基于馈线终端FTU-DTU-TTU的配网自动化方案

基于馈线终端FTU-DTU-TTU的配网自动化方案
基于馈线终端FTU-DTU-TTU的配网自动化方案

基于馈线终端(FTU/DTU/TTU)的配网自动化方案

1、系统结构示意图

图1 系统结构图

2、系统结构简介

配网自动化系统一般由下列层次组成:配电主站、配电子站(常设在变电站内,可选配)配电远方终端(FTU、DTU、TTU等)、通信网络。

·FTU —各类柱上开关及环网柜控制器。

·DTU —配电站、开闭所控制器。

·TTU —配变监测装置及无功补偿控制器。

二、DAF-8000配电自动化及管理系统概述

DAF-8000配电自动化及管理系统是一个全开放的、面向10kV 配电网自动化系统的专业软件平台,是整个配电网自动化系统监控和管理的核心,主要负责各个区域配电子站或终端设备的实时信息采集、控制和有效管理,保证整个配电系统处于最佳运行状态。

DAF-8000配电自动化及管理系统内置全面、高效可靠的FA 故障定位、故障隔离和快速恢复供电算法模块,适合于从简单放射状配电网络结构、手拉手环网结构到复杂网格状供电网络多点并发故障的自动故障定位、自动/手动故障隔离、自动/手动恢复供电。

DAF-8000配电自动化及管理系统提供安全、可靠和方便的故障仿真模拟和闭锁功能,全在线配置、对象化建模、通讯规约全面、人机界面友好可靠。

三、DAF-8000配电自动化及管理系统主要功能

·数据采集和监视控制(SCADA)功能

·配电GIS(AM/FM/GIS)

·配电生产管理功能(DMS)

·故障处理功能

·配电高级应用软件

·与其他系统接口

四、DAF-810柱上开关配电终端

1.产品图片

图2 DAF-810柱上开关配电终端

2.产品概述

DAF-810柱上开关配电终端适用于10kV架空配电线路分段点或联络点1~2回线路测控,与柱上负荷开关或断路器配套,采集并上传线路电压、电流、设备状态等运行及故障信息,具备多种方式的通信接口和多种标准通信规约。

五、DAF-820 环网柜配电终端

1.产品图片

图3 DAF-820环网柜配电终端

2.产品概述

DAF-820环网柜配电终端适用于10kV环网柜3~6回线路测控,可采集并上传多回路线路电压、线路电流、零序电流、设备状态等运行及故障信息,具备多种方式的通信接口和多种标准通信规约。

六、DAF-830开闭所配电终端

1.产品图片

图4 DAF-830开闭所配电终端

2.产品概述

DAF-830开闭所配电终端适用于10kV开闭站8~24回线路测控,可采集并上传多回路线路电压、线路电流、零序电流、设备状态等运行及故障信息,具备多种方式的通信接口和多种标准通信规约。

电网配网自动化通信系统规划

电网配网自动化通信系统规划 摘要:可靠的电力供应是保证现代生活方式的先决条件,随着我国经济社会持续健康发展和人民生活水平不断提高,对坚强电网建设、电网安全稳定运行、电能质量和优质服务水平提出了更高要求。如何建设自愈、优化、互动、兼容的智能配电网,进一步提升电力生产过程的自动化,提高企业信息化管理和服务水平,实现配网精益化管理是目前主要需解决的问题。本文主要讨论电网配网自动化通信系统规划。 关键词:配网自动化,通信系统,电网 正文: 一、配电自动化的定义 通常,110KV 及以下电力网络属于配电网络,配电网直接供电给用户,通过众多挂接于上面的配电变压器,将电能分配给诸用户。随着国民经济的高速发展,电力用户对电能质量和供电可靠性的要求越来越高,电压波动和短时的停电都会造成巨大的损失。因此,需要结合电网改造在配电网中实现配电自动化,以提高配电网的管理水平,为广大电力用户不间断的提供优质电能。 配电自动化(Distribution Automation,简称DA)就是利用现代电子技术、通讯技术、计算机及网络技术,将配电网在线数据和离线数据、用户数据、电网结构数据和地理图形进行信息集成,构成完整的自动化系统,实现配电系统正常运行及事故情况下的监测、保护、控制和配电管理的现代化。配电系统自动化是配电系统运行、管理的有机组成部分。 配电自动化系统(Distribution Automation System,简称DAS),从功能上可以分为两大部分内容,即包括基础配电自动化和配电管理层。基础配电自动化主要实现数据采集、运行工况监视和控制、故障实时处理,主要包括变电站(配电所)自动化系统、馈线自动化(Feeder Automation,简称为FA)、配电SCADA 系统。配电管理层主要实现配电管理、停电管理、工程管理、电能计量管理及配电高级应用。其主要内容包括配电工作管理系统、用电管理自动化系统、配电高级应用软件(D-PAS)。

中国南方电网有限责任公司配电自动化馈线终端技术规范书

中国南方电网有限责任公司配电自动化馈线终端技术规范书 (通用部分) 版本号:2016版V1.1 编号: 中国南方电网有限责任公司 2016年3月

本规范对应的专用技术规范目录

配电自动化馈线终端技术规范书使用说明 1. 本技术规范书分为通用部分、专用部分。 2. 项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。 3. 本技术规范书适用于南方电网公司10kV/20kV电压等级配电自动化馈线终端。 4. 项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“表 2.7 项目单位技术差异表”并加盖本单位公章,提交物资招标组织部门。物资招标组织部门及时将“表 2.7 项目单位技术差异表”移交给技术标书审查会。技术标书审查会确认“表2.7 项目单位技术差异表”内容的可行性并书面答复:1)改动通用部分条款及专用部分固化的参数; 2)项目单位要求值超出标准技术参数值; 3)需要修正污秽、温度、海拔等条件。 当发生需求变化时,需由技术规范组织编写部门组织的标书审查会审核通过后,对修改形成的“项目单位技术差异表”,放入技术规范书中,随招标文件同时发出并视为有效,否则将视为无差异。 5. 技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。 6. 投标人逐项响应技术规范专用部分中“1 标准技术参数”、“2 项目需求部分”和“3 投标人响应部分”三部分相应内容。填写“2 项目需求部分”时,应严格按“项目单位要求值”一栏填写相应的招标文件投标人响应部分的表格。投标人填写技术参数和性能要求时,如有偏差除填写“表3.2投标人技术偏差表”外,必要时应提供相应试验报告。

几种馈线自动化方式

1.集中控制式 集中控制式的故障处理方案是基于主站、通信系统、终端设备均已建成并运行完好的情况下的一种方案,它是由主站通过通信系统来收集所有终端设备的信息,并通过网络拓扑分析,确定故障位置,最后下发命令遥控各开关,实现故障区域的隔离和恢复非故障区域的供电。 优点:非故障区域的转供有着更大的优势,准确率高,负荷调配合理。 缺点:终端数量众多易拥堵,任一环节出错即失败。 案例: 假设F2处发生永久性故障,则 变电站1处断路器CB1因检测到故障电流而分闸,重合不成功然后分闸闭锁。定位:位于变电站内的子站或配电监控中间单元因检测到线路上各个FTU的状态及信息,发现只有FTU1流过故障电流而FTU2~FTU5没有。子站或配电监控中间单元判断出故障发生在FTU1~FTU2之间。 隔离:子站或配电监控中间单元发出命令让FTU1与FTU2跳闸,实现故障隔离。恢复:子站或配电监控中间单元发出命令让FTU3合闸,实现部分被甩掉的负荷的供电。子站或配电监控中间单元将故障信息上传配调中心,请求合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。配调中心启动故障处理软件,产生恢复供电方案,自动或由调度员确认。配调中心下发遥控命令,合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。等故障线路修复后,由人工操作,遥控恢复原来的供电方式。

2.就地自动控制 2.1负荷开关(分段器) 主要依靠自具一定功能的开关本身来完成简单的自动化,它与电源侧前级开关配合,在线路具备其本身特有的功能特性时,在失压或无流的情况下自动分闸,达到隔离故障恢复部分供电的目的。 这种开关一般或者有“电压-时间”特性,或者有“过流脉冲计数”特性。前者是凭借加压、失压的时间长短来控制其动作的,失压后分闸,加压后合闸或闭锁。后者是在一段时间内,记忆前级开关开断故障电流动作次数,当达到其预先设定的记录次数后,在前级开关跳开又重合的间隙分闸,从而达到隔离故障区域的目的。 在“电压-时间”方案中,开关动作次数多,隔离故障的时间长,变电站出口开关需重合两次,转供时容易有再次故障冲击,但它的优点是控制简单。 (1)基于重合器与电压-时间分段器方式的馈线自动化 基于电压延时方式,对于分段点位置的开关,在正常运行时开关为合闸状态,当线路因停电或故障失压时,所有的开关失压分闸。在第一次重合后,线路分段一级一级地投入,投到故障段后线路再次跳闸,故障区段两侧的开关因感受到故障电压而闭锁,当站内断路器再次合闸后,正常区间恢复供电,故障区间通过闭锁而隔离。 而对于联络点位置的开关,在正常时感受到两侧有电压时为常开状态,当一侧电源失压时,该联络开关开始延时进行故障确认,在延时时间完成后,联络开关投入,后备电源向故障线路的故障后端正常区间恢复供电。两侧同时失压时,开关为闭锁状态。 特点:造价低,动作可靠。该系统适合于辐射状、“手拉手”环状和多分段多连接的简单网格状配电网,一般不宜用于更复杂的网架结构。应用该系统的关键在于重合器和电压–时间型分段器参数的恰当整定,若整定不当,不仅会扩大故障隔离范围,也会延长健全区域恢复供电的时间。 (2)基于重合器与过流脉冲计数分段器方式的馈线自动化

选择题

选择题 1. 同步发电机并列时脉动电压周期为20s ,则滑差角频率允许值ωsy 为( A )。 A 、0.1% B 、0.2% C 、0.26% D 、0.52% 2. 同步发电机机端电压与电网电压的差值的波形是( D )。 A 、三角波 B 、正弦波 C 、方波 D 、正弦脉动波 3. 下图四个脉动电压波形,最适合并列条件的是( A )。 4. 同步发电机励磁系统由( A )组成。 A 、励磁调节器、励磁功率单元 B 、同步发电机、励磁调节器 C 、同步发电机、励磁功率单元 D 、同步发电机、励磁调节器、励磁系统 5. 同步发电机并列方式包括两种,即( B )。 A 、半自动准同期并列和手动准同期并列 B 、准同期并列和自同期并列 C 、全自动准同期并列和手动准同期并列 D 、全自动准同期并列和半自动 准同期并列 6. 在电力系统通信中,由主站轮流询问各RTU ,RTU 接到询问后回答的方式属于( D )。 A 、主动式通信规约 B 、被动式通信规约 C 、循环式通信规约 D 、问答式通信规约 7. 下列同步发电机励磁系统可以实现无刷励磁的是( A )。 A 、交流励磁系统 B 、直流励磁系统 C 、静止励磁系统 D 、自并励系统 8. 某同步发电机的额定有功出力为100MW ,系统频率下降0.5Hz 时,其有功功率增量为 20MW ,那么该机组调差系数的标么值R*为( C )。 A 、20 B 、-20 C 、0.05 D 、-0.05 9. 下列关于AGC 和EDC 的频率调整功能描述正确的是( D )。 A 、AGC 属于频率一次调整,EDC 属于频率二次调整。 B 、AG C 属于频率一次调整,EDC 属于频率三次调整。 C 、AGC 属于频率二次调整,EDC 属于频率一次调整。 D 、AGC 属于频率二次调整,EDC 属于频率三次调整。 10. 在互联电力系统中进行频率和有功功率控制时一般均采用(D )。 A 、有差调频法 B 、主导发电机法 C 、积差调频法 D 、分区调频法 11. 电力系统的稳定性问题分为两类,即( B )。 u s t A u s t B u s t C u s t D

配电自动化馈线终端(FTU)技术规范

配电自动化馈线终端() 技术规范

目录 1 规范性引用文件..................................................... 错误!未指定书签。 2 技术要求........................................................... 错误!未指定书签。 3 标准技术参数....................................................... 错误!未指定书签。 4 环境条件表.......................................................... 错误!未指定书签。 5 试验................................................................ 错误!未指定书签。附录A馈线终端无线通信安装位置、航插尺寸定义(参考性附录)............ 错误!未指定书签。附录B 馈线终端接口定义(规范性附录) ................................. 错误!未指定书签。

配电自动化馈线终端()技术规范 1 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 17626.1 电磁兼容试验和测量技术抗扰度试验总论 17626.2 静电放电抗扰度试验 17626.3 射频电磁场辐射抗扰度试验 17626.4 浪涌(冲击)抗扰度试验 17626.5 电快速瞬变脉冲群抗扰度试验 17626.8 工频磁场的抗扰度试验 17626.10 阻尼振荡磁场的抗扰度试验 17626.11 电压暂降、短时中断和电压变化抗扰度试验 15153.1 远动设备及系统第2部分:工作条件第1篇:电源和电磁兼容兼容性 11022 高压开关设备和控制设备标准的共用技术要求 14285 继电保护和安全自动装置技术规程 4208 外壳防护等级() 13729 远动终端设备 5096 电子设备用机电件基本试验规程及测量方法 19520 电子设备机械结构 7251.5 低压成套开关设备和控制设备第五部分:对户外公共场所的成套设备—动力配电网用电缆分线箱()的特殊要求 637-1997 阀控式密封铅酸蓄电池订货技术条件 721 配电网自动化系统远方终端 634.5101 远动设备及系统第5-101部分:传输规约基本远动任务配套标准 634.5104 远动设备及系统第5-104部分:传输规约采用标准传输协议子集的60870-5-101网络访问 814 配电自动化系统功能规范 382 配电自动化技术导则 513 配电自动化主站系统功能规范 514 配电自动化终端/子站功能规范 625 配电自动化建设与改造标准化设计技术规定 2技术要求 2.1概述 馈线终端的结构形式可分为箱式馈线终端和罩式馈线终端。 2.1.1箱式馈线终端 安装在配电网馈线回路的柱上等处的配电终端,外箱为箱式,按照功能分为箱式“三遥”终端和箱

北京市电力公司配电自动化远方终端FTU技术规范(0916)

配网自动化远方终端(FTU)技术规范 北京市电力公司 二〇一〇年九月

目录 1 总则 (3) 2 引用标准 (3) 3 定义 (3) 4 环境条件 (3) 5 功能技术要求 (4)

1总则 1.1本规范适用于柱上开关应用的FTU远方终端。 1.2本规范正文提出了对设备的技术参数、性能等方面的技术要求。 1.3本规范提出的是最低限度的技术要求,并未对一切技术细节做出规定。对本规范未进行 规定的技术细节,参照最新版本的GB标准执行。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本技术标准中未明确要求的条款,应执行最新颁布的IEC标准、国家标准、行业标准。当标准中的条款与本规范存在偏差时,应以本技术规范为准。 DL/T 814-2002 配电自动化系统功能规范 GB/T13729-2002 远动终端设备 DL/T630—1997 交流采样远动终端技术条件 DL/T 721—2000 配网自动化系统远方终端 DL/T 597-1996 低压无功补偿控制器订货技术条件 GB/T15576-1995 低压无功功率静态补偿装置 JB7113-93 低压并联电容器装置 GB 4208—2008 外壳防护等级(IP代码) DL/T 634.5101-2002 远动设备及系统第5-101部分:传输规定 DL/T 634.5104-2002 远动设备及系统第5-104部分:传输规定 京电调[2005]20号北京电力公司配网自动化101/104通信规约实施细则 3定义 3.1配电自动化系统远方终端是指用于配电网馈线回路的各种馈线远方终端、配电变压器远方终 端设备的统称。 3.2FTU是指安装在配电网馈线回路的柱上和开关柜等处,并具有遥信、遥测、遥控和故障电流 检测(或利用故障指示器检测故障)等功能的远方终端。 4环境条件 4.1运行环境温度范围-20℃~+55℃ 4.2极限环境温度范围-40℃~+70℃ 4.3相对湿度5%~100% 4.4大气压力70kPa~106kPa 4.5抗震能力: 地面水平加速度0.38g 地面垂直加速度0.15g

电力系统自动化复习要点

第一章发电机的自动并列 1.同步发电机的并列方法可分为准同期并列和自同期并列两 种。 2.同步发电机并列时遵循的原则:冲击电流尽可能小和暂态过 程要短。 3.准同期并列的理想条件: ●G x =或ωG=ωx,即并联时发电机的发出电压的频 f f 率和电网电压的频率相等 ●X U=G U,即并联时发电机的发出电压的幅值和电网电 压的幅值相等 ●e=0 δ,即并联时发电机的发出电压和电网电压的相角 差为零 4.准同期并列的一个条件是电压差 U不能超过额定电压的5% S 10%。 ~ 5.我国在发电厂进行正常人工手动并列操作时一般取滑差周 期在10~16之间。 6.脉动电压为正选脉动电波。 7.自动准同期的三个控制单元:频率差控制单元、电压差控制 单元、合闸信号控制单元。 8.同步发电机的准同期并列装置按自动化程度分为以下几种: 半自动准同期并列装置、自动准同期并列单元、手动准同期并列单元。

9.越前时间 t等于断路器的合闸时间c t和自动准同期并列时 YJ 间 t之和. QF 10.线性整步电压形成电路是由整形电路、相敏电路、滤波电路 三部分组成。 11.同步发电机的励磁系统一般由励磁功率单元和励磁调节器 两个部分组成。 12.电力系统的稳定分为静态稳定和暂态稳定。 13.改善电力系统的运行条件的方法:改善异步电动机的自启动 条件、为发电机异步运行创造条件、提高继电保护装置工作的正确性、水轮发电机组要求实现强行减磁。(简答)14.对励磁调节器的要求:时间常数小、自然调差系数精确、电 压调差系数范围大、无失灵区、具有励磁控制功能。15.对励磁功率单元的要求:有足够的可靠性和调节容量、有足 够的励磁顶值电压和电压上升速度。(励磁顶值电压是励磁功率单元在强行励磁时可能提供的最高输出电压值,该值与额定工况下励磁电压之比称为强励倍数,一般取1.6~2)16.同步发电机励磁系统种类:直流励磁机励磁系统、交流励磁 机励磁系统、静止励磁系统。静止励磁系统的优点有:维护工作量少、可靠性高、主轴长度短,基建投资少、电压响应速度快、过电压低。 17.所谓灭磁就是将发电机转子励磁绕组的磁场尽快地减弱到 最小程度。同步发电机灭磁方法:直流励磁机——放电灭磁

配电自动化馈线终端FTU技术规范

配电自动化馈线终端 F T U技术规范 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

配电自动化馈线终端(FTU) 技术规范

目录

配电自动化馈线终端(FTU)技术规范 1 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB/T 电磁兼容试验和测量技术抗扰度试验总论 GB/T 静电放电抗扰度试验 GB/T 射频电磁场辐射抗扰度试验 GB/T 浪涌(冲击)抗扰度试验 GB/T 电快速瞬变脉冲群抗扰度试验 GB/T 工频磁场的抗扰度试验 GB/T 阻尼振荡磁场的抗扰度试验 GB/T 电压暂降、短时中断和电压变化抗扰度试验 GB/T 远动设备及系统第2部分:工作条件第1篇:电源和电磁兼容兼容性 GB/T 11022 高压开关设备和控制设备标准的共用技术要求 GB/T 14285 继电保护和安全自动装置技术规程 GB/T 4208 外壳防护等级(IP) GB/T 13729 远动终端设备 GB/T 5096 电子设备用机电件基本试验规程及测量方法 GB/T 19520 电子设备机械结构 GB 低压成套开关设备和控制设备第五部分:对户外公共场所的成套设备—动力配电网用电缆分线箱(CDCs)的特殊要求 DL/T 637-1997 阀控式密封铅酸蓄电池订货技术条件 DL/T 721 配电网自动化系统远方终端 DL/T 远动设备及系统第5-101部分:传输规约基本远动任务配套标准 DL/T 远动设备及系统第5-104部分:传输规约采用标准传输协议子集的IEC60870-5-101网络访问 DL/T 814 配电自动化系统功能规范 Q/GDW 382 配电自动化技术导则 Q/GDW 513 配电自动化主站系统功能规范 Q/GDW 514 配电自动化终端/子站功能规范 Q/GDW 625 配电自动化建设与改造标准化设计技术规定 2 技术要求 概述 馈线终端的结构形式可分为箱式馈线终端和罩式馈线终端。 箱式馈线终端

馈线自动化两种实现模式的对比研究

龙源期刊网 https://www.360docs.net/doc/ec16776614.html, 馈线自动化两种实现模式的对比研究 作者:吴慧 来源:《中国新技术新产品》2015年第02期 摘要:本文主要结合孝感城区配网馈线自动化建设探索实践经验,针对馈线自动化的两 种实现模式,分别从选点原则、动作原理、实践效果方面进行对比分析,提出建议。 关键词:配网自动化;馈线自动化;实例分析 中图分类号:TM76 文献标识码:A 馈线自动化实现故障处理的模式主要分为集中式和就地式两类。下文就孝感供电公司馈线自动化建设探索进程,对馈线自动化两种模式分别进行对比分析。 一、集中式模式实例分析 孝感城区配网自动化系统于2009年7月开始建设,11月底投入运行。系统采用双层体系结构,主要由主站层和终端设备层组成,二者之间通过光纤网络进行数据通信。 1选点原则:联络点优先、就近接入 对城区10KV配网128组开关进行了改造,加装电操机构和测控元件,并全部配备智能终端。系统监控设备总数约占当时配网设备总数的40%。 2动作原理:配网常采用手拉手环网常开运行方式:正常运行情况下,开关1、2、3、4 合闸位置,联络1开关分闸位置,如图1所示。 若开关3至开关4之间发生短路故障,则可能存在开关3、2、1三级跳闸的情况,此时必须这三级开关中至少有一组保护信号变位+开关动作触发DA计算启动,主站同时接收到多个开关保护信号变位后,按照电流方向和设备连接的拓扑关系,从馈线段的首端向末端查找,找到最后一个发送保护信号的开关3后,主站判定实际故障区域为开关3——开关4。 (1)开关3保护信号变位+开关3跳闸,隔离方案:开关4分闸;恢复方案:联络1合闸。 (2)开关3保护信号变位+开关2跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关2合闸、联络1合闸。 (3)开关3保护信号变位+开关1跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关1合闸、联络1合闸。

智能分布式配电终端FTU-DTU..

智能分布式配电终端FTU/DTU及智能分布式FA 一、架空线路智能分布式馈线自动化终端(DAF-810馈线自动化终端) 1.现状和问题 传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。 现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。 而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。 图1 DAF-810馈线自动化终端FTU外观图 2.产品特点 广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点: 提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。 加强系统运行的可靠性: 为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。

系统基于无线通讯运行。在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。 通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。 提供强大的分析能力:后台监控系统主要包括系统运行监控功能、系统维护功能、分段开关四遥功能、以及后台辅助分析功能。监控功能指常态下的监控,系统维护功能主要包括馈线拓扑结构维护、控制策略的配置、定值的计算及在线下发等,而后台辅助分析功能包括故障场景再现,系统动作行为分析等。 运行过程中,本系统能将故障处理的过程信息,包括故障类型、故障点、电流、电压、DTU状态、通讯状态、分段开关状态,上传到后台监控系统或配电网自动化系统,实现故障处理的全过程监视及事后分析,便于检修人员的故障排除,缩短事故处理时间。 减少系统的维护量:后台监控系统,能提供配电网馈线拓扑结构的维护工具,能方便实现DTU装置的拓扑在线维护,并实现各类整定值的计算、校核和在线下发,系统维护量小。 本系统不需要配电自动化主站和变电站配网子站系统参与,就可自治实现配网的故障隔离及重合、故障恢复功能,安装实施简单,维护工作量小,便于推广使用。 强化投资的收益比:无线GPRS通讯是架空线型线路的标准配置,本系统要求的无线通讯并不增加投资。在资金充裕时,采用光纤通讯和断路器分段,可获得理想的保护选择性和故障智能处理特性;在资金紧张时,可使用GPRS专网、无线网桥建立通讯网络,使用负荷开关作为分段装置,也能建立就地智能FA,实现故障快速隔离及智能恢复。但是降低了故障隔离的选择性。 增强部署的灵活性:适用于市、县供电公司或大中型工矿企业中对供电可靠性有较高要求的架空线型配电线路。系统支持多种馈线拓扑结构,包括手拉手、单电源和多电源供电线路。 3.智昊电气DAF-810馈线自动化终端系统原理(中性点经小电阻接地系统的电缆网络) (1)电源甲侧首端线路故障检测

配电自动化馈线终端技术规范

配电自动化馈线终端(FTU) 技术规范

目录 1 规范性引用文件...................................................... 错误!未定义书签。 2 技术要求............................................................ 错误!未定义书签。 3 标准技术参数........................................................ 错误!未定义书签。 4 环境条件表........................................................... 错误!未定义书签。 5 试验................................................................. 错误!未定义书签。附录A馈线终端无线通信安装位置、航插尺寸定义(参考性附录)............. 错误!未定义书签。附录B 馈线终端接口定义(规范性附录) .................................. 错误!未定义书签。

配电自动化馈线终端(FTU)技术规范 1 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB/T 电磁兼容试验和测量技术抗扰度试验总论 GB/T 静电放电抗扰度试验 GB/T 射频电磁场辐射抗扰度试验 GB/T 浪涌(冲击)抗扰度试验 GB/T 电快速瞬变脉冲群抗扰度试验 GB/T 工频磁场的抗扰度试验 GB/T 阻尼振荡磁场的抗扰度试验 GB/T 电压暂降、短时中断和电压变化抗扰度试验 GB/T 远动设备及系统第2部分:工作条件第1篇:电源和电磁兼容兼容性 GB/T 11022 高压开关设备和控制设备标准的共用技术要求 GB/T 14285 继电保护和安全自动装置技术规程 GB/T 4208 外壳防护等级(IP) GB/T 13729 远动终端设备 GB/T 5096 电子设备用机电件基本试验规程及测量方法 GB/T 19520 电子设备机械结构 GB 低压成套开关设备和控制设备第五部分:对户外公共场所的成套设备—动力配电网用电缆分线箱(CDCs)的特殊要求 DL/T 637-1997 阀控式密封铅酸蓄电池订货技术条件 DL/T 721 配电网自动化系统远方终端 DL/T 远动设备及系统第5-101部分:传输规约基本远动任务配套标准 DL/T 远动设备及系统第5-104部分:传输规约采用标准传输协议子集的IEC60870-5-101网络访问 DL/T 814 配电自动化系统功能规范 Q/GDW 382 配电自动化技术导则 Q/GDW 513 配电自动化主站系统功能规范 Q/GDW 514 配电自动化终端/子站功能规范 Q/GDW 625 配电自动化建设与改造标准化设计技术规定 2 技术要求 概述 馈线终端的结构形式可分为箱式馈线终端和罩式馈线终端。 箱式馈线终端 安装在配电网馈线回路的柱上等处的配电终端,外箱为箱式,按照功能分为箱式“三遥”终端和箱

一二次融合馈线终端FTU(红苏电气)

一二次融合馈线终端FTU 1、主要用途及适用范围 该系列配电自动化馈线终端采用高性能新技术平台,开发研制的新一代FTU终端设备,具有配网运行监视和控制功能,以及故障分析处理的配网自动化二次终端设备。终端采用标准航空接插件接口一次设备,信号和接口的兼容性好。 该系列终端具备电压时间型等就地馈线自动化功能,具备相间短路故障保护和接地故障保护跳闸功能,以及单相接地自适应故障判断跳闸功能,和三相自动重合闸功能。 ?可以与分段负荷开关、分段断路器融合组成成套设备; ?与分段断路器融合,用于线路首段开关; ?与分段断路器融合,用于配网主干线分段或大的分支线路; ?与分界断路器或分界负荷开关融合,用于配网线路末端或分支线路用户分界点处。 2、主要功能 ◇遥控、遥测、遥信功能◇电源管理功能 ◇故障检测及上报及分界点控制保护功能◇重合闸功能 ◇后加速保护功能◇分段开关就地馈线自动化功能 ◇失压跳闸◇单侧来电合闸 ◇X-时限闭锁◇两电源闭锁: ◇瞬时加压闭锁◇Y时限合闸确认 ◇零序电压保护功能◇单相接地故障自适应判别功能 ◇全数据安全加密功能◇故障录波功能(选配) ◇配电线路线损计量功能(选配)◇过负荷保护功能 ◇PT断线检测功能◇非遮断电流保护功能 ◇维护调试功能 3、主要性能指标

?整机功耗:≤20VA(不含通信模块和后备电源)。 交流过载能力 ?交流电压: 1.5倍额定电压:连续工作; ?交流电流:2倍额定电流:连续工作; 20倍额定电流:允许1秒。 遥测精度 ?电压测量精度:相电压≤0.5%(0.5级),零序电压:0.5%(0.5级); ?电流测量精度:相测量值≤0.5%(≤1.2In),相保护值≤3%(≤10In),零序电流0.5级; ?功率测量精度:有功功率、无功功率精度≤1%(1级); ?电量采集精度:有功电量:0.5S级,无功电量:2级; ?直流采样精度:0.5级; ?频率测量精度:≤±0.02Hz。 遥信精度 ?SOE分辨率不大于2ms; ?软件防抖动时间:5-60000毫秒可设。 遥控性能 ?接点容量:交流250V/5A、DC24V 16A、直流80V/2A或直流110/0.5A纯电阻负载; ?遥控合分闸脉冲宽度:5-10000毫秒可设。 电源性能 ?配电自动化终端主电源:交流220V,允许偏差-20%~+20%;具备双路交流电源自动切换功能; ?终端备用电源:标准配置铅酸电池(电池容量≥7Ah);交流失电后维持正常工作14小时以上,具备与主电源的无缝自动切换功能; 保护精度 ?速断保护固有动作时间不大于20ms; ?在正常工作大气条件下,连续5次测得的控制器保护动作准确度不大于±3%。 ?时间整定值的准确度不大于±1%或40ms。 安全防护及环境参数 ?防护性能:防护等级不低于GB/T4208规定的IP65级要求; ?工业级产品:温度范围(-40℃~+70℃),防磁、防震、防潮、防雷、防尘、防腐蚀。

电力系统自动化答案

1、同步发电机并列的理想条件表达式为:fg=fx(频率相等) Ug=Ux(电压幅值相等)&e=0(相角差为零)。 2、若同步发电机并列的滑差角频率允许值为ωsy =1.5%,则脉动电压周期为4/3 (s)。 谋台装有调速器的同步发电机,额定有功出力为100MW,当其有功功率增量为10MW时,系统频率上升0.25Hz,那么该机组调差系数的标么值为R*= 5% 。 3、同步发电机并网方式有两种:将未加励磁电流的发电机升速至接近于电网频率,在滑差角频率不超过允许值时进行并网操作属于自同期并列;将发电机组加上励磁电流,在并列条件符合时进行并网操作属于准同期并列。 4、采用串联补偿电容器可以补偿输电线路末端电压,设电容器额定电压为UNC=0.6kV,容量为QNC=20kVar的单相油浸纸制电容器,线路通过的最大电流为IM=120A,线路需补偿的容抗为XC=8.2Ω,则需要并联电容器组数为m=4 ,串联电容器组数为n=2 。 5、电力系统通信信道包括电力载波通信、光纤通信、微博中继通信与卫星通信三种。 6、电力系统通信规约可分为两类。由主站询问各RTU,RTU接到主站询问后回答的方式属于问答式通信规约;由RTU循环不断地向主站传送信息的方式属于循环式通信规约。 7、能量管理系统中RTU的测量数据有四类,即模拟量、开关量、数字量、脉冲量。 8、常用的无功电源包括同步发电机、同步调相机、并联电容器、静止无功补偿器。 9、馈线自动化的实现方式有两类,即就地控制方式、远方控制方式。 10、同步发电机常见的励磁系统有直流励磁机励磁系统、交流励磁机励磁系统、静止励磁系统,现代大型机组采用的是静止励磁系统。 11、励磁系统向同步发电机提供励磁电流形式是直流。 12、电力系统的稳定性问题分为两类,即静态稳定、暂态稳定。 13、电力系统发生有功功率缺额时,必然造成系统频率小于额定值。 14、电力系统负荷增加时,按等微增率原则分配负荷是最经济的。 15、就地控制馈线自动化依靠馈线上安装的重合器和分段器 来消除瞬时性故障隔离永久性故障,不需要和控制中心通信。 16、同步发电机励磁系统由励磁调节器和励磁功率单元两部分组成。 17、AGC属于频率的二次调整,EDC属于频率的三次调整。 18、发电机自并励系统无旋转元件,也称静止励磁系统。 19、直流励磁机励磁系统和交流励磁机励磁系统通常有滑环、电刷,其可靠性不高。 20、采用积差调频法的优点是能够实现负荷在调频机组间按一定比例分配,且可以实现无差调频,其缺点是动态特性不够理想、各调频机组调频不同步,不利于利用调频容量。 21、频率调整通过有功功率控制来实现,属于集中控制;电压调整通过无功功率控制来实现,属于分散控制。 22、远方终端的任务是数据采集、数据通信、执行命令、打印显示。 23、差错控制对错误信号进行纠正,可分奇校验和偶校验两种校验方式。 24、EMS发电计划的功能包括火电计划;水电计划;交换计划;检修计划。 25、馈线远方终端FTU的设备包括柱上开关、变电所、开闭所。 26、分区调频法负荷变动判断依据是:对本区域负荷Δf与ΔPtie同号;对外区域负荷Δf与ΔPtie异号。 27、当同步发电机进相运行时,其有功功率和无功功率的特点是向系统输出有功功率,同时吸收无功功率。 28、自动励磁调节器的强励倍数一般取 1.6~2.0 。

简述配网自动化及馈线自动化技术

简述配网自动化及馈线自动化技术 摘要:馈线自动化在配电网自动化系统中发挥着非常重要的作用,可远程实时 监测馈线运行过程中电压和电流参数变化以及各种开关设备和保护装置的状态, 实现远程操作控制保护装置,对开关设备进行分闸和合闸操作,准确记录配电网 线路的故障情况,并且实现故障线段的自动隔离,保障非故障线路的安全可靠供电。因此应仔细研究配电网馈线自动化技术,优化和完善馈线自动化设置,确保 配电网的安全、稳定运行。 关键词:配电网;馈线;自动化技术 一、配网自动化及馈线自动化的内容 配电自动化系统的建设应包括以下五方面:配电网架规划、馈线自动化的实施、配电设备的选择、通信系统建设和配网主站建设。 1.1配电网架规划 合理的配电网架是实施配电自动化的基础,配电网架规划是实施配电自动化 的第一步,配电网架规划应遵循如下原则:遵循相关标准,结合当地电网实际; 主干线路宜采用环网接线、运行、导线和设备应满足负荷转移的要求;主干线路 宜分为段,并装设分段开关,分段主要考虑负荷密度、负荷性质和线路长度;配 电设备自身可靠,有一定的容量裕度,并具有遥控和智能功能。 1.2馈线自动化的实施 配电网馈线自动化是配电网自动化系统的主要功能之一。配网馈线自动化是 配电系统提高供电可靠性最直接、最有效的技术手段,因此目前电力企业考虑配 网自动化系统时,首先投人的是配网馈线自动化(DA)的试点工程。馈线自动化 的主要任务是采用计算机技术、通信技术、电子技术及人工智能技术配合系统主 站或独立完成配电网的故障检测、故障定位、故障隔离和网络重构。目前通过采 用馈线测控终端(FTU)对配电网开关、重合器、环网柜等一次设备进行数据采 集和控制。因此,FTU、通信及配电一次设备成为实现馈线自动化的关键环节。 配网馈线自动化主要功能包括配网馈线运行状态监测,馈线故障检测,故障定位,故障隔离,馈线负荷重新优化配置,供电电源恢复,馈线过负荷时系统切换操作,正常计划调度操作,馈线开关远方控制操作,统计及记录。 配电网馈线自动化系统,与其它自动化系统关系密切,如变电站综合自动化 系统、集控中心站、调度自动化系统(SCADA)、用电管理系统、AM/FM/GIS地 理信息系统、MIS系统等。因此必须采用系统集成技术,实现系统之间信息高度 共享,避免重复投资和系统之间数据不一致。配电网中的停电包括检修停电和故 障停电两部分,提高供电可靠性就是要在正常检修时缩小因检修造成的停电范围;在发生故障时,减小停电范围,缩短停电时间。这就要求对具有双电源或多电源 的配电网络,在进行检修时,只对检修区段进行停电,通过操作给非检修区段进 行供电;故障时快速的对故障进行定位、隔离、恢复非故障区段的供电。配电网 络的构成有电缆和架空线路两种方式。电缆网络多采用具有远方操作功能的环网 开关,对一次设备和通信系统的要求高,适合于经济发达的城区;对于大多数县 级城市,配网改造必须综合考虑资金和效果两个因素,采用以重合器、分段器和 负荷开关为主的架空网络方案比较合适。其中,架空线路电源手拉手供电是最基 本的形式。线路主干线分段的数量取决于对供电可靠性要求的选择。理论上讲, 分段越多,故障停电的范围越小,但同时实现自动化的方案也越复杂。在手拉手 供电方式下,要求系统对各分段的故障能够自动识别并切除,最大限度缩短非故

DAT系列配电自动化终端

配电自动化的重要组成部分 概述 DAT系列配电终端是配电自动化建设的重要组成部分,主要用于对10kV中压配电网环网单元、站所单元、柱上开关、配电变压器、线路等进行数据采集、监测或控制,可与配电网自动化主站和子站系统配合,完成多条线路的“二遥”、“三遥”实时数据采集、控制与上送,并实现故障检测、故障区域定位、隔离及非故障区域恢复供电等配电自动化功能,提高供电可靠性。 应用 DAT系列配电终端应用广泛,尤其应用在中压配电网中实现监视、控制和自动化功能。DAT系列配电终端主要包括: FXD620-D系列站所终端(DTU),监视和控制环网柜、箱式开闭所; FXD620-F系列馈线终端(FTU),监视和控制柱上开关; FXD620-T系列配变终端(TTU),监视和测量配电变压器。特点 DAT系列配电终端主要特点: 完全的“三遥”功能(遥测、遥信、遥控); 故障检测功能,可检测单相接地、相间短路及过负荷等故障; 与主站配合实现集中式故障隔离和自愈; 基于对等通信技术,终端之间信息交互,实现就地快速故障隔离和自愈; 信息安全,支持基于非对称密钥技术的单向认证功能,能鉴别主站的数字签名,满足电力二次系统安全防护的要求; 大容量存储器,事件记录及故障录波存储; 完整的后备电源运行监测及控制,双路电源备份供电; 配置方便灵活,远程维护功能,减少现场维护工作量; 模块化设计,易安装,免维护,低功耗,易扩展,可靠性高。

故障检测、隔离与恢复 (FDIR) 为了提高中压配电网络的可靠性,最可靠的途径之一是快速确定故障位置,并隔离故障,自动恢复非故障段的馈线供电。采用故障检测、隔离与恢复功能的馈线自动化可以给我们带来: 缩短停电时间,减少停电次数,提高供电可靠性; 增强运营效率,提高服务质量; 目前,用户对供电质量和供电可靠性的要求越来越高,实现配电网自动化势在必行。馈线自动化(FA)可以实现每条馈线运行方式和数据采集的监视,是配电自动化的重要内容之一。根据配电自动化实施区域的供电可靠性需求、一次网架结构、配电设备等情况,DAT配电终端可以选择实现下面不同的故障处理模式,实现馈线自动化功能。A+类供电区域宜采用集中式或智能分布式;A、B类供电区域可采用集中式、智能分布式或就地型重合器式;C、D类供电区域可根据实际需求采用就地型重合器式或故障监测方式。 就地型智能分布式馈线自动化 DAT系列配电终端具备智能分布式故障就地处理功能。多个DAT系列终端基于对等通信技术,终端之间故障信息交互,根据相邻终端信息,智能决策开关动作,实现馈线故障的分布式处理,并将故障处理结果上报给配电主站。该方案可以大大提高馈线自动化的反应时间,并最大限度地减少停电次数。就地型重合器式馈线自动化 就地型重合器式馈线自动化提供给客户在短时间内恢复供电的解决方案。DAT系列配电终端在无通信条件的情况下,在故障发生时,通过线路开关间的逻辑配合,利用重合器实现线路故障定位、隔离和非故障区域恢复供电。FXD620配电终端作为开关控制装置的同时,也可作为过电流保护装置。每个开关的动作逻辑可根据其在运行网络上的位置通过不同程序配置来实现。 集中型馈线自动化 集中型全自动或半自动式馈线自动化利用配电自动化系统或配电管理系统主站,通过收集区域内DAT系列配电终端的信息,分析判断配电网运行状态,集中进行故障定位,确定故障后恢复供电的最佳方式。 集中型全自动或半自动 馈线自动化 SCADA/DMS 不依赖于配电SCADA主站系统 的通信,可独立运行 可扩展的安装,不需要通信网络 的前期大量投资 不需要新建SCADA或者DMS系 统,可支技已有监控系统 最快的恢复时间 不依赖通信网络,故障发生时通 过线路开关间的逻辑配合实现故 障隔离和恢复供电 仅在故障时起作用,不能优化运 行方式 需要经过多次重合,对设备及系 统冲击大 基于配电SCADA主站系统,可应 用于复杂网络,适用灵活的运行 方式 灵活控制,可采取安全和最佳 措施 功能易于扩展,可和GIS/MIS/ DMS等联网,实现全局信息化就地型智能分布式 馈线自动化 FTU/DTU配电终端 就地型重合器式 馈线自动化 重合器控制器 伊顿公司 DAT系列配电自动化终端 2

国家电网公司就地型馈线自动化技术原则(试行)

附件7: 就地型馈线自动化技术原则 1自适应综合型 自适应综合型馈线自动化是通过“无压分闸、来电延时合闸”方式、结合短路/接地故障检测技术与故障路径优先处理控制策略,配合变电站出线开关二次合闸,实现多分支多联络配电网架的故障定位与隔离自适应,一次合闸隔离故障区间,二次合闸恢复非故障段供电。以下实例说明自适应综合型馈线自动化处理故障逻辑。 1.1 主干线短路故障处理 (1)FS2和FS3之间发生永久故障,FS1、FS2检测故障电流并记忆1。 FS1 1CB为带时限保护和二次重合闸功能的10KV馈线出线断路器 FS1~FS6/LSW1、LSW2:UIT型智能负荷分段开关/联络开关 YS1~YS2为用户分界开关

CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 YS1 YS1 (2)CB 保护跳闸。 CB CB LSW1 LSW1 FS6 FS6 YS3 YS3 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (3)CB 在2s 后第一次重合闸。 CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (4)FS1一侧有压且有故障电流记忆,延时7s 合闸。

CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (5)FS2一侧有压且有故障电流记忆,延时7s 合闸,FS4一侧有压但无故障电流记忆,启动长延时7+50s (等待故障线路隔离完成,按照最长时间估算,主干线最多四个开关考虑一级转供带四个开关)。 CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (6)由于是永久故障,CB 再次跳闸,FS2失压分闸并闭锁合闸,FS3因短时来电闭锁合闸。

相关文档
最新文档