压电型加速度传感器技术手册上册

压电型加速度传感器技术手册上册
压电型加速度传感器技术手册上册

压电型

加速度传感器

技术手册

目录

本书中使用的符号和意义 (2)

1概要 (3)

2压电型加速度传感器

(2-1)特点 (4)

(2-2)压电效应 (4)

(2-3)原理 (6)

3灵敏度

(3-1)电荷灵敏度 (9)

(3-2)电压灵敏度 (10)

(3-3)灵敏度的表示方法 (10)

(3-4)信号干扰 (11)

4频率特性

(4-1)固有共振频率 (13)

(4-2)电荷增幅中的低频截止频率 (14)

(4-3)电压增幅中的低频截止频率 (15)

(4-4)接触共振频率和高频特性 (15)

(4-5)灵敏度和共振频率 (18)

5相位特性 (20)

6动态范围和直线性 (22)

7过度响应

(7-1)零点漂移 (23)

(7-2)振铃 (25)

8环境条件

(8-1)使用温度范围 (27)

(8-2)温度特性 (27)

(8-3)瞬时温度产生的噪音 (28)

(8-4)湿度的影响 (29)

(8-5)声压灵敏度 (29)

(8-6)电磁场的影响 (29)

9灵敏度标定

(9-1)绝对标定 (31)

(9-2)比较法 (31)

10加速度传感器的正确使用方法

(10-1)加速度传感器的构造和用途 (33)

(10-2)安装方法 (34)

(10-3)低噪声电缆 (36)

(10-4)低频低速振动测量 (36)

(10-5)冲击及过度振动测量 (37)

(10-6)振动物体重量轻的情况 (38)

(10-7)接地回路 (38)

本书中使用的符号及意义

(按字母顺序)

1. 概 要

测量振动有两种方法,方法一在空间里设置一个静止参照系,测量距这个参照系的位移量;方法二直接将加速度传感器安装在振动体上并算出加速度。除去因振动体质量过轻,会受到加速度传感器本身质量影响的情况,一般来说多采用后者即加速度法。在静止参照系无法测量位移的情况下,比如运行的车辆、飞机等,利用加速度方法可以直接进行测量,在实用性上比较有优势。

振动测量用传感器可大致分为接触型和非接触型,如表1.1.1所示。 加速度

速度 动电型(数Hz~1KHz ) 振动传感器 位移 应变型(DC~数100Hz )

非接触型

位移 表1.1.1 振动传感器的分类

在这些分类当中,压电型加速度传感器具有带域宽、灵敏度高、小型轻量、动态范围广等优势,是最为常用的测量振动的传感器。

压电型(数Hz~数10KHz ) 动电型(数Hz~1KHz ) 应变型(DC~数100Hz )

电磁型(涡流型)

电容型(DC~数10KHz ) 光学式(激光干涉法)

2.压电型加速度传感器

(2-1)优势

压电型加速度传感器具有很多独特的优势,因此被广泛应用于振动测量的各个领域。从重量角度来看,压电型加速度传感器具有带域宽、灵敏度高的特点。利用带域宽的特点可以进行冲击测量,对含有多种频率成分的振动波、原波形都可精确测量。另外,压电型加速度传感器具有高灵敏度的同时,还有很高的机械强度,因此动态范围很广。

另外一个很大的优势是,由于压电体是电荷应答型,无法保持DC成分的峰值,所以不具备静态灵敏度。因此通过积分器测量速度、位移时,无需考虑零漂的误差(参考p23),使用起来非常方便。

从重量角度看具有高灵敏度。(与其他方式相比)

可设定高数值的固有共振频率,具有带域宽的特点。

具有高机械强度和高灵敏度,动态范围广。

是电荷应答型,不具有静态灵敏度。

利用压电效应,不需要外接电源。

原理上没有阻尼器,具有良好的时效性。

无需繁琐的基准值设置,安装后即可测量。

(2-2)压电效应

结晶体是由构成固体物质的原子、离子通过规则排列组合而成的立体结构。根据构成的原子、离子的对称性,结晶体分为32种晶族。其中20晶族的结晶体具有压电性。

石英、罗谢尔盐或者锆钛酸铅陶瓷[Pb(Zr?Ti)O3]等属于20晶族,这些结晶体受到压力、张力、剪切力时会产生形变,导致介质极化产生电流(正压电效应)。相反,给结晶体施加电流使之极化后,结晶体会产生相应的形变(逆压电效应)。这种现象称为压电效应,具有压电性的结晶体称为压电体。

在压电体中,应力T和形变力S(机械量)与电流E和电位移D(电气量)通过压电效应相互结合。这种特性叫做机电耦合特性,以加速度传感器为例,已经在各个领域被广泛应用。

压电效应可以用以下公式表示。选择T和E为独立变量,用矩阵标识法表示如下,

如果选择T和D为独立变量的话,表示如下,

(其中E:介电常数,C S:柔量),另外上式中d和g各自代表d常数(等价压电常数)、g常数(电压输出常数),如以下公式所示。

另外两者之间存在如下关系:

因为d常数和g常数都是3阶张量1,因此具有18种方向。可将其大致分为4类:(ⅰ)在电流轴垂直方向的伸缩,(ⅱ)在电流轴平行方向的伸缩,(ⅲ)在电流轴垂直面内的切变,(ⅳ)在电流轴平行面内的切变。如图所示:

(ⅰ)横向效果d31,g31 (ⅱ)纵向效果 d33,g33

(ⅲ)面切变效果d14,g14 (ⅳ)厚度切变效果d15,g15

图2.2.1 压电效果

图2.2.1中的(ⅰ)和(ⅱ)分别称作横向效果d31,g31 ,纵向效果 d33,g33,(ⅲ)和(ⅳ)称作剪切效果。

1d常数、g常数是用张量的省略记法表示的,并不是2阶张量,而是3阶张量。具体来说,d31、d33、d15分别对应d311、d333、d113。只是此时极化方向均为“3”方向。第1项为外部电流的方向。第2项表示与此方向的垂直面,承受第3项表示方向的应力。第3项表示应力方向。

(2-3)原理

应用压电效应的压电型加速度传感器,要根据用途选择上述压电效果。

从结构上看,压缩型(纵向效果)具有高机械强度,适用于冲击测试等各种测量要求。剪切型(厚度切变效果)不易受到由于温度变化产生的热电气2的影响。挠曲型(横向效果)具有低频高敏度的特点。三者结构如图2.3.1(a)(b)(c),区别在于压电体受到的应力方向不同,其基本原理则大致相同。

外壳压电体

质量块

质量块

压电体

基座基座

(a)压缩型(b)剪切型

压电体质量块

基座

(c)挠曲型

图2.3.1 压电型加速度传感器的结构

现在仅对加速度传感器运动方向为上下的情况进行说明,图2.3.2(a)(b)中,k代表压电体的弹性常数,D代表空气阻抗等各种衰减。如图(a)中在基座上施加位移x0向上的加速度a0,弹性常数k如图(b)所示,被压缩位移y。此时,施加到质量块m上的力F可用以下公式表示。

F0:传感器施加的力

y’:质量块的速度

2压电体的结晶在无电流无应力状态下发生极化,此现象称为自发极化,通常用Ps表示。具有Ps特性的结晶,其热振动状态会随温度变化,其大小会随热膨胀发生变化。因此Ps是温度函数,结晶的温度变化量会成为Ps的变化量,并在结晶表面产生相应的电位差(正效应),反之施加电流产生相应的温度变化(逆效应)。此现象我们称之为热电气。(参考P28)

m:质量块D:衰减k:弹性常数(压电体)

x0:基座位移x:质量块位移

a0:加速度y:压电体的压缩位移量(y=x0-x)

图2.3.2 压电型加速度传感器的原理

接下来,我们利用牛顿第二定律[力F=质量m×加速度a],公式2.3.1可以推导出以下公式。

m0:加速度传感器的质量

a0:加速度传感器的加速度

a:质量块的加速度(y”)

v:对于质量块基座的速度(y’)

因此,比弹性质量系(质量块、压电体、基座)的固有共振频率低时,从公式2.3.2可以得出,加速度传感器的加速度a0和压电体受到的惯性力F=m?a成比例关系,另外与频率不相关。

而且如果是压缩型的话,惯性力F给压电体施加了纵向的应力,此时产生的电荷可以从公式2.3.2中推导出来。

此时,d33、m是一定的,因此加速度a0与Q成一定比例关系。下面根据压电体的静态电容C将电荷Q转换成电压V。

由Q=CV公式2.3.3可以表示为,

此时,静态电容C为一定的话,a0与V也成一定比例关系。

电荷放大器电压放大器

图2.3.3 压电型加速度传感器框图

如上所示,压电型加速度传感器,基座受到的加速度最终会以电压形式输出。电荷及电压输出都与加速度成一定比例关系,因此通过测量电荷和电压即可得出加速度。一般电荷输出称为电荷灵敏度,电压输出称为电压灵敏度。

3.灵敏度

(3-1)电荷灵敏度

在压电体上施加力的话,将会产生电荷,表示电荷量的数值即为电荷灵敏度。从公式2.3.3可以看出,此灵敏度不受电容负载的影响,即使改变电缆长度,灵敏度也不会有变化。通过电荷灵敏度测量振动时,需要使用电荷放大器。可以将电荷放大器理解为一种积分器,将电荷转换为电压。

压电体电缆电荷放大器

图3.1.1 电荷放大器的等价电路

图3.1.1中-A为运算放大器的放大率(负号代表输入输出之间的相位相反)。Cd为压电体的静态电容,Cc为电缆电容,Cf为反馈电容,Rf为反馈电阻,qd为压电体产生的电荷,qf 为Cf储存的电荷,q0表示Cd和Cc储存的电荷。

此时压电体中产生了电荷qd。电荷qd形成移动电流i,由于运算放大器的输入电阻为无限大,使得输入电流全部流入反馈电路中。因此压电体产生的电荷qd被输入电容Cd+Cc 以及Cf全部储存起来。也就相当于qd= q0+qf。在图3.1.1的电路图中,可以得出以下关系。

这里运算放大器的开环增益A 远大于1,因此可以近似为以下公式,

从上式可以看出,电荷放大器中输入电压e通常近似为0,由可以得出,因此传感器中产生的电荷为反馈电容Cf中储存的电荷。公式3.1.4表示电荷放大器的转换率。由此得出,灵敏度不受输入电容(Cd+Cc)的影响,仅与反馈电容相关。

(3-2)电压灵敏度

通过电压输出测量振动时,使用电压增幅器(以下称电压放大器)。此时的等价电路如

图中Rin为电压增幅器的输入阻抗,Cd为传感器本身的静态电容,Cc为电缆电容,qd表示传感器中产生的电荷。此传感器中产生的电荷qd通过电流i和输入阻抗Rin进行放电。此时电压放大器的输入电压为e由公式2.2.3和2.3.4变为:

如公式3.2.1所示,电压灵敏度受电容负荷的影响,电缆变长灵敏度则下降。所以此方法不适合延长电缆进行测量。如果需要延长电缆线,将电压放大器作为电压跟随器(阻抗转换器),在其低输出阻抗一侧延长电缆即可。此时Cd-Rin之间尽量缩短接线长度,以避免灵敏度下降以及噪声干扰等现象。

电压跟随器由于电压保持e=e0 没有放大,输出电流被放大,因此从结果上看达到了电力放大的效果。因为输出阻抗很低(数100Ω以下),所以可以延长电缆,不必考虑摩擦效3应带来的电缆噪声问题。可以将小型电压跟随器内置在传感器内部,就具备了上述优势。

(3-3)灵敏度的表示方法

在压电型加速度传感器中,与加速度a0成一次比例关系的参数是电压V和电荷Q。因此表示灵敏度就有电压灵敏度和电荷灵敏度两种方法。

电压灵敏度用相当于加速度1g(9.8m/s2)的输出电压V,即用V/g(实用单位:mV/g)表示。从公式2.3.4可以得知,由于受连接电缆电容的影响,一般包含压电体(传感器本身)的电容和附带电缆的电容。

电荷灵敏度用相当于加速度1g的电荷c(库伦),即c/g(实用单位:pc/g)表示。从公式2.3.3可以得知,电荷灵敏度不受电容负载的影响,因此连接任意长度的电缆灵敏度仍是

3所谓摩擦效应,是由于电缆的强力弯曲拧拉造成电缆的绝缘体与导体之间有部分分离,其分离部分会形成电容器。其电荷放电后,高输出阻抗的压电型加速度传感器就会受到噪声影响。(通过使用低噪声电缆可以缓解此现象。)(请参照p36)

电压灵敏度Sv 和电荷灵敏度S Q 之间的关系,可以用公式3.3.1表示。

当静态电容为850pF 的加速度传感器上连接了2m 的电缆(1m 相当于75pF )时,压电灵敏度为50mV/g 。此时电荷灵敏度可以用以下公式表示。

另外,电荷灵敏度为100pc/g 传感器本身的静态电容为850pF 时,连接上5m 电缆(1m 相当于75pF )后,终端的电压灵敏度为,

(3-4)串扰

一般压电型加速度传感器中有一个轴对于加速度灵敏度最大,称其为主轴灵敏度。当然也有特殊类型的是2轴、3轴型的,通常与固定基座面相对的近乎垂直方向有一个最大灵敏度轴。由于在制作过程中会有误差,因此最大灵敏度轴不是完全垂直于基座。

如图3.4.1中,最大灵敏度为maxSv ,其最大灵敏度轴与主轴(Z 轴)有θ°的倾斜。此时主轴灵敏度Sv 为

另外,最大横轴灵敏度maxSvt 为

通常串扰是通过主轴灵敏度Sv 与最大横轴灵敏度maxSvt 之比的百分率来表示的。

另外,从最大横轴灵敏度轴(X 轴)倾斜φ后,

本公司的传感器的串扰全部在5%以下(通常1~2%以下),因此对于一般的振动测量不会产生影响。主轴灵敏度Sv 和横轴灵敏度Svt 的指向性如图3.4.2和3.4.3。

如果出现串扰问题,可以选择串扰小的加速度传感器,使传感器的最小横轴灵敏度轴(图3.4.3的Y

轴)面向需要测量的振动体的最大横轴振动方向,这样可以将串扰的影响降到最

Cd :压电体的静态电容 Cc :电缆的静态电容

串 扰

低。

图3.4.1 主轴Sv与横向灵敏度Svt的关系

图3.4.2 主轴灵敏度Sv的指向性图3.4.3 横向灵敏度Svt的指向性

下册索取请咨询:李宁

pzt5693@https://www.360docs.net/doc/ec17410664.html,

长沙鹏翔电子科技有限公司

传感器实验报告

传感器实验报告(二) 自动化1204班蔡华轩 U2 吴昊 U5 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔 记下位移X 与输出电压值,填入表7-1。

5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S= 非线性误差δf=353=% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理

加速度传感器的选择

加速度传感器选型 压电加速度传感器因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。在一般通用振动测量时,用户主要关心的技术指标为:灵敏度、频率范围,内部结构、内置电路型与纯压电型的区别,现场环境与后续仪器配置等。 一、灵敏度的选择 制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。 估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例: 1、土木工程和超大型机械结构的振动在0.1g-10g (1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~ 30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器 2、特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。 3、冲击,碰撞测量量程一般10000ms-2~1000000ms-2,可选则传感器灵敏度是0.2pC/ms-2~ 0.002pC/ms-2的加速度传感器。 二、频率选择 制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。 一般将曲线分成二段:谐振频率和使用频率。使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。谐振频率一般是避开不用的,但也有特例,如轴承故障检测。选择加速度传感器的频率范围应高于被测试件的振动频率。有倍频分析要求的加速度传感器频率响应应更高。土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~ 5kHz 的加速度传感器。如发电机转速在3000rms 时,除以60s 此时它的主频率为50Hz。碰撞、冲击测量高频居多。 加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。 安装面要平整、光洁,安装选择应根据方便、安全的原则。我们给出同一只AD500S 加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装 2kHz;双面胶安装1kHz。由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。 三、内部结构 内部结构是指敏感材料晶体片感受振动的方式及安装形式。有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。 中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。 四、内置电路 内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。它可分双电源(四线)和单电源(二线、带偏置,又称ICP) 两种,下面所指内装电路专指ICP

压电式加速度传感器

HEFEI UNIVERSITY OF TECHNOLOGY 《传感器原理及应用》课程 考核论文 题目压电式加速度传感器班级机设七班 学号 20111488 姓名孙国强 成绩 机械与汽车工程学院机械电子工程系 二零一四年五月

压电式加速度传感器 摘要:现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动 态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。其中,压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。 一、传感器物理效应及工作原理 压电效应:某些材料在受力时所产生的电极化现象。正压电效应:某些电介质在受到某一方向的机械力而变形时,在一定表面上产生电荷,若外力变向,电荷极性随之而变;当撤除外力后,又重新回到不带电状态。逆压电效应:当在电介质的极化方向施加电场,电场力使其在一定方向上产生机械变形或机械应力;当撤除外加电场时,变形或应力随之消失,又称电致伸缩效应。 压电材料:石英晶体是目前广泛应用成本较低的人造石英晶体,有很大的机械强度和稳定的机械性能,温度稳定性好,但灵敏度低,介电常数小,因此逐渐被其他压电材料所代替,至今石英仍是最重要的也是用量最大的振荡器、谐振器和窄带滤波器等元件的压电材料。除此之外,压电陶瓷有较高的压电系数和介电常数,灵敏度高,但机械强度不如石英晶体好。 压电式加速度传感器又称为压电加速度计,它是典型的有源传感器,利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。 压电加速度传感器的原理框图如图1所示,原理如图2所示。

加速度传感器的安装方法

加速度传感器的安装方法 1.目的: 将用书面形式来阐述加速度计的粘接式安装方法,我们的工程师在这个应用领域中进行了许多调查研究并得出结论:正确的加速度计粘接方法是十分重要的。这些信息将有助于测试工程师和技师在粘接一些特殊类型的传感器时获得更好的帮助并做出更好的决定。 2.背景: 测试工程师和技师们常常会问:如何避免在安装被测物体表面上不用打出螺孔而进行加速度计的安装?例如合成和碾压材料表面安装时厚度不足,在一块很小的表面区域中存在着很多不牢固的整体性结构,多样性的安装方式使得加速度计的安装方式具有很大的随意性,在这种状况下我们使用粘接剂粘合加速度计是最合适的安装方式。 测试人员将会决定在什么样的环境下采用什么类型的粘接剂更符合测试要求。加速度计的自然频率由粘接的耦合程度决定,选择正确的粘合剂将是很重要的一步。有些重要的问题是必须要考虑的:加速度计的重量,测试时的频率和带宽,测试时的振幅和温度。还要考虑一些测试过程中会出现的问题:正弦曲线的受限和测试中出现的随机振动。通常,工程师和技师将会根据测试不同的需求选择合适的粘接剂来粘接加速度计。 这些粘接剂包括:氰基丙烯酸盐,磁铁,双面胶带,石蜡,热粘接剂等,问题的关键在于如何能够有效的选择和使用这些粘接剂。下面我们来解决这些问题。在正弦振动测试过程中751-100和2226C是两种典型的被广泛应用的加速度计,分别用氰基丙烯酸盐,磁铁,双面胶带,石蜡,热粘接剂对它进行粘接。一般在高温控制室中进行,以此来校验加速度计在其他温度改变之前的频率响应。用热电偶来监控烤箱中的温度用于校准加速度计。 3.建议: 在加速度计的粘接过程中,粘合剂的使用数量将在加速度计能否达到良好的频率响应中起到很关键的作用。在一块小的薄膜上尽可能的用最少的粘接剂粘接加速度计将会直接的促进加速度计频率响应传送性能的提高。在安装传感器之前要用碳氢化合物的溶解液:比如(Loctite? X-NMS)来清洁其要安装的表面,在安装传感器的时候通常要用到氰基丙烯酸盐, 磁铁,双面胶带,石蜡,将它们均匀地涂抹在粘接加速度计被粘表面,合适的厚度将会起到良好的粘接效果。热粘接剂的使用有很多的注意事项,要注意安装过程中热粘接剂的凝固时间。 751-100和2226C是两种最具有代表的普通加速度计。751-100重7.8克,在测试高频振动时,频率响应在1-15K HZ。2226C重2.8克,在使用氰基丙烯酸盐粘接到高频振动台的时候,频率响应在1-5K HZ。 粘接剂安装方法介绍: 氰基丙烯酸盐 在测试传感器中一个加速度计的重量一般小于10克,这是它们的优势所在,在751-100和2226C两种传感器的粘接中可以使用氰基丙烯酸盐的粘合剂,使用温度范围通常在-18°C 到+121°C之间。氰基丙烯酸盐的粘合剂也可用于121°C之上,通常能达到177°C。氰基丙烯酸盐是一种用于粘合坚固塑料的胶液,这种胶液可用于粘接金属,玻璃,橡胶和各种塑料。使用氰基丙烯酸盐的稀释剂可以加快凝固时间。通常氰基丙烯酸盐用来粘接铝,不锈钢。甲基氰基丙烯酸盐通常被推荐用来粘接和固定金属和玻璃。不能确定的是氰基丙烯酸酯在其他材料方面的应用,我们还需要做进一步的测试。 优点: 1.室温时粘接效果好,凝固时间较快。 2.频率响应宽,温度范围宽。 缺点:

传感器实验报告

33传感器原理及应用实验报告 实验人:程昌 09327100 合作人:雷泽雨 09327104 理工学院光信息科学与技术 实验时间:2011年5月20日,5月27日 实验地点:1号台 【实验目的】 1.了解传感器的工作原理。 2,掌握声音、电压等传感器的使用方法。 3.用基于传感器的计算机数据采集系统研究电热丝的加热效率。 【实验仪器】 PASCO公司750传感器接口1台,温度传感器1只,电流传感器1只,电压传感器1只,声音传感器1只,功率放大器1台,电阻1只(1k),电容1只(非电解电容,参数不限),二极管1只(非稳压二极管,参数不限),导线若干。 【安全注意事项】 1、插拔传感器的时候需沿轴向平稳插拔,禁止上下或左右摇动插头,否则易损坏750接口。 2、严禁将电流传感器(Current sensor)两端口直接接到750接口或功率放大器的信号输出 端,使用时必须串联300欧姆以上的电阻。由于电流传感器的内阻很小,直接接信号输出端则电流很大,极易损坏。 3、测量二极管特性时必须串联电阻,因为二极管的正向导通电压小于1V,不串联电阻则电 流很大,容易烧毁,也易损坏电流传感器。 【原理概述】 传感器(sensor或transducer)有时亦被称为换能器、变换器、变送器或探测器,是指那些对被测的某一物理量、化学量或生物量的信息具有感受与检出功能,并使之按照一定规律转换成与之对应的有用输出信号的元器件或装置。为了与现代电子技术结合在一起,通常都转换为电信号,特别是电压信号,从而将各种理化量的测量简化为统一的电压测量,易于进一步利用计算机实现各种理化量的自动测量、处理和自动控制。现在,传感技术已成为衡量一个国家科学技术发展水平的重要标志之一,与信息技术、计算机技术并称为支撑整个现代信息产业的三大支柱。有关传感器的研究也得到深入而广泛的关注,在中国期刊全文数据库中可检索到超过2万篇题目中包含“传感器”三字的论文。因此,了解并掌握一些有关传感器的基本结构、工作原理及特性的知识是非常重要的。

传感器原理与应用实验报告

传感器原理与应用 实验报告 分校: 班级: 姓名: 学号:

实验一 电阻应变式传感器实验 实验成绩 批阅教师 一. 实验目的 1.熟悉电阻应变式传感器在位移测量中的应用 2.比较单臂电桥、双臂电桥和双差动全桥式电阻应变式传感器的灵敏度 3.比较半导体应变式传感器和金属电阻应变式传感器的灵敏度 4.通过实验熟悉和了解电阻应变式传感器测量电路的组成及工作原理 二.实验内容 1.单臂电桥、双臂电桥和双差动全桥组成的位移测量电路, 2.半导体应变式传感器位移测量电路。 三.实验步骤 1.调零。开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。调零后关闭仪器电源。 2.按图(1)将实验部件用实验线连接成测试桥路。桥路中R 1、R 2、R 3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V 。 图(1) 测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基本水平状态。 3.接线无误后开启仪器电源,预热数分钟。调整电桥W D 电位器,使测试系统输出为零。 1. 旋动测微头,带动悬臂梁分别作向上和向下的运动,以悬臂梁水平状态下电路输出电压为零起点,向上和向下移动各6mm ,测微头每移动1mm 记录一 +

个差动放大器输出电压值,并列表。2.计算各种情况下测量电路的灵敏度S。S=△U/△x 表1 金属箔式电阻式应变片单臂电桥 表2 金属箔式电阻式应变片双臂电桥 表3 半导体应变片双臂电桥

PE和IEPE加速度传感器的比较.doc

P E和I E P E加速度传感器的比较 PE是指电荷输出型压电式加速度传感器,IEPE是指内置处理电路的压电式加速度传感器,本文将要讨论二者各自的特点。 压电效应 压电式加速度传感器的工作原理是以某些物质的压电效应为基础的。当这些物质在某一方向上因受到拉力或压力的作用而产生变形时,其表面上会产生电荷;当去掉外力时,它们又会回到不带电的状态,这种现象就是压电效应。常用的压电材料有石英、钛酸钡、锆钛酸铅等等。实际上,当压电材料受到剪切力、横向拉力或压力时,也会产生压电效应。 PE加速度传感器 PE压电式加速度传感器的工作原理是:将质量块的加速度转换为其对压电材料所施加的力,通过测得该力的大小从而换算出加速度的值。 压电式加速度传感器的结构原理如下图所示。两片压电片组成了其压电元件,表面有镀银层,中间夹有一金属片,并焊有输出引线,另一输引线直接与基座相连。压电片上放有一个比重较大的质量块,并用一硬弹簧或螺栓对其施加预载荷。整个组件封装在一个金属壳体内部,基座一般较为厚重且刚度大。 测量时,传感器与被测物刚性固定在一起,当被测物振动时,传感器与基座也会产生相同的振动。由于质量块的质量相对较小,而弹簧的刚度相对很大,所以可认为质量块的惯性很小。因此质量块感受到与传感器基座相同的振动,并受到与加速度方向相反的惯性力的作用。于是,质量块就有一正比于加速度的交变力作用在压电片上,使其两个表面产生交变电荷。当振动频率远低于传感器的固有频率时,传感器的输出电荷与作用力成正比,亦即与被测物的加速度成正比。 由于PE传感器的输出量为电荷,因此其后端必须与电荷放大器或电压放大器连接,才能将电荷信号转换为电压信号,此电压信号经过后级放大、滤波等调理电路即可送入示波器等设备。由于PE传感器的输出阻抗较高,易受输出的电荷信号易受噪声干扰,因此必须使用特殊的低噪声电缆。 IEPE加速度传感器 由于PE加速度传感器有必须配接外部电荷放大器使用,并且信号在长距离传输过程中容易受干扰等一些缺点,因此出现了IEPE加速度传感器。 IEPE压电式加速度传感器的结构原理如上图所示,它其实就是将PE加速度传感器所需的处理电路集成到传感器内部,这样就可以直接输出一个高电平、低阻抗的电压信号,也有

压电式传感器测振动实验.

实验二十一压电式传感器测振动实验 一、实验目的:了解压电传感器的原理和测量振动的方法。 二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。 1、压电效应: 具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。 压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图21—1 (a) 、(b) 、(c)所示。这种现象称为压电效应。 (a) (b) (c) 图21—1 压电效应 2、压电晶片及其等效电路 多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图21—2(a)所示。当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。从结构上看,它又是一个电容器。因此通常将压电元件等效为一个电荷源与电容相并联的电路如21—2(b)所示。其中e a=Q/C a。式中,e a为压电晶片受力后所呈现的电压,也称为极板上的开路电压;Q为压电晶片表面上的电荷;C a为压电晶片的电容。 实际的压电传感器中,往往用两片或两片以上的压电晶片进行并联或串联。压电晶片并联时如图21—2(c)所示,两晶片正极集中在中间极板上,负电极在两侧的电极上,因而电容

压电式加速度传感器及其应用备课讲稿

压电式加速度传感器 及其应用

压电式加速度传感器及其应用 一、 压电式加速度传感器原理 压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。 由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。 为此,通常把传感器信号先输到高输入阻抗的前置放大器。经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示 仪表或记录器。 二、压电式加速度传感器构成元件 常用的压电式加速度计的结构形式如图所示,是由预压弹簧,质量块,基座,压电元件和外壳组成。图中为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。 预压弹簧压电元件外壳质量 块基座

三、压电式加速度传感器幅频特性 图1 压电式加速度计的幅频特性曲线 加速度 限频率取决于幅频曲线中的共振频率图(图1)。一般小阻尼(z<=0.1)的加速度计,上限频率若取为共振频率的 1/3,便可保证幅值误差低于1dB(即12%);若取为共振频率的1/5,则可保证幅值误差小于0.5dB(即6%),相移小于30。但共振频率与加速度计的固定状况有关,加速度计出厂时给出的幅频曲线是在刚性连接的固定情况下得到的。实际使用的固定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。 四、压电式加速度传感器的灵敏度 压电式加速度计的灵敏度压电加速度计属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度和电荷灵敏度两种表示方法。前者是加速度计输出电压(mV)与所承受加速度之比;后者是加速度计输出电荷与所承受加速度之比。加速度单位为m/s2,但在振动测量中往往用标准重力加速度g作单位,1g= 9.80665m/s2。对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。一般来说,加速度计尺寸越大,其固有频率越低。因此

超声波传感器

超声波传感器的实验报告 一、超声波传感器的定义: 超声波传感器是将超声波信号转换成其他能量信号(通常是电信号)的传感器。超声波是振动频率高于20KHz的机械波。它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。超声波传感器广泛应用在工业、国防、生物医学等方面。 超声波传感器的原理: 二、超声波传感器按其工作原理,可分为 1、压电式 2、磁致伸缩式 3、电磁式 压电式超声波传感器 压电式超声波传感器是利用压电材料的压电效应原理来工作的。常用的敏感元件材料主要有压电晶体和压电陶瓷。 根据正、逆压电效应的不同,压电式超声波传感器分为发生器(发射探头)和接收器(接收探头)两种,根据结构和使用的波型不同可分为直探头、表面波探头、兰姆波探头、可变角探头、双晶探头、聚焦探头、水浸探头、喷水探头和专用探头等。 压电式超声波发生器是利用逆压电效应的原理将高频电振动转换成高频机械振动,从而产生超声波。当外加交变电压的频率等于压电材料的固有频率时会产生共振,此时产生的超声波最强。压电式超声波传感器可以产生几十千赫到几十兆赫的高频超声波,其声强可达几十瓦每平方厘米。 压电式超声波接收器是利用正压电效应原理进行工作的。当超声波作用到压电晶片上引起晶片伸缩,在晶片的两个表面上便产生极性相反的电荷,这些电荷被转换成电压经放大后送到测量电路,最后记录或显示出来。压电式超声波接收器的结构和超声波发生器基本相同,有时就用同一个传感器兼作发生器和接收器两种用途。 典型的压电式超声波传感器结构主要由压电晶片、吸收块(阻尼块)、保护膜等组成。压电晶片多为圆板形,超声波频率与其厚度成反比。压电晶片的两面镀有银层,作为导电的极板,底面接地,上面接至引出线。为了避免传感器与被测件直接接触而磨损压电晶片,在压电晶片下粘合一层保护膜。吸收块的作用是降低压电晶片的机械品质,吸收超声波的能量。

常用加速度传感器有哪几种分类

1、常用加速度传感器有哪几种分类各有什么特点 答:加速度传感器按工作原理可分为压电式、压阻式和电容式。 压电式传感器是通过利用某些特殊的敏感芯体受振动加速度作用后会产生与之成正比的电荷信号的特性,来实现振动加速度的测量的,这种传感器一般都具有测量频率范围宽、量程大、体积小、重量轻、结构简单坚固、受外界干扰小以及产生电荷信号不需要任何外界电源等优点,它最大的缺点是不能测量零频率信号。 压阻式传感器的敏感芯体为半导体材料制成电阻测量电桥来实现测量加速度信号,这种传感器的频率测量范围和量程也很大,体积小重量轻,但是缺点也很明显,就是受温度影响较大,一般都需要进行温度补偿。 电容式传感器中一般有个可运动质量块与一个固定电极组成一个电容,当受加速度作用时,质量块与固定电极之间的间隙会发生变化,从而使电容值发生变化。它的优点很突出,灵敏度高、零频响应、受环境(尤其是温度)影响小等,缺点也同样突出,主要是输入输出非线形对应、量程很有限以及本身是高阻抗信号源,需后继电路给予改善。 相比之下,压电式传感器应用更为广泛一些,压阻式也有一定程度的应用,而电容式主要专用于低频测量。 2、压电式传感器又分哪几种 答:压电式传感器有多种分类方式。 按敏感芯体材料分为压电晶体(一般为石英)和压电陶瓷两类。压电陶瓷比压电晶体的压电系数要高,而且各项机电系数随温度时间等外界条件的变化相对较小,因此一般更常用的是压电陶瓷。 按敏感芯体结构形式分为压缩式、剪切式和弯曲变形梁式。压缩式结构最简单,价格便宜,但是不能有效排除各种干扰;剪切式受干扰影响最小,目前最为常用,但是制造工艺要求较高,所以价格偏高;弯曲变形梁式比较少见,其结构能够产生较大的电荷输出信号,但是测量频率范围较低,受温度影响易产生漂移,因此不推荐使用。 按信号输出的方式分为电荷输出式和低阻抗电压输出式(ICP)。电荷输出式直接输出高阻抗电荷信号,必须通过二次仪表转换成低阻抗电压读取,而高阻抗电荷信号较容易受干扰,所以对测试环境、连接线缆等的要求较高; 而ICP型传感器内部安装了前置放大器,直接转换成电压信号输出,所以相对有信号质量好、噪声小、抗干扰能力强、能实现远距离测量等优点,目前正逐步取代电荷输出式传感器。 3、选择压电式加速度传感器时有哪些基本原则 答:选择一般应用场合的压电式加速度传感器时,要从三个方面全面考虑: ①振动量值的大小②信号频率范围③测试现场环境。 作为一般的原则,灵敏度高的传感器量程范围小,反之灵敏度低的量程范围大,而且一般情况下,灵敏度越高,敏感芯体的质量块越大,其谐振频率也越低,如果谐振波叠加在被测信号上,会造成失真输出,因此选择时除

压电式加速度传感器的信号输出形式

电荷输出型 传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。北智BW-Sensor采用进口陶瓷的加速度计可在温度-40oC~250oC范围内长期使用。 低阻抗电压输出型(IEPE) IEPE型压电加速度计即通常所称的ICP型压电加速度计。压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。IEPE型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE传感器能与数采系统直接相连而不需要任何其它二次仪表。在振动测试中IEPE传感器已逐渐取代传统的电荷输出型压电加速度计。 传感器的灵敏度,量程和频率范围的选择 压电型式的加速度计是振动测试的最主要传感器。虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/ec17410664.html,/

实验 压电式传感器实验

实验压电式传感器实验 实验项目编码: 实验项目时数:2 实验项目类型:综合性()设计性()验证性(√) 一、实验目的 本实验的主要目的是了压电式传感器的结构特点;熟悉压电传感器的工作原理;掌握压电传感器进行振动和加速度测量的方法。 二、实验内容及基本原理 (一)实验内容 1.压电传感器进行振动和加速度测量的方法 (二)实验原理 压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。 1.压电效应: 具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。 压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图1 (a) 、(b) 、(c)所示。这种现象称为压电效应。 (a) (b) (c) 图1 压电效应 2.压电晶片及其等效电路 多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图2(a)所示。当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。从结构上看,它又是一个电容器。因此通常将压电元件等效为一个电荷源与电容相并联的电路如2(b)所示。其中ea=Q/Ca 。式中,ea为压电晶片受力后所呈现的

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加 速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器 波形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

教你正确选择加速度传感器

教你正确选择加速度传感器 加速度计因其频响宽、动态范围大、可靠性高、使用方便,受到广泛应用。用户作通用振动、冲击测量时,主要关心的技术指标为:灵敏度、频率范围,内部结构,现场环境和与后续仪器配置等。 1、灵敏度的选择 扬州晶明的产品介绍给出了参考量程范围,目的是让用户在众多不同灵敏度的加速度计中能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度计自身的非线性影响和后续仪器的最大输出电压,估算方法:最大被测加速度传感器的电荷/电压灵敏度,以上数值是否超过配套仪器的最大输入电荷/电压值,建议如已知被测加速度范围可在传感器指标中的参考量程范围中选择(兼顾频响、重量),同时,在频响、重量允许的情况下,灵敏度可考虑高些,以提高后续仪器输入信号,提高信噪比。 在兼顾频响、重量的同时,可参照以下范围选择传感器灵敏度:土木工程原型和超大型机械结构的振动在0.1g~10g左右,可选3000pC/g~300pC/g的加速度计,机械设备的振动在10g~100g左右,可选择20pC/g~200pC/g的加速度计,冲击可选0.1pC/g~20pC/g左右的加速度计。 2、频率选择 生产厂给出的频响曲线是用螺钉安装的,一般将曲线分成二段:谐振频率和使用频率。使用频率的给值是按灵敏度偏差给出,有10%、5%、3dB。谐振频率一般是避开不用,但也有特例,如轴承故障检测。 选择加速度计的频率应高于被测物的振动频率,有倍频分析要求的加速度计频响应更高。土木工程是低频,加速度计可选择0.2Hz~1kHz左右,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估计频率,选择0.5Hz~5kHz的加速度计。冲击测量高频居多。 加速度计的安装方式不同也会改变使用频响(对振动值影响不大),安装面要平整、光洁,

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理与方法。 二、基本原理:压电式传感器由惯性质量块与受压的压电片等组成。(观察实验用压电加速 度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率与幅度旋钮使振动台振动,观察示波器波 形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的: 了解光纤传感器动态位移性能。 二、实训仪器: 光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件) 。 三、相关原理:利用光纤位移传感器的位移特性与其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

振动试验中加速度传感器的选择

振动试验中加速度传感器的选择 The Choice of Acceleration Sensor in the Vibration Testing 环境适应性和可靠性2009.3 国家电子计算机质量监督检验中心符瑜慧李雪松杨红左进凯 FU Yu-hui LI Xue-song YANG Hong ZUO Jin-kai 摘要:参与振动试验中振动量值的获得,最直接也是主要的单元之一是加速度传感器。本文将重点对压电式加速度传感器的工作原理及影响其选型的主要因素进行探讨。 关键词:传感器;选择 Abstract: Getting the vibration force in the vibration testing, there is a unit-sensor which is directness and importance. This paper will talk about that the voltage acceleration sensor function and the important factor which must think about in choosing the sensor type. Key Words:sensor ; choice. 1 引言 振动试验中,我们对控制点、监测点等的振动量值都是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。如果控制点所得到的数值不真实,就会影响到我们对试验样品的振动应力施加,可能是欠应力或过应力,欠应力会导致不能真实反应样品的质量信息,达不到预期考察样品“抗振”的试验目的,过应力可能会使样品损害,或据此以样品进行改进设计,增加企业成本;如果监测点所得到的数值不真实,监测的作用就推动了应有的作用,达不到监测振动台面和样口某薄弱环节的作用,甚至会带来不必要的错误改进。因此,影响振动试验中振动量值的正确获得,除了与传感器的安装位置、样品的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。在此,本论文结合理论及实际经验介绍振动试验中加速度传感器的选择。 2 振动传感器的类型及基本工作原理 由于传感器内部机电变换原理的不同,输出的电量也各不相同。有的是将机械量的变化变换为电动势、电荷的变化,有的是将机械振动量的变化变换为电阻、电感等参量的变化。因此,振动传感器的类型按机电变换原理可分为: 1)电动式 2)压电式 3)电涡流式 4)电感式 5)电容式

加速度传感器选用

工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。 描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 传感器的种类选择 ·压电式- 原理和特点 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常

大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。 ·压阻式 应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。超小型化的设计也是压阻式传感器的一个亮点。需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。 ·电容式 电容型加速度传感器的结构形式一般也采用弹簧质量系统。当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。

【实验报告】压电式传感器测振动实验报告

压电式传感器测振动实验报告 篇一:压电式传感器实验报告 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端 Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。 3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。 4、改变低频振荡器的频率,观察输出波形变化。 光纤式传感器测量振动实验

一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。 5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。 篇二:实验六压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。

相关文档
最新文档