等效电阻的求法,电阻的星三角变换

等效电阻的求法,电阻的星三角变换
等效电阻的求法,电阻的星三角变换

__电工技术基础课程复习试卷二

1.电阻串联的特点

2.电阻并联的特点

3.电阻的混联及等效变换

4.已知:R1=R2=R3=12 求等效电阻

5.电路如图所示,已知:R1=5Ω,R2= R3= R4=2Ω,R5=6Ω;试求:Rab

6.电阻的Y-?变换

星形转换成三角形公式:

Y 形电阻=

三角形电阻之和

三角形相邻电阻的乘积

1 2 3 R12 R23 R31

三角形转换成星型公式:

三角形电阻=星形不相邻电阻星形电阻两两乘积之和

7.已知电路如图所示,用Y — 等效变换求Rab 。

9欧 9欧 1 3 9欧

9欧 2欧 4 2 a b

星形电阻网络与三角形电阻网络的等效变换

§ 2-2 星形电阻网络与三角形电阻网络的等效变换图2-2-1(a)(b)所示三端电阻网络分别称为星形(Y 形)电阻网络和三角形(△形)电阻网络。 图2-2-1 星形电阻网络与三角形电阻网络 星形电阻网络与三角形电阻网络可以根据需要进行等效变换。 (1)、由三角形电阻网络变为等效星形电阻网络 星形网络中①、②两端间的端口等效电阻(③端开路)由与串联组成,三角形网络中①、②两端间的等效电阻(③端开路)由与串联后再与并联组成。令此两等效电阻相等,即得 (③端开路)(2-2-1)

同理(①端开路)(2-2-2) (②端开路)(2-2-3) 由式(2-2-1)至(2-2-3)联立得 (2-2-4) (2-2-5) (2-2-6) 以上三式是由三角形电阻网络变为等效星形电阻网络时计算星形网络电阻的 公式。这三个公式的结构规律可以概括为:星形网络中的一个电阻,等于三角形网络中联接到对应端点的两邻边电阻之积除以三边电阻之和。 (2)、由星形电阻网络变为等效三角形电阻网络 可将式(2-2-4)、(2-2-5)、(2-2-6)对、和联立求解 得(2-2-7) (2-2-8)

(2-2-9) 这是由星形电阻网络变换为等效三角形电阻网络时计算三角形网络电阻的公 式。这三个公式的结构规律可以概括为:三角形网络中一边的电阻,等于星形网络中联接到两个对应端点的电阻之和再加上这两个电阻之积除以另一电阻。 (3)、对称三端网络(symmetrical three –terminal resistance network)三个电阻相等的三端网络称为对称三端网络。 对称三端电阻网络的等效变换: 已知三角形网络电阻为 变换为等效星形电阻网络的等效电阻为 相反的变换是 就是说:对称三角形电阻网络变换为等效星形电阻网络时,这个等效星形电阻网络也是对称的,其中每个电阻等于原对称三角形网络每边电阻的。对称星形电阻网络变换为等效三角形电阻网络时,这个等效三角形电阻网络也是对称的,其中每边的电阻等于原对称星形网络每个电阻的3倍。

电阻的联结及等效变换

三相电源的相线电压关系电工技术与电子技术 电阻的联结及其等效变换 电工技术与电子技术 主讲教师:王香婷教授 第2 章电路的分析方法

电阻的联结及其等效变换主讲教师:王香婷教授

电阻的联结及其等效变换 主要内容: 电阻的串联、并联与混联;等效电阻的求解。 重点难点: 电阻串联与并联电路的特点及其等效电阻的求解。

1. 电阻的串联 特点: (1) 各电阻一个接一个地顺序相连;两电阻串联时的分压公式: U R R R U 2 11 1+=U R R R U 2 12 2+=R =R 1+R 2;(3) 等效电阻等于各电阻之和,(4) 串联电阻上电压的分配与电阻成正比。R 1U 1U R 2 U 2I +–++– – R U I +– (2) 各电阻中通过同一电流; 应用:降压、限流、调节电压等。 电阻的联结及其等效变换

2. 电阻的并联 两电阻并联时的分流公式: I R R R I 212 1+=I R R R I 2 11 2+=2 1111 R R R +=(3) 等效电阻的倒数等于各电阻倒数之和; (4) 并联电阻上电流的分配与电阻成反比。特点: (1) 各电阻连接在两个公共的结点之间;R U I +– I 1I 2R 1 U R 2 I +– (2) 各电阻两端的电压相同; 应用:分流、调节电流等。

例1:试估算图示电路中的电流。 500k Ω20V I +– 1k Ω (a) I 1 I 220V I + – 10k Ω10Ω5k Ω(b) 解:mA 04.0k Ω500V 20)a (==≈R U I mA 20k Ω 1V 20)b (==≈R U I

接地网电阻计算公式

接地网电阻计算公式 三维方法设计变电站的接地电阻 陈光辉1 江建武2 (1 深圳市长科防雷技术有限公司,深圳) (2 深圳供电局变电部,深圳) 【摘要】用三维方法设计变电站的接地电阻,可使接地电阻比传统设计更加准确,结合现有国内外接地新材料.新技术,新 工艺,可使变电站接地网接地电阻达到最佳效果 【关键词】三维地网设计、新材料,新工艺施工。 前言 目前,由于征地等原因,变电所的占地面积越来越小,有的GIS 室内型110kV 变电站占地面积仅有1500m2, 且大部分建在山上,这些地方往往电阻率很高,欲在这样的地方不扩网、不外引,在原地使其工频接地电阻达到 规程要求标准,用常规方法很难实现。我公司在实践过程中,采用三维方法设计,即A-T-N 方案,成功解决了 土壤电阻率300Ωm,占地面积为5000m2 情况下的接地电阻R≤0.5Ω的国家规定标准。 1 A 方案 用常规的方法实现工频接接地电阻RA,主要是用于解决地网的电位分布均匀,均衡最大值下的冲击电压,以 及降低水平网的工频接地电阻,它可以利用工地的自然接地体,如建筑物、自来水管等来完成网格式接地网的接 地电阻,它是在不扩网、不外引、不使用任何降阻剂的情况下计算出的工频接地阻抗值,计算公式采用部颁《交流 电气装置的接地》[1]有关规定的公式进行。 a e R a R 1 = (1) 1 3ln 0 0.2 L S S L a ? ?? ? ? ?? ? = ?(2) ?? ? ??= + + ? ? B

hd S L B S Re 5 9 ln 2 0.213 (1 ) π ρρ (3) S h B 1 4.6 1 + = (4) 式中:Ra—任意形状边缘闭合接地网的接地电阻(Ω); Re—等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(Ω); S—接地网的总面积(m2); d—水平接地极的直径或等效直径(m); h—水平接地极的埋设深度(m); LO—-接地网的外缘边线总长度(m); L—水平接地极的总长度(m)。 简化后的计算方法: S R a ′ = 0.5ρ(5) 式中:ρ—土壤电阻率(Ωm); S—地网面积(m2)。 上式公式中, a R 和土壤电阻率ρ成正比,和地网占地面积S 成反比。如果取p=300Ωm,欲达到R=0.5Ω面 积S 则必须达到90000m2。 在正方型接地网中,当网格数超过16 个时,基本(1)式=(5)式;当网格数少于16 个时,a R > R′a 。 日本川漱太朗公式为: ?? ? ?? ? + ? ′

第三讲电阻串、并联连接的等效变换

《电工基础》教案 课 题: 第三讲 电阻串、并联连接的等效变换 教学目的: 1、了解电阻串联、并联和混联电路及其应用 2、掌握混联电路的等效变换和计算 教学重点: 电阻串联、并联和混联电路及其应用;混联电路的等效变换和计算 教学难点: 电阻的等效变换 教学方法: 讲授法 举例法 教学课时: 2课时 教学过程 时间分配 I 、新课导入: 什么是电阻?其常用的连接方式有哪几种?引入新课 4 II 、新授内容 一、电阻的串联 1. 定义:将两个或多个电阻一个一个地首尾相接,中间没有分支的连接方式叫做电阻的串联。 2. 特点: (1)等效电阻:R=R 1+R 2+…+R n (2)通过各电阻的电流相等 (3)分压关系:U 1/R 1=U 2/R 2=……=U n /R n =I (4)功率分配:P 1/R 1=P 2/R 2=……=P n /R n =I 2 分压公式:u k =R k i=R k /r ·u 因此两个电阻串联时: 80’ i R 1+u -R 2R n R i +u - +u 1 - + u 2 -+u n - u R R R u 2 11 1+=u R R R u 2 12 2+=

二、电阻的并联 1、定义:电路中两个或两个电阻联接在两个公共的节点之间,则这样的联接法称为电阻的并联。 2.特点: (1)各个电阻两端的电压相等,都等于端口电压,这是并联的主要 特征。 (2)电阻的并联端电流等于各电阻电流之和。 (3)电阻的并联等效电阻的倒数等于各电阻倒数之和。 (4)并联电路具有分流作用,且各电阻的电流与它们的电导成正 比,与它们的电阻成反比。 (5)并联电路中总功率等于各支路电阻消耗功率之和。各支路电阻 所消耗的功率与各支路电阻的阻值成反比,与它们的电导成正比。 分流公式: 两个电阻并联时: 二、电阻的混联 1、定义:电路中包含既有串联又有并联,电阻的这种连接方式称为电阻的混联。 2、应用: A 等电位分析法 等电位分析法等电位分析法等电位分析法 关键:将串、并联关系复杂的电路通过一步步地等效变换,按电阻串联、并联关系,逐一将电路化简。 等电位分析法步骤: ( 1)、确定等电位点、标出相应的符号。 导线的电阻和理想电流 i 1 i 2 i n R 1 i +u - R 2 R n R i +u - i R R R u i k k k == i R R R i 2 12 1+= i R R R i 2 11 2+=

(完整版)电阻电路的等效变换习题及答案

第2章 习题与解答 2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 2Ω 3Ω (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω 2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。 a b 8Ω a b 8Ω (a) (b) 题2-2图 解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ω a b (a) (b) 题2-3图 解:(a )开关打开时(84)//43ab R =+=Ω 开关闭合时4//42ab R ==Ω (b )开关打开时(612)//(612)9ab R =++=Ω 开关闭合时6//126//128ab R =+=Ω 2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。 6Ω6Ω (a) (b) 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 1I 21/(16//123//621/(142)3A =++++=)= 从上往下流过3Ω电阻的电流为36 I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126 I 31A 126 = ?=+ 所以 312I I -I =1A = (b )从下往上流过6V 电压源的电流为 66 I 4A 1.5 = ==(1+2)//(1+2)

电阻电路的等效变换习题解答第2章

第二章(电阻电路的等效变换)习题解答 一、选择题 1.在图2—1所示电路中,电压源发出的功率为 B 。 A .4W ; B .3-W ; C .3W ; D .4-W 2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。 A .增加; B .减小; C .不变; D .不能确定 3.在图2—3所示电路中,1I = D 。 A .5.0A ; B .1-A ; C .5.1A ; D .2A 4.对于图2—4所示电路,就外特性而言,则 D 。 A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效 5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。 A .S S I U 、 都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定 二、填空题 1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路 中,6= S U V ,Ω=2R 。 2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中, 1= S I A ,Ω=2R 。 3.在图2—8所示电路中,输入电阻Ω=2 ab R 。 4.在图2—9所示电路中,受控源发出的功率是30-W 。 5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。 三、计算题 1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是 吸收还是发出。

电阻的星形和三角形连接的等效变换

电阻的星形和三角形连接的等效变换 1、电阻的星形和三角形连接 三个电阻元件首尾相连接,连成一个封闭的三角形,三角形的三个顶点接到外部电路的三个节点,称为电阻元件的三角形连接简称△连接,如图2.7(a )所示。三个电阻元件的一端连接在一起,另一端分别连接到外部电路的三个节点,称为电阻元件的星形连接,简称Y 形连接,如图2.7(b )所示。 三角形连接和星形连接都是通过三个节点与外部电路相连,它们之间的等效变换是要求它们的外部特性相同,也就是当它们的对应节点间有相同的电压12U 、23U 、31U 时,从外电路流入对应节点的电流1I 、2I 、3I 也必须分别相等,即Y-△变换的等效条件。 一种简单的推导等效变换方法是:在一个对应端钮悬空的同等条件下,分别计算出其余两端钮间的电阻,要求计算出的电阻相等。 悬空端钮3时,可得:12233112122331()R R R R R R R R ++= ++ 悬空端钮2时,可得:31122331122331()R R R R R R R R ++= ++ 悬空端钮1时,可得:23123123122331 ()R R R R R R R R ++=++ 联立以上三式可得:1231112233112232122331 3123 3122331R R R R R R R R R R R R R R R R R R = ++=++= ++ (2-2)

式(2-2)是已知三角形连接的三个电阻求等效星形连接的三个电阻的公式。

从式(2-2)可解的: 1212123232323131 31312R R R R R R R R R R R R R R R R R R =++ =++ =++ (2-3) 以上互换公式可归纳为: =Y ??形相邻电阻的乘积 形电阻形电阻之和 = Y ?形电阻两两乘积之和 形电阻Y 形不相邻电阻 当Y 形连接的三个电阻相等时,即123Y R R R R ===,则等效△形连接的三个电阻也相等,它们等于 1223313Y R R R R R ?==== 或 1=3Y R R ? (2-4) 如有侵权请联系告知删除,感谢你们的配合!

电路原理习题答案第二章电阻电路的等效变换练习

第二章电阻电路的等效变换 等效变换”在电路理论中是很重要的概念,电路等效 变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数 不同的电路再端子上有相同的电压、电流关系,因而可以互代换的部分)中的电压、电流和功率。 相代换;(2)代换的效果是不改变外电路(或电路中未由此得出电路等效变换的条件是相互代换的两部分电 路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换” 的思想,熟练掌握“等效变换” 的方法在电路分析中是重要的。 2-1 电路如图所示,已知。若:(1);(2);(3)。试求以上3 种情况下电压和电流。 解:(1)和为并联,其等效电阻, 则总电流分流有 2)当,有

3),有 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压和电流;(2)若电阻增大,对哪些元件的电压、电流有影响?影响如何? 解:(1)对于和来说,其余部分的电路可以用电流源 等效代换,如题解图(a)所示。因此有 2)由于和电流源串接支路对其余电路来说可以等效为 个电流源,如题解图(b)所示。因此当增大,对及的电 流和端电压都没有影响。 但增大,上的电压增大,将影响电流源两端的电压, 因为 显然随的增大而增大。 注:任意电路元件与理想电流源串联,均可将其等效 为理想电压源,如本题中题解图(a)和(b)o但应该注意等效是对外部电路的等效。图(a)和图b) 中电流源两端 的电压就不等于原电路中电流源两端的电压。同时,任意电

圆柱形导体接地电阻的计算

电磁场仿真实验报告

2010级4班 吴开宇2010302540009

圆柱形导体接地电阻的计算 一、基本原理 一般来说,接地电阻由连接导线的电阻、连接导线和接地体的接触电阻、接地体本身的电阻和电流流入大地时所具有的电阻组成。由于前三项与最后一项相比很小,可忽略不计,所以接地电阻为电流从接地体流入地中时所具有的电阻,即:R=U/I(其中U为接地体对于无穷远的电压,I为流经接地体而注入大地的流散电流)。 二、相关数据 试求长为1m,直径0.05m,与大地垂直的、上圆柱表面与地面持平的管形接地体电阻(电阻率ρ1= 1.5×10-7Ω·m)。 我们无法建一个无穷大的土壤模型,而离开接地电极距离为接地电极尺寸10倍以内的土壤对接地电阻值有较大影响,因此一个长宽高分别为4m、4m、20m 的长方体土壤块基本满足我们的精度要求(电阻率ρ2=500Ω·m)。

圆柱形导体接地体接地电阻计算的物理模型 三、实验步骤 0、定义分析类型。 进入Main Menu>Preferences,在弹出的对框中选中“Electric”,点击“OK”(command: /COM, Electric)。 1、进入前处理菜单。 进入Main Menu>Preprocessor,点开菜单即可(command: /PREP7)。 2、建立一个圆柱体模型。 点击Modeling>Create>Volumes>Cylinder>Solid Cylinder。在弹出的对话框中,“WPX”和“WPY”分别为圆心在工作平面上的X和Y坐标,“Radius”为圆柱体的半径,“Depth”为圆柱体的深度;依次填入“0,0,0.025,-1”,点击“OK”。这样

星形电阻网络与三角形电阻网络的等效变换讲课讲稿

星形电阻网络与三角形电阻网络的等效变 换

§ 2-2 星形电阻网络与三角形电阻网络的等效变换 图2-2-1(a)(b)所示三端电阻网络分别称为星形(Y 形)电阻网络和三角 形(△形)电阻网络。 图2-2-1 星形电阻网络与三角形电阻网络 星形电阻网络与三角形电阻网络可以根据需要进行等效变换。 (1)、由三角形电阻网络变为等效星形电阻网络 星形网络中①、②两端间的端口等效电阻(③端开路)由与串联组成,三 角形网络中①、②两端间的等效电阻(③端开路)由与串联后再与 并

联组成。令此两等效电阻相等,即得 (③端开 路)(2-2-1) 同理(①端开 路)(2-2-2) (②端开 路)(2-2-3) 由式(2-2-1)至(2-2-3)联立得 (2-2-4) (2-2-5) (2-2-6) 以上三式是由三角形电阻网络变为等效星形电阻网络时计算星形网络电阻的 公式。这三个公式的结构规律可以概括为:星形网络中的一个电阻,等于三角形 网络中联接到对应端点的两邻边电阻之积除以三边电阻之和。

(2)、由星形电阻网络变为等效三角形电阻网络 可将式(2-2-4)、(2-2-5)、(2-2-6)对、和联立求解 得 (2-2-7) (2-2-8) (2-2-9) 这是由星形电阻网络变换为等效三角形电阻网络时计算三角形网络电阻的公 式。这三个公式的结构规律可以概括为:三角形网络中一边的电阻,等于星形网 络中联接到两个对应端点的电阻之和再加上这两个电阻之积除以另一电阻。 (3)、对称三端网络(symmetrical three –terminal resistance network) 三个电阻相等的三端网络称为对称三端网络。 对称三端电阻网络的等效变换: 已知三角形网络电阻为 变换为等效星形电阻网络的等效电阻为 相反的变换是

三相电的星形与三角形接法

把三相电源三个绕组的末端、X、Y、Z连接在一起,成为一公共点O,从始端A、B、C引出三条端线,这种接法称为“星形接法”又称“Y形接法”。三相电源是由频率相同、振幅相等而相位依次相差120°的三个正弦电源以一定方式连接向外供电的系统。三相电源的联接方式有Y形和△形两种。 星形接法 三相电的星形接法 是将三相电源绕组或负载的一端都接在一起构成中性线,由于均衡的三相电的中性线中电流为零,故也叫零线:三相电源绕组或负载的另一端的引出线,分别为三相电的三个相线。远程输电时,只使用三根相线,形成三相三线制。到达用户的电路,往往涉及220V和380V 两种电压,需三根相线和一根零线,形成三相四线制。用户为避免漏电形成的触电事故,还要添加一根地线,这时就有三根相线,一根零线和一根地线,故也有三相五线制的说法。常用的接法对称三相四线Y-Y系统是常见常用的系统,有三条火线、一条中线。星形接法的三相电,线电压是相电压的根号3倍,而线电流等于相电流。当三相负载平衡时,即使连接中性线,其上也没有电流流过。三相负载不平衡时,应当连接中性线,否则各相负载将分压不等。 星形接法主要应用在高压大型或中型容量的电动机中,定子绕组只引出三根线。对于星形接法,各相负载平衡,则任何时刻流经三相的电流矢量和等于零。 星形(Y)接法和三角形(△)接法关系密切,其负载相电压、相电流与对称三相线电压、线电流关系如下:

星形接法和三角形接法 星形接法: I线=I相,U线=√3×U相, P相=U相×I相, P=3P相=√3×U线×I相=√3×U线×I线; 三角接法: I线=√3×I相,U线=U相, P相=I相×U相, P=3P相=√3×I线×U相=√3×I线×U线。 说明:三角(△)联接,Iab=Ia向量+Ib向量=(Ia+Ib)×cos30°=2Ia×√3/2=√3×Ia,线电流是相电流的根号三倍。 另一个重要的应用是电阻的星形联接。 电阻若构成星—三角式(Y —△)联接,则不能用串、并联公式进行等效化简,但它们之间可以用互换等效公式进行等效变换:(1、2、3是节点,R12表示1、2节点之间的电阻,是三角形联接的电阻。)

(完整版)电阻电路的等效变换习题及答案.docx

第 2 章 习题与解答 2- 1 试求题 2-1 图所示各电路 ab 端的等效电阻 R ab 。 1 4 3 a a 6 R ab 4 3 R ab 4 2 6 b 2 b 3 (a) (b) 题 2- 1 图 解:(a ) R ab 1 4 / /( 2 6 / /3) 3 (b ) R ab 4 / /(6 / /3 6 / /3) 2 2- 2 试求题 2-2 图所示各电路 a 、b 两点间的等效电阻 R ab 。 1 5 1.5 4 a 6 10 a 4 9 8 8 3 10 4 b b 4 4 (a) (b) 题 2- 2 图 解:(a ) R ab 3 [(8 4) / /6 (1 5)] / /10 8 (b ) R ab [(4 / /4 8) / /10 4] / /9 4 1.5 10 2- 3 试计算题 2-3 图所示电路在开关 K 打开和闭合两种状态时的等效电阻 R ab 。

4612 a a 48 b 6 K12 b K (a)(b) 题 2- 3 图 解:(a)开关打开时R ab(8 4) / /43 开关闭合时 R ab 4 / /42 (b)开关打开时R ab(6 12) / /(612) 9 开关闭合时 R ab 6 / /12 6 / /12 8 2- 4 试求题 2-4 图(a)所示电路的电流 I 及题 2- 4 图( b)所示电路的电压 U 。 13612 21V I 6V U 12621 (a)(b) 题2- 4 图 解:(a)从左往右流过 1电阻的电流为 I1 21/ (1 6 / /12 3 / /6) =21/ (1 4 2)3A 从上往下流过 3电阻的电流为I 3 6 32A 36 从上往下流过 12电阻的电流为 I12 6 3 1A 126 所以 I I 3 -I12 =1A (b)从下往上流过 6V 电压源的电流为I 66 4A ( 1+2) //( 1+2) 1.5

接地电阻计算要求

标准接地电阻规范要求 一、规范值; 1、独立的防雷保护接地电阻应小于等于(≤)10欧; 2、独立的安全保护接地电阻应小于等于(≤)4欧; 3、独立的交流工作接地电阻应小于等于(≤)4欧; 4、独立的直流工作接地电阻应小于等于(≤)4欧; 5、防静电接地电阻一般要求小于等于(≤)100欧。 6、共用接地体(联合接地)应不大于接地电阻1欧。 【避雷针的地线属于防雷保护接地,如果避雷针接地电阻和防静电接地电阻都是按要求设置的,那么就可以将防静电设备的地线与避雷针地线接在一起,因为避雷针的接地电阻比静电接地电阻小10倍,因此发生雷电事故时,大部分雷电将从避雷针地泄放,经过防静电地的电流则可以忽略不计。】 二、接地分三种 1、保护接地:电气设备的金属外壳,混凝土、电杆等,由于绝缘损坏有可能带电,为了防止这种情况危及人身安全而设的接地。1Ω以下。 2、防静电接地:防止静电危险影响而将易燃油、天然气贮藏罐和管道、电子设备等的接地。 3、防雷接地:为了将雷电引入地下,将防雷设备(避雷针等)的接地端与大地相连,以消除雷电过电压对电气设备、人身财产的危害的接地,也称过电压保护接地。

注意的是.三种接地要分离设置. 三、接地线的标识: 区分线别接地体规定 保护接地线黄绿双色线三种接地体间的距离必须大于20米 防静电接地线绿色线 防雷接地线镀锌圆钢 四、接地要求: 交流电气装置的接地应符合下列规定: 1 、当配电变压器高压侧工作于小电阻接地系统时,保护接地网的接地电阻应符合下式要求: R≤2000/I (12.4. 1-1) 式中 R――考虑到季节变化的最大接地电阻(Ω); I――计算用的流经接地网的人地短路电流(A)。 2、当配电变压器高压侧工作于不接地系统时,电气装置的接地电阻应符合下列要求: 1)高压与低压电气装置共用的接地网的接地电阻应符合下式要求,且不宜超过4Ω: R≤120/I (12.4.1-2) 2)仅用于高压电气装置的接地网的接地电阻应符合下 式要求,且不宜超过100,: 尺≤250/I (12.4.1-3) 式中 R――考虑到季节变化的最大接地电阻(Ω);

△形与Y形电阻电路等效变换

(a) △形电路 (b) Y形电路

△形和Y形电路之间的相互变换也应满足外部特性相同的原则,直观地说:就是必须使任意两对应端钮间的电阻相等。具体地说,就是当第三端钮断开时,两种电路中每一对相对应的端钮间的总电阻应当相等。例如上图(a)和(b)中,当端钮3断开时,两种电路中端钮1、2间的总电阻相等,即 R1+R2=R12(R23+R31)/(R12+R23+R31) (1) 同理有 R2+R3=R23(R31+R12)/(R12+R23+R31) (2) R3+R1=R31(R12+R23)/(R12+R23+R31) (3) 将△形变换成Y形,即已知△形电路的R12、R23、R31,求Y形电路的R1、R2、R3。为此,将式(1)、(2)、(3)相加后除以2,可得 R1+ R2+ R3=( R23R12+ R23R31+ R12R31)/(R12+R23+R31) (4) 从式(4)中分别减去式(1)、(2)和式(3),可得 R1=R12R31/(R12+R23+R31) (5) R2=R12R23/(R12+R23+R31) (6) R3=R23R31/(R12+R23+R31) (7) 以上三式就是△形电路变换为等效Y形电路的公式。三个公式可概括为 R Y=△形中相邻两电阻的乘积/△形中电阻之和 当R12=R23=R31=R△时,则

R1= R2= R3=1/3 R△ 将Y形变换成△形,即已知Y形电路的R1、R2、R3,求△形电路的R12、R23、R31。为此,将式(5)、(6)和式(7)两两相乘后再相加,经化简后可得 R1R2+ R2R3+ R3R1= R12R23R31/(R12+R23+R31) (8) 将式(8)分别除以式(7)、(5)和式(6),可得 R12=R1+R2+ R1R2/R3 (9) R23=R2+R3+ R2R3/R1 (10) R31=R3+R1+ R3R1/R2 (11) 以上三式就是Y形电路变换为等效△形电路的公式。三个公式可概括为 R△=Y形中两两电阻的乘积之和/Y形中对面的电阻 当R12=R23=R31=R Y时,则 R12= R23= R31=3 R Y 应当指出,上述等效变换公式仅适用于无源三端式电路。

电机三角形连接和星形连接的区别培训课件

电机三角形连接和星形连接的区别

精品资料 电机三角形连接和星形连接的区别 三角形连接和星形连接从电机外部看是没有任何区别的,你可以把电机看成一个黑盒子,外面看就是三根进线,通以互差120度的电流。 要说到电机三角形连接和星形连接的区别,只是在电机本体设计的时候会关注,我们知道,教科书上写星形连接的线电压是相电压的1.732倍,三角形的线电压等于相电压,在电机设计阶段,都会折算成等效三个等效单相,因为三相电机的等效电路是等效成单相的。对于一个输入线电压为380V的电机而言,如果设计成星形,那么就按220V计算单相电路,如果设计成角形,那么就按380V计算单相电路,但相电流减小。这个时候体现在电机上就是三角形的线用得长些细些,星形的线短些粗些,但理论上用的材料是一样多。一旦电机做好后,从外部看,理论上三角形连接和星形连接是没区别的,你也没有办法单纯从外部三根线去区分二者的区别。 这里可能有同学想问,为什么电机要分成三角形和星形连接这么麻烦。原则上讲,星形电机内部不会产生环流,理论上比三角形好,因为实际上三相绕组不可能绝对平衡,三相电压总有微小差异,这样在三角形内部会形成环流造成发热和效率降低(当然这个影响实际上很小)。做成三角形连接是有历史原因的,那就是没有变频器的时候,电机启动时可以利用接触开关改变连接,将其接成星形,这样每个绕组的电压由380将为220,大大减小了启动冲击电流,待启动后切换成三角形。这就是所谓的星-三角启动。星-三角启动可以成比例降低启动电流,但是会成平方降低启动转矩,所以只能用在轻载或空载启动。大家看到的风机水泵用星-三角启动没问题,但是起重机上肯定没有用星-三角启动的,起重机都是用绕线转子串电阻启动,为什么搞这么麻烦,都是有原因的。 电动机连接组别: 1. 当三相电机的三相绕组按△方式接线时,即绕组按U1-W2、U2-V1、V2-W1顺序连接后,引出线U1 V1 W1接于三相电源,此时每相绕组U1-U2 V1-V2 W1-W2上承受的是三相电源的线电压也就是380V.这样的接法使得电机的输出转矩较大。 2.如果改为Y形连接,即绕组U2 V2 W2封在一起,三相绕组的另外一端U1 V1 W1分别与三相电源连接,则绕组U1-V1 V1-W1 W1-U1间的电压为电源电压380V,如果绕组U2 V2 W2封在一起后有引出线即中性点引出线O,那么每相绕组即U1-O V1-O W1-O 间的电压为电源电压的相电压也就是380V/1.732=220V. 相对于△形接线是电机输出的转矩较小。 通常三相交流电动机的额定功率在3千瓦以下的多采用星形接法,而3千瓦以上的功 仅供学习与交流,如有侵权请联系网站删除谢谢2

接地电阻的计算与测量

接地电阻的计算与测量(转贴) 2003-2-28 路灯设施的接地保护事关国家财产和人民生命安全的大事。为做好接地保护并有效地设置接地电阻,必须正确计算和测量接地电阻。 理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全。但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到。在实践中,可利用埋设在地下的各种金属管道(易燃体管道除外)和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体。由于人工接地装置与自然接地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资。 一、接地电阻值的规定 在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4Ω,重复接地电阻应小于或等于10Ω。而电压1000V以下的中性点不接地系统中,一般规定接地电阻R为4Ω。因此,根据实际安装经验,在路灯照明系统中接地电阻Rd应小于或等于4Ω。 二、人工接地装置接地电阻的计算 人工接地装置常用的有垂直埋设的接地体、水平埋设的接地体以及复合接地体等。此外,接地电阻大小还与接地体形状有关,在路灯施工应用中,通常使用垂直、水平接地体,这里只简要介绍上述两种接地电阻的计算。 1、垂直埋设接地体的散流电阻 垂直埋设的接地体多用直径为50mm,长度2-2.5m的铁管或圆钢,其每根接地电阻可按下式求得:Rgo=[ρLn(4L/d)]/2πL 式中:ρ—土壤电阻率(Ω/cm) L—接地体长度(cm) d—接地铁管或圆钢的直径(cm) 为防止气候对接地电阻值的影响,一般将铁管顶端埋设在地下0.5-0.8m深处。若垂直接地体采用角钢或扁钢(见图1),其等效直径为: 等边角钢d=0.84b 扁钢d=0.5b 为达到所要求的接地电阻值,往往需埋设多根垂直接体,排列成行或成环形,而且相邻接地体之间距离一般取接地体长度的1-3倍,以便平坦分布接地体的电位和有利施工。这样,电流流入每根接地体时,由于相邻接地体之间的磁场作用而阻止电流扩散,即等效增加了每根接地体的电阻值,因而接地体的合成电阻值并不等于各个单根接地体流散电阻的并联值,而相差一个利用系数,于是接地体合成电阻为Rg=Rgo/(ηL*n) 式中,Rgo—单根垂直接地体的接地电阻(Ω); ηL—接地体的利用系数; n—垂直接地体的并联根数。 接地体的利用系数与相邻接地体之间的距离a和接地体的长度L的比值有关,a/L值越小,利用系数就越小,则散流电阻就越大。在实际施工中,接地体数量不超过10根,取a/L=3,那么接地体排列成行时,ηL在0.9-0.95之间;接地体排列成环形时,ηL约为0.8。 2、水平埋设接地体的散流电阻 一般水平埋设接地体采用扁钢、角钢或圆钢等制成,其人工接地电阻按下式求得: Rsp=(ρ/2πL)*[Ln(L2/dh)+A]

综合接地电阻计算

接地电阻计算方法 单根垂直接地体(棒形):RE1≈σ/l 单根水平接地体:RE1≈2σ/l 多根放射形水平接地带(n≤12,每根长l≈60m): RE≈0.062σ/n+1.2 环形接地带: RE≈0.6σ/√A σ值(参考): 土壤类别Ω.m 较湿时较干时 黑土、田园土50 30~100 50~300 粘土60 30~100 50~300 砂质粘土、可耕地100 30~300 80~1000 黄土200 100~200 250 含砂粘土、砂土300 100~1000 >1000 多石土壤400 砂、砂砾100 250~1000 1000~2500 接地体及接地线的最小尺寸规格 类别材料及使用场所最小尺寸 接地体圆钢直径10mm 角钢厚度4mm 钢管壁厚3.5mm 扁钢截面48mm2 厚度4mm 接地线圆钢室内直径6mm 室外直径8mm

扁钢室内截面48mm2 厚度3mm 室外截面48mm2 厚度4mm 垂直接地体根数确定:n≥RE1/ηRE 垂直接地体的利用系数η值(环形敷设) 根数10 20 30 1 0.52~0.58 0.44~0.50 0.41~0.47 垂直接地体的间距与其长度比 2 0.66~0.71 0.61~0.66 0.58~0.63 3 0.74~0.78 0.68~0.73 0.66~0.71 满足热稳定的最小截面:Smin=4.52I(1)k

接地电阻的计算与测量 路灯设施的接地保护事关国家财产和人民生命安全的大事.为做好接地保护并有效地设置接地电阻,必须正确计算和测量接地电阻.理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全.但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到.在实践中,可利用埋设在地下的各种金属管道(易燃体管道除外)和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体.由于人工接地装置与自然接地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资. 一、接地电阻值的规定 在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4Ω,重复接地电阻应小于或等于10Ω.而电压1000V以下的中性点不接地系统中,一般规定接地电阻R为4Ω.因此,根据实际安装经验,在路灯照明系统中接地电阻Rd应小于或等于4Ω. 二、人工接地装置接地电阻的计算 人工接地装置常用的有垂直埋设的接地体、水平埋设的接地体以及复合接地体等.此外,接地电阻大小还与接地体形状有关,在路灯施工应用中,通常使用垂直、水平接地体,这里只简要介绍上述两种接地电阻的计算. 1、垂直埋设接地体的散流电阻 垂直埋设的接地体多用直径为50mm,长度2-2.5m的铁管或圆钢,其每根接地电阻可按下式求得: Rgo=[ρLn(4L/d)]/2πL 式中:ρ—土壤电阻率(Ω/cm) L—接地体长度(cm) d—接地铁管或圆钢的直径(cm) 为防止气候对接地电阻值的影响,一般将铁管顶端埋设在地下0.5-0.8m 深处.若垂直接地体采用角钢或扁钢(见图1),其等效直径为: 等边角钢d=0.84b 扁钢d=0.5b 为达到所要求的接地电阻值,往往需埋设多根垂直接体,排列成行或成环形,而且相邻接地体之间距离一般取接地体长度的1-3倍,以便平坦分布接地体的电

2电阻电路的等效变换

2电阻电路的等效变换 本章重点:等效电路及网络的化简。实际电压源、电流源的等效互换 本章难点:输入电阻 《 第 四 讲 》 2.1 引言 线性电路: 时不变的线性元件 R,L,C(必须都是常数) 受控源的系数必须为常数 线性电阻电路: (纯电阻电路) 电路中的无源元件只有R, 没有L 和C 2.2 电路的等效变换 将电路中某一复杂部分用一个简单的电路替代,替代之后的电路要与原电路保持相等的效用.即两个伏安特性完全相同.(也称为对外等效) 2.3 电阻的串联和并联 电路元件中最基本的联接方式就是串联和并联。 一、电阻的串联 当元件与元件首尾相联时称其为串联,如下图(a)所示。串联电路的特点是流过各元件的电流为同一电流。 + U _ + U _ 目的: 使电路分析和计算更为方便.

根据KVL知,电阻串联电路的端口电压等于各电阻电压的叠加。即 称R为n个电阻串联时的等效电阻Req。 由上式可知,串联电路中各电阻上电压的大小与其电阻值的大小成正比。 电路吸收的总功率为 即电阻串联电路消耗的总功率等于各电阻消耗功率的总和。 二、电阻的并联 当n个电阻并联联接时,其电路如下图(c)所示。并联电路的特点是各元件上的电压相等,均为u。

根据KCL知: 电导G是n个电阻并联时的等效电导,又称为端口的输入电导。 分配到第k个电阻上的电流为 上式说明并联电路中各电阻上分配到的电流与其电导值的大小成正比。 电路吸收的总功率为 即电阻并联电路消耗的总功率等于各电阻消耗功率的总和。 电路如下图所示。求:(1)ab两端的等效电阻R ab。(2)cd两端的等效电阻R cd。

接地电阻测仪的原理及计算方法

近年来,随着电力系统的发展,发生接地故障时经地网流散的电流愈来愈大,地网的电位也随之升高,由于接地措施的缺陷而造成的事故也屡有发生,接地问题已得到人们的普遍重视。接地的目的是为了在正常、事故以及雷击的情况下,利用大地作为接地电流回路的一个组件,从而将设备接地处限制为所允许的接地电位。当有电流通过接地极流人地中时,设备接地处的电位会相当高,雷击时瞬时电位甚至可达几万伏。 接地电阻的大小直接关系到设备安全和人身安全。其大小除和大地的结构、土壤的电阻率有关外,还和接地极的几何尺寸及形状有关,在雷电冲击电流流过时还和流经接地极的冲击电流的幅值和波形有关。 1998年实施的我国电力行业标准《交流电气装里的接地》中规定了交流标称电压500kV及以下发电、变电、送电和配电电气装置以及建筑物电气装置的接地要求和方法。各种接地电阻的实际值需要在地网铺设完毕后通过实测得出。大中型发、变电站的接地电阻测量普遍采用电压电流表法,并用工频交流电源供电(即220一380V电源经隔离变压器供电)。小型发、变电站的接地电阻一般采用接地电阻测量仪测量。

接地电阻测的基本原理,接地电流在地中流散时地中的电位分布。 接地电流肠通过接地极以半球面形状向地中流散时,地中的电位分布曲线如图1所示,从图中可以看出,愈靠近接地极E,散流电阻愈大,电位愈高。试验表明,在离开单根接地极或接地短路点20m以外的地方,散流电阻已近于零,也即电位趋近于零。接地电阻的测量就是利用了这一结论。 接地电阻测仪的原理及计算方法 测量接地电阻的基本原理是利用欧姆定律。根据欧姆定律,接地极的接地电阻风d 等于其电位Ujd与扩散电流Ijd的比值。即Rjd=Usd/Isd。要想测童接地电阻的值,必须首先给接地极注人一定大小的电流,从而需要设置一个能构成电流回路的电流极C,并用电流表加以测定。同时,为了用电压表测出接地极的对地电位,还需要设置一个能反应零电位的电压极P。通过测量电压和电流来获得接地电阻。 根据实践,在离开单根接地极或接地短路点E20m以外的地方,散流电阻已近于零,

电阻星角转换的计算

一、电阻的连接和等效变换(连接分类:串联、并联、混联。) 1. 串联: A特点:(1)通过的电流为同一电流i (2)串联电阻两端的总电压U等于各个电阻上的电压代数和B等效电阻:式中R称为等效电阻 C分压公式: D功率: 2. 并联: A特点:(1)各电阻上的电压相等 (2)总电流等于个支路电流之河,即 B等效电阻:的R称为等效电阻 用电导表示,则有 C功率: D2个电阻并联情况:(1)等效电阻 (2)分流公式已知求 二、电阻的三角形联接与星形联接的等效变换 1.Δ形连接:

2.Y形连接: 3. Y形连接和Δ形连接的等效变换 1)Y —△等效变换 2) — Y 等效变换 图 1 一a所示是一个桥式电路,显然用电阻串并联简化的办法求得端口ab 处的等效电阻是极其困难的。如果能将连接在 1 、2 、3 、三个端子间的R12、R23、R31构成的三角形连接电路,等效变换为图 1 一b所示的由R1R2R3构成的星形连接电路,则可方便地应用电阻串并联简化的办法求得端口ab 处的等效电阻,这就是工程实际中经常遇到的星形、三角形等效变换问题(简称Y ―△变换)。 图1一 a 图1一 b 等效要解决的问题是:图 1 一a所示三角形连接(连接)与图 1 一b星形连接(Y 连接),就其1、 2 、 3 三个端子而言,要求对外等效。要完成等效,应明确R1、R2、R3三个Y 连接电阻与R12R23R31三个连接电阻应满足什麽关系。一种推导等效变换的办法是两电路在一个对应端子悬空的同等条件下,分别测两电路剩余两端子间的电阻,并要求测得的电阻相等。 式l 可方便地用来求三角形连接电阻等效的星形连接电阻。若由星形连接求等效三角形连接的公式可将式!变换一下,即可得到

相关文档
最新文档