*d(1);f2=y1+kk*d(2); fT=[subs(j(1),x,f1),subs(j(2),y,f2)]; fun=sqrt((fT(1))^2+(fT(2))^2); Mini=Gold(fun,0,1,0.00001); x0=x1+Mini*d(1);y0=y1+Mini*d(2); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0; n=n+1;

end R=[x0,y0] 调用黄金分割法: M文件: function Mini=Gold(f,a0,b0,eps) syms x;format long; syms kk; u=a0+0.382*(b0-a0); v=a0+0.618*(b0-a0); k=0; a=a0;b=b0; array(k+1,1)=a;array(k+1,2)=b; while((b-a)/(b0-a0)>=eps) Fu=subs(f,kk,u); Fv=subs(f,kk,v); if(Fu<=Fv) b=v; v=u; u=a+0.382*(b-a); k=k+1; elseif(Fu>Fv) a=u; u=v; v=a+0.618*(b-a); k=k+1; end array(k+1,1)=a;array(k+1,2)=b; end Mini=(a+b)/2; 输入: [R,n]=steel(0,1,0.0001) R = 1.99999413667642 3.99999120501463 R = 1.99999413667642 3.99999120501463 n = 1 牛顿法: 题目:f=(x-2)^2+(y-4)^2 M文件:

牛顿插值法的MATLAB综合程序

6.3.5 牛顿插值法的MATLAB 综合程序 求牛顿插值多项式、差商、插值及其误差估计的MATLAB 主程序 function [y,R,A,C,L]=newdscg(X,Y,x,M) n=length(X); m=length(x); for t=1:m z=x(t); A=zeros(n,n);A(:,1)=Y'; s=0.0; p=1.0; q1=1.0; c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end q1=abs(q1*(z-X(j-1)));c1=c1*j; end C=A(n,n);q1=abs(q1*(z-X(n))); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); end R=M*q1/c1;L(k,:)=poly2sym(C); 例6.3.6 给出节点数据00.27)00.4(=-f ,00.1)00.0(=f ,00.2)00.1(=f ,00.17)00.2(=f ,作三阶牛顿插值多项式,计算)345.2(-f ,并估计其误差. 解 首先将名为newdscg.m 的程序保存为M 文件,然后在MATLAB 工作窗口输入程序 >> syms M,X=[-4,0,1,2]; Y =[27,1,2,17]; x=-2.345; [y,R,A,C,P]=newdscg(X,Y,x,M) 运行后输出插值y )345.2(-≈f 及其误差限公式R ,三阶牛顿插值多项式P 及其系数向量C ,差商的矩阵A 如下 y = 22.3211 R = 65133/562949953421312*M (即R =2.3503*M ) A= 27.0000 0 0 0 1.0000 -6.5000 0 0 2.0000 1.0000 1.5000 0 17.0000 15.0000 7.0000 0.9167 C = 0.9167 4.2500 -4.1667 1.0000 P = 11/12*x^3+17/4*x^2-25/6*x+1

matlab_牛顿插值法_三次样条插值法

(){} 2 1 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x = -≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两 种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

matlab计算拉格朗日牛顿及分段线性插值的程序

《工程常用算法》综合实践作业二 完成日期: 2013年 4月 14 日 班级 学号 姓名 主要工作说明 自评成绩 0718 2010071826 崔洪亮 算式与程序的编写 18 0718 2010071815 侯闰上 流程图的编辑,程序的审查 0718 2010071809 赵化川 报告的整理汇总 一.作业题目:三次样条插值与分段插值 已知飞机下轮廓线数据如下: x 3 5 7 9 11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 飞机下轮廓线形状大致如下图所示: 要求分别用拉格朗日插值法、Newton 插值法、分段线性插值法和三次样条插值法计算x 每改变0.5时y 的值,即x 取 0.5, 1, 1.5, … , 14.5 时对应的y 值。比较采用不同方法的计算工作量、计算结果和优缺点。 二.程序流程图及图形 1.拉格朗日插值法 开始 x,y,x0 Length (x)==l Ength (y)? n=length (x) i=1:n,l=1。 j=1:i-1&j=i+1:n l=l.*(x0-x(j)/x(i)-x(j) f=f+l*y(i) 结束 否 是 机翼 下轮廓线

2.牛顿插值法 开始 x,y,xi Length(x)==l ength(y)? n=length(x)Y=zeros (n),Y (:1)=y,f=0 a=1:n-1,b=1:n-a,Y(b,a+1)=(Y (b+1,a)-Y(b,a))/(x (b+a)-x(b)) i=1:n,z=1 结束 j=1:i-1,z=z.*(xi-x(j)) f=f+Y(1,i)*z 否 是 3.分段线性插值法 开始 x ,y ,x0 length (x )==length(y)? k=1:n-1 x(k)<=x0&x0《=x(k+1) temp=x(k)-x(k+1) f=(x0-x(k+1))/temp*y(k)+(x0-x(k))/(-temp)*y(k+1) 结束 否否 是 是 三.matlab 程序及简要的注释(m 文件) 1.拉格朗日插值法 2.牛顿插值法 function f=newdun(x,y,xi) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量 function f=lang(x,y,x0) %x 为已知数据点的x 坐标向量 %y 为已知数据点的y 坐标向量

最优化方法之修正牛顿法matlab源码(含黄金分割法寻找步长)

revisenewton.m syms x1 x2 x3 xx; % f = x1*x1 +x2*x2 -x1*x2 -10*x1 -4*x2 + 60 ; % f = x1^2 + 2*x2^2 - 2*x1 *x2 -4*x1 ; f = 100 * (x1^2 - x2^2) + (x1 -1 )^2 ; hessen = jacobian(jacobian(f , [x1,x2]),[x1,x2]) ; gradd = jacobian(f , [x1,x2]) ; X0 = [0,0]' ; B = gradd' ; x1 = X0(1); x2 = X0(2); A = eval(gradd) ; % while sqrt( A(1)^2 + A(2)^2) >0.1 i=0; while norm(A) >0.1 i = i+1 ; fprintf('the number of iterations is: %d\n', i) if i>10 break; end B1 = inv(hessen)* B ; B2= eval(B1); % X1 = X0 - B2 % X0 = X1 ; f1= x1 + xx * B2(1); f2= x2 + xx* B2(2); % ff = norm(BB) ? syms x1 x2 ; fT=[subs(gradd(1),x1,f1),subs(gradd(2),x2,f2)]; ff = sqrt((fT(1))^2+(fT(2))^2); MinData = GoldData(ff,0,1,0.01); x1 = X0(1); x2 = X0(2); x1 = x1 + MinData * B2(1) x2 = x2 + MinData * B2(2) A = eval(gradd) End GoldData.m function MiniData = GoldData( f,x0,h0,eps) syms xx;

均差牛顿插值MATLAB,M文件

%均差牛顿插值 function [ f y f0 ] = newton1( X,Y,x0 ) if nargin<3 error('Requires at least three input arguments.'); end if length(X)==length(Y) n=length(X); else error('length must equal') end syms x s=Y(1); l=1.0; y=zeros(n); y(1:n,1)=Y'; for i=2:n for j=2:i y(i,j)=(y(i,j-1)-y(j-1,j-1))/(X(i)-X(j-1)); if i==j l=l*(x-X(i-1)); s=s+y(i,i)*l; end end end f=simple(s); f0=subs(f,x0); function [ f f0 y] = newton2( X,Y,x0 ) if nargin<3 error('Requires at least three input arguments.'); end if length(X)==length(Y) n=length(X); else error('length must equal') end syms x s=Y(1); l=1.0; y=zeros(n) y(1:n,1)=Y'; for i=2:n for j=2:i y(i,j)=(y(i,j-1)-y(i-1,j-1))/(X(i)-X(i-j+1)); if i==j l=l*(x-X(i-1)); s=s+y(i,i)*l; end end end f=simple(s); f0=subs(f,x0);

MATLAB黄金分割法课程论文--分析

中南林业科技大学 本科课程论文 学院:理学院 专业年级:14级信息与计算科学2班 学生姓名:邱文林学号:20144349 课程:MATLAB程序设计教程 设计题目:基于MATLAB的黄金分割法与抛物线插值法指导教师:龚志伟

2016年4月

中文摘要 为了求解最优化模型的最优解,可使用基于MATLAB算法编程的黄金分割法与抛物线插值法,来实现求解的过程。黄金分割法是通过所选试点的函数值而逐步缩短单谷区间来搜索最优点,利用迭代进而得出结论。抛物线插值法亦称二次插值法,是一种多项式插值法,逐次以拟合的二次曲线的极小点,逼近原寻求函数极小点的一种方法。通过将MATLAB与最优化问题相结合,不仅可以加深对黄金分割法、抛物线插值法的基本理解和算法框图及其步骤的全面理解,也有利于帮助我们掌握MATLAB的使用方法。 关键词:MATLAB,黄金分割法,抛物线插值法,最优解,迭代

英文摘要 In order to solve the optimization model of the optimal solution, using MATLAB algorithm based on the golden section method and the parabola interpolation method, to realize the process of solving. The golden section method is used to search the most advantage through the function value of the selected pilot, which can be used to search for the most advantage. Parabolic interpolation method, also known as the two interpolation method, is a polynomial interpolation method, successive to fit the two curve of the minimum point, the original search function to find a very small point of the method. By combining MATLAB and optimization problems can not only deepen the comprehensive understanding of the golden section method, the parabola interpolation basic understanding and block diagram of the algorithm and steps, but also conducive to help us to grasp the method of using MATLAB. Key words: MATLAB, golden section method, parabolic interpolation method, optimal solution, iteration

插值MATLAB程序-数值分析

插值MATLAB程序(可以输出多项式)—数值分析 1.拉格朗日多项式逼近 function [C,L,y]=lagran(X,Y) %拉格朗日多项式逼近 w=length(X); L=zeros(w,w); for k=1:w V=1; for j=1:w if k~=j V=conv(V,poly(X(j)))/(X(k)-X(j)); end end L(k,:)=V; end C=Y*L; y=poly2sym(C,'x'); 2.牛顿插值多项式 function [C,D,y]=newpoly(X,Y) %牛顿插值多项式 n=length(X); D=zeros(n,n); D(:,1)=Y'; for j=2:n for k=j:n D(k,j)=(D(k,j-1)-D(k-1,j-1))/(X(k)-X(k-j+1)); end end C=D(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); m=length(C); C(m)=C(m)+D(k,k); end y=poly2sym(C,'x'); 3.切比雪夫逼近 function [C,X,Y]=cheby(fun,n,a,b) %切比雪夫逼近 if nargin==2 a=-1;b=1; end

d=pi/(2*n+2); C=zeros(1,n+1); for k=1:n+1 X(k)=cos((2*k-1)*d); end X=(b-a)*X/2+(a+b)/2; x=X; Y=eval(fun); for k=1:n+1 z=(2*k-1)*d; for j=1:n+1 C(j)=C(j)+Y(k)*cos((j-1)*z); end end C=2*C/(n+1); C(1)=C(1)/2;

黄金分割法及其代码

线性搜索之黄金分割法及其应用 摘要 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通讯和政府机关等领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB 软件已经成为最优化领域应用最广的软件之一。有了MATLAB这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 在最优化计算中一维最优化方法是优化设计中最简单、最基本的方法。一维搜索,又称为线性搜索,一维问题是多维问题的基础,在数值方法迭代计算过程中,都要进行一维搜索,也可以把多维问题化为一些一维问题来处理。一维问题的算法好坏,直接影响到最优化问题的求解速度。而黄金分割法是一维搜索方法中重要的方法之一,它适用于任何单峰函数求最小值的问题,甚至于对函数可以不要求连续,是一种基于区间收缩的极小点搜索算法。 关键词:最优化、黄金分割法、MATLAB软件、一维搜索 引言 数学科学不仅是自然科学的基础,也是一切重要技术发展的基础。最优化方法更是数学科学里面的一个巨大的篇幅,在这个信息化的时代,最优化方法广泛应用于工业、农业、国防、建筑、通信与政府机关、管理等各领域;它主要解决最优计划、最优分配、最优决策、最佳设计、最佳管理等最优化问题。而最优解问题是这些所有问题的中心,是最优化方法的重中之重,在求最优解问题中,有多种方法解决,我们在这里着重讨论无约束一维极值问题,即非线性规划的一维搜索方法之黄金分割法。黄金分割法也叫0.618法,属于区间收缩法,首先找出包含极小点的初始搜索区间,然后按黄金分割点通过对函数值的比较不断缩小搜索区间。当然要保证极小点始终在搜索区间内,当区间长度小到精度范围之内时,可以粗略地认为区间端点的平均值即为极小值的近似值。所以用0.618法得出的

MATLAB拉格郎日插值法与牛顿插值法构造插值多项式

姓名:樊元君学号:2012200902 日期:2012.10.25 1.实验目的: 掌握拉格郎日插值法与牛顿插值法构造插值多项式。 2.实验内容: 分别写出拉格郎日插值法与牛顿插值法的算法,编写程序上机调试出结果,要求所编程序适用于任何一组插值节点,即能解决这一类问题,而不是某一个问题。实验中以下列数据验证程序的正确性。 已知下列函数表 求x=0.5635时的函数值。

3.程序流程图: ●拉格朗日插值法流程图:

●牛顿插值法流程图:

4.源程序: ●拉格朗日插值法:function [] = LGLR(x,y,v) x=input('X数组=:'); y=input('Y数组='); v=input('插值点数值=:'); n=length(x); u=0; for k=1:n t=1; for j=1:n if j~=k t=t*(v-x(j))/(x(k)-x(j)); end end u=u+t*y(k); end disp('插值结果=');disp(u); end

●牛顿插值法: function [] = Newton(x,y,v) x=input('X数组=:'); y=input('Y数组=:'); v=input('插值点数值=:'); n=length(x); t=zeros(n,n); u=0; for i=1:n t(i,1)=y(i); end for j=2:n for i=2:n if i>=j t(i,j)=(t(i,j-1)-t(i-1,j-1))/(x(i)-x(i-j+1)); end end end for k=1:n s=1; m=1; for j=1:k if j