聚氨酯粘结机理

聚氨酯粘结机理
聚氨酯粘结机理

一、金属、玻璃、陶瓷等的粘接

金属、玻璃等物质表面张力很高,属于高能表面,在异氰酸酯胶PU胶水固化物中含有内聚能较高的氨酯键和脲键,在一定条件下能在粘接面上聚集,形成高表面张力胶粘层。一般来说,胶水中异氰酸酯或其衍生物百分含量越高,胶粘层的表面张力越大,胶越坚韧,能与金属等基材很好地匹配,粘接强度一般较高。

含一NCO基团的异氰酸酯胶胶水对金属的粘接机理如下:

金属表面一般存在着吸附水(即使经过打磨处理的金属表面也存在微量的吸附水或金属氧化物水合物),一NCO与水反应生成的脲键与金属氧化物之间由于氢键而螯合形成酰脲—金属氧化物络合物,一NCO基团还能与金属水合物形成共价键等。

在无一NCO场合,金属表面水合物及金属原子与氨酯键及脲键之间产生范德华力和氢键,并且以TDI、MDI为基础的聚氨酯胶水含苯环,具有冗电子体系,能与金属形成配价键。金属表面成分较为复杂,与PU胶之间形成的各种化学键或次价键(如氢键)的类型也很复杂。

玻璃、石板、陶瓷等无机材料一般由Ah09、S02、CaO和Na20 等成分构成,表面也含吸附水、羟基,粘接机理大致与金属相同。

二、塑料、橡胶的粘接

橡胶的粘接一般选用多异氰酸酯胶水或橡胶类胶水改性的多异氰酸酯胶水,胶水中所含的有机溶剂能

使橡胶表面溶胀,多异氰异氰酸酯胶酸酯胶水分子量较小,可渗入橡胶表层内部,与橡胶中存在的活性氢反应,形成共价键。多异氰酸酯还会与潮气反应生成脲基或

缩二脲,并且在加热固化时异氰酸酯会发生自聚,形成交联结构,与橡胶分子交联网络形成聚合物交联互穿网络(IPI),因而胶粘层具有良好的物理性能。用普

通的异氰酸酯胶聚氨酯胶水粘接橡胶时,由于各材料基团之间的化学及物理作用,也能产生良好的粘接。

PVC、PET、FRP等塑料表面的极性基团能与胶水中的氨酯键、酯键、醚键等基团形成氢键,形成有一定粘接强度的接头。有人认为玻纤增强塑料(FRP)中含一OH基团,其中表面的一OH与PU胶水中的一NCO反应形成化学粘接力。

非极性塑料如PE、PP,其表面很低,用极性的异氰酸酯胶聚氨酯胶水粘接时可能遇到困难,这可用多种方法对聚烯烃塑料进行表面处理加以解决。一种办法是用

电晕处理,使其表面氧化,增加极性:另一种办法是在被粘的塑料表面上采用多异氰酸酯胶异氰酸酯胶水等作增粘涂层剂(底涂剂、底胶)。如熔融凹挤出薄膜在

PET等塑料薄膜上进行挤出复合时,由于邢表面存在低聚合度的弱界面层,粘接强度不理想,使用底胶时,多异氰酸酯胶异氰酸酯在热的聚乙烯表面上扩散,使弱

界面层强化,复合薄膜则具有非常好的剥离强度。

三、织物、木材等的粘接

织物、木材等基材由纤维组成,而纤维具有一定的吸湿率,并且常含有醚键、酯键、酰胺键等极性键,以及羧基、羟基等。水和羟基容易与PU胶水中一NCO基团反应,形成牢固的氨酯键和脲键等化学键,而纤维中的极性基团与胶中的极性基团之间形成氢键,并且异氰酸酯胶胶水分子还

容易渗入纤维之间。PU对于这类材料一般能形成牢固的粘接。

异氰酸酯胶聚氨酯的粘接工艺

1. 表面处理

形成良好粘接的条件之一是对基材表面进行必要的处理。

被粘物表面常常存在着油脂、灰尘等弱界面层,受其影响,建立在弱界面层上的粘接所得粘接强度不易提高。对那些与异氰酸酯胶胶水表面张力不匹配的基材表面,还必须进行化学处理。表面处理是提高粘接强度的首要步骤之一。

2.清洗脱脂

一些金属、塑料基材的表面常常易被汗、油、灰尘等污染,另外,塑料表面还有脱模剂,所以这样的塑料与胶粘层仅形成弱的粘接界面。对异氰酸酯胶聚氨酯胶水来

讲,金属或塑料表面的油脂与异氰酸酯胶聚氨酯相容性差,而存在的水分会与异氰酸酯胶胶水中的一NCO基团反应产生气泡,使胶与基材接触表面积降低,且使胶

粘层内聚力降低,因而粘接前

必须进行表面清洗、干燥处理。一般是用含表面活性剂及有机溶剂的碱水进行清洗,再水洗干燥,或用有机溶剂(如丙酮、四氯化碳、乙醇等)直接清洗。对有锈迹

的金属一般要先用砂纸、钢丝刷除去表面铁锈。

3.粗糙化处理

对光滑表面一般须进行粗糙化处理,以增加胶与基材的接触面积。异氰酸酯胶胶水渗入基材表面凹隙或孔隙中,固化后起“钉子、钩子、棒子”似的嵌定作用,可牢

固地把基材粘在一起。常用的方法有喷砂、木锉粗化、砂纸打磨等。但过于粗糙会使胶水在表面的浸润受到影响,凹处容易残留或产生气泡,反而会降低粘接强度。

如果用砂磨等方法又容易损伤基材,所以宜采用涂底胶、浸蚀、电晕处理等方法改变其表面性质,使之易被异氰酸酯胶聚氨酯胶水粘接。

4.金属表面化学处理

对金属表面可同时进行除锈、脱脂、轻微腐蚀处理,可用的处理剂很多。一般是酸性处理液。如对铝、铝合金,可用重铬酸钾/浓硫酸/水(质量比约10/100/300)混合液,在70-12℃浸5-10min,水洗,中和,再水洗,干燥。

对铁可用浓硫酸(盐酸)与水1:1混合,室温浸5-10min,水洗,干燥。或用重铬酸钾/浓硫酸/水混合液处理。

5.塑料及橡胶的表面化学处理

多数极性塑料及橡胶只须对表面进行粗糙化处理及溶剂脱脂处理。不过聚烯烃表面能很低,可采用化学方法等增加其表面极性,有溶液氧化法、电晕法、氧化焰法等。

(1)化学处理液可用重铬酸钾/浓硫酸/水(质量比75/1500/12,或5g/55ml/8ml等配比),PP或PE于7 0℃浸1—10min或室温浸泡1.5h后,水洗、中和、水洗、干燥。

(2)电晕处理用高频高压放电,使塑料表面被空气中氧气部分氧化,产生羰基等极性基团。常常是几种表面处理方法相结合,如砂磨→腐蚀→清洗→干燥。

6.上底涂剂

为了改善粘接性能,可在已处理好的基材表面涂一层很薄的底涂剂(底胶),底涂还可保护刚处理的被粘物表面免受腐蚀和污染,延长存放时间。

异氰酸酯胶聚氨酯胶水和异氰酸酯胶密封胶常用的底涂剂有:异氰酸酯胶聚氨酯清漆(如异氰酸酯胶聚氨酯胶水或涂料的稀溶液);多异氰酸酯胶异氰酸酯胶水(如PAPI稀溶液);有机硅偶联剂的稀溶液;环氧树脂稀溶液等。

7.胶水的配制

单组分异氰酸酯胶聚氨酯胶水一般不需配制,可按操作要求直接使用,这也是单组分胶的使用方便之处。

对于双组分或多组分聚氨酯胶,

应按说明书要求配制,若知道组分的羟基含量及异氰酸酯胶异氰酸酯基的含量,各组分配比可通过化学计算而确定,异氰酸酯胶异氰酸酯指数R=NCO/OH一般

在0.5—1.4范围。一般来说,双组分溶剂型异氰酸酯胶聚氨酯胶水配胶时,两组分配比宽容度比非溶剂型大一些,但若配胶中NCO基团过量太多,则固化不

完全,且固化了的胶粘层较硬,甚至是脆性;若羟基组分过量较多,则胶层软粘、内聚力低、粘接强度差。无溶剂双组分胶配比的宽容度比溶剂型的小一些,这是因

为各组分的初始分子量较小,若其中一组分过量,则造成固化慢且不易完全,胶层表面发粘、强度低。

已调配好的胶应当天用完为宜,因为配成的胶适用期有限。适用期即配制后的胶水能维持其可操作施工的时间。粘度随放置时间而增大,因而操作困难,直至胶液失

去流动性、发生凝胶而失效。不同品种、牌号的聚氨酯胶水适用期不一样,从几分钟至几天不等。在工业生产上大量使用时,应预先做适用期试验。

若胶异氰酸酯胶粘剂组分中含有催化剂,或为了加快固化速度在配胶时加入了催化剂,则适用期较短。另外,环境温度对适用期影响较大,夏季适用期短,冬季长。

经氨酯级有机溶剂稀释的双组分聚氨酯胶,适用期可延长。一般溶剂型双组分胶水如,软塑复合薄膜用双组分聚氨酯胶水,适用期应大于8h(即一个工作日)。

若配好的胶当天用不完,可适当稀释,并上盖封闭,阴凉处存放,第二天上班时检查有无变浊或凝胶现象,若胶液外观无明显变化、流动性好,则仍可使用,一般可分批少量兑人新配的胶中。若已变质,则应弃去。

为了降低粘度,便于操作,使胶液涂布均匀,并有利于控制施胶厚度,可加入有机溶剂进行稀释。聚氨酯胶可用的稀释剂有丙酮、丁酮、甲苯、醋酸乙酯等。

加入催化剂能加快胶的固化速度。固化催化剂一般是有机锡类化合物。

8. 粘接施工

(1)涂胶

涂布(上胶)的方法有喷涂、刷涂、浸涂、辊涂等,一般根据胶的类型、粘度及生产要求而决定,关键是保证胶层均匀、无气泡、无缺胶。

涂胶量(实际上与胶层厚度有关)也是影响剪切强度的一个重要因素,通常在一定范围内剪切强度较高。如果胶层太薄,则胶水不能填满基材表面凹凸不平的间隙,

留下空缺,粘接强度就低。当胶层厚度增加,粘接强度下降。一般认为,搭接剪切试样承载负荷时,被粘物及胶层自己变形,胶层被破坏成—种剥离状态,剥离力的

作用降低了表观的剪切强度值。

(2)晾置

对于溶剂型异氰酸酯胶聚氨酯胶水来说,涂好胶后需晾置几分钟到数十分钟,使胶水中的溶剂大部分挥发,这有利于提高初粘力。必要时还要适当加热,进行鼓风干

燥(如复合薄膜层压工艺)。否则,由于大量溶剂残留在胶中,固化过程容易在胶层中形成气泡,影响粘接质量。对于无溶剂聚氨酯胶水来说,涂胶后即可将被粘物

贴合。

(3)粘接

这一步骤是将已涂过胶的被粘物粘接面贴合起来,也可使用夹具固定粘接件,保证粘接面完全贴合定位,必要时施加一定的压力,使胶水更好地产生塑性流动,以浸润被粘物表面,使胶水与基材表面达到最大接触。

9.异氰酸酯胶胶水的固化

大多数异氰酸酯胶聚氨酯胶水在粘接时不立即具有较高的粘接强度,还需进行固化。所谓固化就是指液态胶水变成固体的过程,固化过程也包括后熟化,即初步固化

后的胶水中的可反应基团进一步反应或产生结晶,获得最终固化强度。对于聚氨酯胶水来说,固化过程是使胶中NCO基团反应完全,或使溶剂挥发完全、聚氨酯分

子链结晶,使胶水与基材产生足够高的粘接力的过程。聚氨酯胶水可室温固化,对于反应性聚氨酯胶来说,若室温固化需较长时间,可加催化剂促进固化。为了缩短

固化时间,可采用加热的方法。加热不仅有利于胶水本身的固化,还有利于加速胶中的NCO基团与基材表面的活性氢基团相反应。加热还可使胶层软化,以增加对

基材表面的浸润,并有利于分子运动,在粘接界面上找到产生分子作用力的“搭档”。加热对提高粘接力有利。一种双组分聚氨酯胶水粘接钢板,在不同固化温度、

时间时的粘接强度。

固化的加热方式有烘箱或烘道、烘房加热,夹具加热等。对于传热快的金属基材可采用夹具加热,胶层受热比烘箱加热快。

加热过程应以逐步升温为宜。溶剂型聚氨酯胶要注意溶剂的挥发速度。在晾置过程中,大部分溶剂已挥发掉,剩余的溶剂慢慢透过胶粘层向外扩散,若加热过快则溶

剂在软化了的胶层中气化鼓泡,在接头中形成气泡,严重的可将大部分未固化、呈流粘态的异氰酸酯胶胶水挤出接头,形成空缺会影响粘接强度。对于双组分无溶剂

异氰酸酯胶胶水及单组分湿固化胶水,加热也不能太快,否则NCO基团与胶中或基材表面、空气中的水分加速反应,产生的CO2气体来不及扩散,而胶层粘度增

加很快,气泡就留在胶层中。

单组分湿固化异氰酸酯胶聚氨酯胶水主要靠空气中的水分固化,故应维持一定的空气湿度,宜以室温缓慢固化为宜。若空气干燥,可甲平少量水分于涂胶面,以促进

固化。若胶被夹于干燥、硬质的被粘物之间,且胶层较厚时,界面及外界的水分不易渗入胶中,则易固化不完全,这种情况下可以在胶中注入极少量水分。

异氰酸酯胶聚氨酯胶的配方设计

异氰酸酯胶胶水的设计是以获得最终使用性能为目的,对异氰酸酯胶聚氨酯胶水进行配方设计,要考虑到所制成的异氰酸酯胶胶水的施工性(可操作性)、固化条件及粘接强度、耐热性、耐化学品性、耐久性等性能要求。 1.聚氨酯分子设计——结构与性能

异氰酸酯胶聚氨酯由于其原料品种及组成的多样性,因而可合成各种各样性能的高分子材料。例如从其本体材料(即不含溶剂)的外观性严主讲,可得到由柔软至坚

硬的弹性体、泡沫材料。聚氨酯从其本体性质(或者说其固化物)而言,基本上届弹性体性质,它的一些物理化学性质如粘接强度、机械性能、耐久性、耐低温性、

耐药品性,主要取决于所生成的聚氨酯固化物的化学结构。所以,要对聚氨酯胶水进行配方设计,首先要进行分子设计,即从化学结构及组成对性能的影响来认识。

有关聚氨酯原料品种及化学结构与性能的关系。

2. 从原料角度对PU胶水制备进行设计

聚氨酯胶水配方中一般用到三类原料:一类为NCO类原料(即二异氰酸酯胶异氰酸酯或其改性物、多异氰酸酯胶异氰酸酯),一类为oH类原料(即含羟基的低聚

物多元醇、扩链剂等,广义地说,是含活性氢的化合物,故也包括多元胺、水等),另有一类为溶剂和催化剂等添加剂。从原料的角度对异氰酸酯胶聚氨酯胶水进行

配方设计,其方法有下述两种。

(1).由上述原料直接配制

最简单的异氰酸酯胶聚氨酯胶水配制法是0H类原料和NCO类原料(或及添加剂)简单地混合、直接使用。这种方法在异氰酸酯胶聚氨酯胶水配方设计中不常采

用,原因是大多数低聚物多元醇分子量较低(通常聚醚

Mr<6000,聚酯Mr<3000),因而所配制的异氰酸酯胶胶水组合物粘度小、初粘力小。有时即使添加催化剂,固化速度仍较慢,并且固化

物强度低,

实用价值不大。并且未改性的TDI蒸气压较高,气味大、挥发毒性大,而MDI常温下为固态,使用不方便,只有少数几种商品化多异氰酸酯胶异氰酸酯如

PAPl、Desmodur R、Desmodur RF、Coronate L等可用作异氰酸酯原料。

不过,有几种情况可用上述方法配成聚氨酯胶水。例如1)

由高分子量聚酯(Mr5000-50000)的有机溶液与多异氰酸酯胶&sType=">异氰酸酯溶液(如Corona te

L)组成的双组分异氰酸酯胶聚氨酯胶水,可用于复合层压薄膜等用途,性能较好。这是因为其主成分高分子量聚酯本身就有较高的初始粘接力,组成的异氰酸酯胶

胶水内聚强度大;(2)由聚醚(或聚酯)或及水、多异氰酸酯胶异氰酸酯、催化剂等配成的组合物,作为发泡型异氰酸酯胶聚氨酯胶水、粘合剂,用于保温材料等

的粘接、制造等,有一定的实用价值。

(2).NCO类及OH类原料预先氨酯化改性

如上所述,由于大多数低聚物多元醇的分子量较低,并且TDI挥发毒性大,MDI常温下为固态,直接配成胶一般性能较差,故为了提高异氰酸酯胶胶水的初始粘

度、缩短产生一定粘接强度所需的时间,通常把聚醚或聚酯多元醇与TDI或MDI单体反应,制成端NCO基或OH基的氨基甲酸酯预聚物,作为NCO成分或

OH成分使用。

3. 从使用形态的要求设计PU胶

从异氰酸酯胶聚氨酯胶水的使用形态来分,主要有单组分和双组分。

A.单组分异氰酸酯胶聚氨酯胶水

单组分聚氨酯胶水的优点是可直接使用,无双组分胶水使用前需调胶之麻烦。单组分异氰酸酯胶聚氨酯胶水主要有下述两种类型。

(1)以一NCO为端基的异氰酸酯胶聚氨酯预聚物为主体的湿固化异氰酸酯胶聚氨酯胶水,合成反应利用空气中微量水分及基材表面微量吸附水而固化,还可与基

材表面活性氢基团反应形成牢固的化学键。这种类型的聚氨酯胶一般为无溶剂型,由于为了便于施胶,粘度不能太大,单组分湿固化聚氨酯胶水多为聚醚型,即主要

的含一OH原料为聚醚多元醇。此类胶中游离NCO含量究竟以何程度为宜,应根据胶的粘度(影响可操作性)、涂胶方式、涂胶厚度及被粘物类型等而定,并要考

虑胶的贮存稳定性。

(2)以热塑性聚氨酯胶聚氨酯弹性体为基础的单组分溶剂型聚氨酯胶水,主成分为高分子量端OH 基线型聚氨酯,羟基数很小,当溶剂开始挥发时胶的粘度迅速增

加,产生初粘力。当溶剂基本上完全挥发后,就产生了足够的粘接力,经过室温放置,多数该类型聚氨酯胶聚氨酯弹性体中链段结晶,可进一步提高粘接强度。这种

类型的单组分聚氨酯胶聚氨酯胶一般以结晶性聚酯作为聚氨酯的主要原料。

单组分聚氨酯胶另外还有聚氨酯胶聚氨酯热熔胶、单组分水性聚氨酯胶聚氨酯胶水等类型。B.双组分聚氨酯胶&sType=">聚氨酯胶水

双组分聚氨酯胶氨酯胶水由含端羟基的主剂和含端NCO基团的固化剂组成,与单组分相比,双组分性能好,粘接强度高,且同一种双组分聚氨酯胶聚氨酯胶水的两

组分配比可允许一定的范围,可以此调节固化物的性能。主剂一般为聚氨酯多元醇或高分子聚酯多元醇。两组分的配比以固化剂稍过量,即有微量NCO基团过剩为

宜,如此可弥补可能的水分造成的NCO损失,保证胶水产生足够的交联反应。

4. 根据性能要求设计PU胶

若对聚氨酯胶聚氨酯胶水有特殊的性能要求,应根据聚氨酯结构与性能的关系进行配方设计。不同的基材,不同的应用领域和应用环境,往往对聚氨酯胶聚氨酯胶有一些特殊要求,如在工业化

生产线上使用的聚氨酯胶聚氨酯胶要求快速固化,复合软包装薄膜

用的聚氨酯胶聚氨酯胶水要求耐酸耐水解,其中耐蒸煮软包装用胶水还要求一定程度的高温粘接力,等等。

A.耐高温

聚氨酯胶聚氨酯胶水普遍耐高温性能不足。若要在特殊耐温场合使用,可预先对聚氨酯胶聚氨

酯胶水进行设计。有几个途径可提高聚氨酯胶氨酯胶的耐热性,如1)

采用含苯环的聚醚、聚酯和聚氨酯胶异氰酸酯原料;(2)提高聚氨酯胶异氰酸酯及扩链剂(它们组成硬段)的含量;(3)提高固化剂用量;(4)采用耐高温热

解的多异氰酸酯(如含异氰脲酸酯环的),或在固化时产生异氰脲酸酯;(5)用比较耐温的环氧树脂或聚砜酰胺等树脂与聚氨酯共混改性,而采用pN技术是提高

聚合物相容性的有效途径。

B.耐水解性

聚酯型聚氨酯胶聚氨酯胶水的耐水解性较差,可添加水解稳定剂(如碳化二亚胺、环氧化合物等)进行改善。为了提高聚酯本身的耐水解性,可采用长链二元酸及二

元醇原料(如癸二酸、1,6—己二醇等),有支链的二元醇如新戊二醇原料也能提高聚酯的耐水解性。聚醚的耐水解性较好,有时可与聚酯并用制备聚氨酯胶水。

在聚氨酯胶胶水配方中添加少量有机硅偶联剂也能提高胶粘层的耐水解性。

C.提高固化速度

提高固化速度的一种主要方法是使聚氨酯胶聚氨酯胶水有一定的初粘力,即粘接后不再容易脱离。因而提高主剂的分子量、使用可产生结晶性异氰酸酯胶聚氨酯的原

料是提高初粘力和固化速度的有效方法。有时加入少量三乙醇胺这类有催化*联剂也有助于提高初粘力。添加催化剂亦为加快固化的主要方法。

聚氨酯介绍

介绍 1、硬质聚氨酯导热系数低,热工性能好。当硬质聚氨酯密度为35~40kg/m3时,导热系数仅为0.018~0.024w/(m.k),约相当于EPS的一半,是目前所有保温材料中导热系数最低的。 2、硬质聚氨酯具有防潮、防水性能。硬质聚氨酯的闭孔率在90%以上,属于憎水性材料,不会因吸潮增大导热系数,墙面也不会渗水。 3、硬质聚氨酯防火,阻燃,耐高温。聚氨酯在添加阻燃剂后,是一种难燃的自熄性材料,它的软化点可达到250摄氏度以上,仅在较高温度时才会出现分解:另外,聚氨酯在燃烧时会在其泡沫表面形成积碳,这层积碳有助隔离下面的泡沫。能有效地防止火焰蔓延。而且,聚氨酯在高温下也不产生有害气体。 4、由于聚氨酯板材具有优良的隔热性能,在达到同样保温要求下,可使减少建筑物外围护结构厚度,从而增加室内使用面积。 5、抗变形能力强,不易开裂,饰面稳定、安全。 6、聚氨酯材料孔隙率结构稳定,基本上是闭孔结构,不仅保温性能优良,而且抗冻融、吸声性也好。硬泡聚氨酯保温构造的平均寿命,在正常使用与维修的条件下,能达到30年以上。能够做到在结构的寿命期正常使用条件下,在干燥、潮湿或电化腐蚀,以及由于昆虫、真菌或藻类生长或者由于啮齿动物的破坏等外因影响,都不会受到破坏。 7、综合性价比高。虽然硬质聚氨酯泡沫材的单价比其它传统保温材料的单价高,但增加的费用将会由供暖和制冷费用的大幅度减少而抵消。 产品用途 本公司生产的硬质聚氨酯保温大板材可广泛用于彩钢夹芯板、中央空调、建筑墙体材料、冷库、冷藏室、保温箱、化工罐体等领域。 特点 ●规格品种多,容重范围:(40—60kg/m3);长度范围:(0.5米—4米);宽度范围:(0.5米—1.2米);厚度范围:(20毫米—200毫米)。 ●切割精度高,厚度误差±0.5mm,从而保证了制成品表面的平整度。 ●泡沫细密,泡孔均匀。 ●容重轻,可以减少制成品的自重量,比传统的产品低30—60%。 ●抗压强度大,可以承受在制造成品过程中的巨大压力。 ●方便质量的检验,由于在切割过程中去掉了四周的表皮,板材的质量一目了然,保证了制成品的保温效果。厚度可按用户要求生产加工。 规格 硬质聚氨酯泡沫泡块(本公司提供不同密度的泡块,用来加工制作各种型材) 品种聚氨酯泡沫泡块(单位mm) 规格4000×1200×1000 2000×1200×1000 硬质聚氨酯泡沫大板材 品种聚氨酯大板材 密度40-60kg/m 规格长度:4000-500mm

聚氨酯防水施工工艺标准

聚氨酯防水施工工艺标准 一、范围 本工艺标准适用于工业与民用建筑物各种设有防护层的屋面防水工程,卫生间、地下建筑防水工程等. 二、施工准备 材料及要求 2.1分类 产品按组分分为单组分(S),多组分(M)两种。 产品按拉伸性能分为I、Ⅱ两类。 2.2单组份聚氨酯防水涂料 单组分聚氨酯防水涂料是以异氰酸酯、聚醚为主要原料,配以各种助剂制成的反应型柔性防水涂料。该产品具有良好的物理性能,粘结力强,常温湿固化。有的聚氨酯防水涂料涂刷出的膜有稍微发粘的情况,在性能达标的情况下,也属于合格。 2.3双组分聚氨酯防水涂料 聚氨酯防水涂料,应具有出厂合格证及厂家产品的认证文件,并复验以下技术性能。 聚氨酯防水涂料,以甲组份及乙组份桶装出厂;甲组份:异氰酸基含量以3.5±0.2%为宜。 乙组份:羟基含量以0.7±0.1%为宜。 两组份材料应分别保管,存放在室内通风干燥处,贮期甲组份为6个月,乙组份为12个月,使用时甲组份和乙组份料按1∶1的比例配合,

形成聚氨酯防水涂料。 2.4 辅助材料: a.磷酸:用于做缓凝剂 b.二月桂酸二丁基锡:用于做促凝剂。 c.二甲苯或醋酸乙酯:用于稀释和清洗工具。 d. 水泥使用强度等级不低于32.5普通硅酸盐水泥,用于配制水泥砂浆抹保护层。 e. 中砂:圆粒中砂,粒径2~3mm,含泥量不大于3%;用于配制水泥砂浆抹防护层。 2.5 主要机具: a.电动机具:电动搅拌器。 b. 手用工具:搅拌桶、小铁桶、小平铲、塑料或橡胶刮板、滚动刷、毛刷、弹簧秤、消防器材等。 2.6 作业条件: a.基层应符合设计的要求,并应通过验收。基层表面应坚实平整,无浮浆,无起砂、裂缝现象。 b. 与基层相连接的各类管道、地漏、预埋件、设备支座等应安装牢固。 c. 管根、地漏与基层的交接部位,应预留宽10mm,深10mm的环形凹槽,槽内应嵌填密封材料。 d. 基层的阴、阳角部位宜做成圆弧形。 e. 基层表面不得有积水,基层的含水率应满足施工要求

聚氨酯胶粘剂的应用与研究

聚氨酯胶粘剂的应用与研究 聚氨酯胶粘剂是指在分子链中含有氨基甲酸酯基团(-NHCOO-)或异氰酸酯基团(-NCO)的胶粘剂。其具有胶膜坚韧、耐冲击、挠曲性好、剥离强度高、有很好的耐超低温性、耐油性以及耐磨性等特点。 我国聚氨酯胶粘剂的研发起步于上世纪60年代。80年代以后,我国对水性聚氨酯胶粘剂的研究更为活跃,但与国外水性聚氨酯胶粘剂系列化大工业的水平相比,仍处于开发阶段。90年代,各行各业引进了众多的生产线,一大批三资企业相继建立,进口的产品迫切需要国产化,相关的科研院所和生产单位加大开发力度,新产品不断涌现。迄今为止,除了原有的胶粘剂品种外,无溶剂型聚氨酯结构胶粘剂、反应性聚氨酯热熔胶等国外有的胶粘剂品种我国现在也基本都有。 虽然我国聚氨酯工业已有相当规模,但与发达国家相比仍有很大差距,主要的差距是聚氨酯的总体产量不大,此外,技术水平也仍然落后于一些发达国家。因此,我国的聚氨酯产业仍有相当大的发展空间。 聚氨酯胶粘剂作为一种环保型胶粘剂,已进入工业、农业、交通、医学、国防和日常生活的各个领域,在国民经济中正发挥着越来越大的作用。那么,聚氨酯胶粘剂都具有哪些优良性能呢?下面,洛阳天江化工新材料有限公司为大家列举了聚氨酯胶粘剂的两个典型特性: 1、聚氨酯胶粘剂的粘结力强,适用范围广 由于聚氨酯胶粘剂的分子链中-NCO可以和多种含活泼氢的官能团反应,形成界面化学键结合。因此,对多种材料具有极强的粘附性能。不仅可以粘结多孔性的材料,如泡沫塑料、陶瓷、木材、织物等,而且可以粘接多种金属、无机材料、塑料、橡胶和皮革等,是一种适用范围很广的胶粘剂。 2、聚氨酯胶粘剂具有突出的耐低温性能 在极低的温度下,一般的高分子材料都转化为玻璃态而变脆,而聚氨酯胶粘剂即使在-250℃以下仍能保持较高的剥离强度,同时其剪切强度随着温度的降低反而大幅度上升。 虽然聚氨酯胶粘剂优点良多,但同时也存在着一些缺陷与不足,下面是聚氨酯胶粘剂常见的一些不足之处以及洛阳天江化工的专家针对这些不足之处提出的几点改进方法:

聚氨酯黏合剂原理及其应用

过去的一节课,我们讲粘合剂,着重讲了粘合工艺和原理、代表性粘合剂,侯兴旺刘红良等同学也给出了对导电粘合剂的浅显理解。但是我没有讲应用的问题,请同学们逆向思考:粘合剂的使用是为了粘合两种材料,假设在使用一段时间后粘合剂松开了,或者你想重新加工粘合两种材料,这样就需要除去或者洗脱掉原有的粘合剂,请至少列举一种粘合剂的应用以及其对应的后处理方法、并指出原理是什么。

一、聚氨酯黏合剂的应用 1、汽车用聚氨酯胶粘剂新型汽车结构中引入大量的轻质金属、复合材料和塑料,造成汽车用胶粘剂和密封胶持续增长。在汽车上应用最为广泛的聚氨酯胶粘剂主要有装配挡风玻璃用单组分程固化聚氨酯密封胶、粘接玻璃约维增强塑料和片状模塑复合村料的结构胶粘剂、内装件用双组分聚氨酯胶粘剂及水性聚氯酯胶等。此外,茎车内饰件也是胶粘剂用量增长的一个领域。汽车上应用广泛的水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂。大多数水性聚氨酯是线性热塑性聚氨酯,由于其涂膜没有交联,分子质量较低,因而耐水性、耐溶剂性、胶膜强度等性能还较差,必须对其进行改性,以提高其性能。聚酯和丙烯酸的杂和分散体与脲二酮和异氰脱脲酸酯配合制备的汽车修补清漆,不需要高速搅拌设备,容易混合在一起且具有良好的粘附性能。 2、木材用聚氨酯胶粘剂随着世界性森林资源急剧减少和我国天然林资源保护工程的实施,小木材拼大板就要求胶粘剂粘接强度和耐久耐候等性能优于木材本身。胶粘剂用量的多少,已成为衡量木材工业技术发展水平的标志。过去人们用的木村胶粘剂多为以甲醛为主要原料的脖醛树脂,酚醛树脂和三聚氰氨甲醛树脂,但由于游离的甲醛存在,产品使用期间会逐淋向周围散发甲醛气体,造成环境污染。木村加工行业已开始将目光投向新型的环保胶粘剂聚氯酯胶,以期减少对环境的行染。木工行业使用的单组分湿气固化聚氨酯胶粘剂是液态的,在室温下使用。通常其粘接强度高、柔韧性和耐水性好,并能和许多非木基材(如纺织纤维、金属、塑料、橡胶筑)粘接。单组分聚氨酯胶粘剂在测试中所表现出的干、返强度均要好于酚醛胶粘剂。粘接前,在粘接基材表面涂布羟甲基间苯二酚(HMR)偶合剂可以提高粘接强度。HMR可以加强所有热固型木村胶粘剂的粘接强度,当木村表面预涂HMR偶合剂时,单组分聚氨酯胶粘剂的强度和耐久性可以满足大部分严格的测试要求。 3、鞋用聚氨酯胶粘剂我国是一个制鞋大国,鞋用胶粘剂的发展经历三代后,随着全球性环保意识的提高,以及石油危机的加剧,促使第四代环保无溶剂型和水基型载用粘胶剂的出现。近年来,水性聚氨酯的制备工艺己日趋成熟。对于一些低极性鞋材如SBS等材质的粘接, 聚氨酯胶粘剂的剥高强度达不到要求。通过添加增粘树脂等进行改性,可开发出具有结晶度高、结晶速度快、内聚强度大和剥离强度较理想的聚氨酯鞋用胶粘剂。 4包装用聚氨酯胶粘剂软包装又称软罐头,以其轻质方便、保鲜期长、卫生、易贮存运输、易拆开、垃圾量少及货架效应良好等独特的综合性能,现己超过硬包装如塑料、玻璃瓶和罐等。聚氨酯胶粘剂由于其优异的性能,可将不同性质的薄膜材料粘接在一起得到耐寒、耐泊、耐药品、透明、耐磨等各种性能的软包装用复合薄膜。目前在国内外市场中, 聚氨酯胶粘剂已经成为软包装用复合薄膜加工的主要胶粘剂。在国内胶粘剂市场中,包装用复合薄膜制造业中, 聚氨酯胶粘剂用量仅次于制鞋业而居第二位。用于包装的聚氨酯胶粘剂品种繁多,如水基聚氨酯胶粘剂、热熔型聚氨酯胶粘剂、溶剂型聚氨酯胶粘剂以及无溶剂型聚氨酯胶粘剂等。其中常用的聚氨酯热熔胶又可分为热塑性聚氨酯弹性体热熔胶与反应型热熔胶两类。热塑性热熔胶的主要缺点是粘度较高,故对涂布表观质量的影响较大。反应型聚氨酯热熔胶粘剂是在传统热熔胶基础上发展起来的一类新型胶粘剂,它不仅有传统热熔胶初粘性好和后固化性能优的特点,又具有聚氮酯的组成结构多变和性能调节范围大的优点,对多种基材具有优良的粘接性能。另外,在包装用水

聚氨酯防水涂料技术交底

聚氨酯防水涂料 施工方案 1.施工准备 材料及要求 1.1.1聚氨酯防水涂料,应具有出厂合格证及厂家产品的认证文件,并复验以下技术性能。 聚氨酯防水涂料,以甲组份及乙组份桶装出厂;甲组份:异氰酸基含量以±%为宜。乙组份:羟基含量以±%为宜。 两组份材料应分别保管,存放在室内通风干燥处,储藏期甲组份为6个月,乙组份为12个月,使用时甲组份和乙组份料按1:2的比例配合,形成聚氨酯防水涂料,技术性能指标如下: 固体含量:≥93% 抗拉强度:≥ 延伸率:≥300% 低温柔度:在-200C绕∮20mm圆棒无裂纹 耐热度:800C不流淌 不透水性:>MPa 干燥时间:1~6h 1.1.2辅助材料: 1.1. 2.1磷酸:用于做缓冲剂 1.1. 2.2二月桂酸二丁基锡:用于做促凝剂。 1.1. 2.3二甲苯或醋酸乙酯:用于稀释和清洗工具。 主要机具: 1.2.1电动工具:电动搅拌器。 1.2.2手动工具:搅拌桶、小铁桶、小平铲、塑料或橡胶刮板、滚动刷、毛刷、弹簧秤、消防器材等。 作业条件: 1.3.1防水层聚氨酯防水涂料冷作业施工,涂刷防水层的基层应按设计要求抹好找平层,要求抹平、压光、坚实平整,不起沙,含水率低于9%,阴阳角处应抹成圆弧角。 1.3.2涂刷防水层前应将涂刷面上的尘土、杂物,残留的灰浆硬块,有突出的部分处理、清扫干净。 2.3.3涂刷聚氨酯防水涂料不得在淋雨的条件下施工,施工的环境温度不应低于5 0C,操作时严禁烟火。 2.操作工艺 工艺流程: 基层清理→涂刷底胶→涂膜防水层施工→做保护层 基层处理:涂刷防水层施工前,先将基层表面的杂物、砂浆硬块等清扫干净,并用干净的湿布擦一次,经检查基层无不平整、空裂,起砂等缺陷,方可进行下道工序。 涂刷底胶(相当于冷底子油): 2.3.1底胶(基层处理剂)配制:先将聚氨酯甲料、乙料和二甲苯以1::2的比例(重量比)配合搅拌均匀,配好的料在2h内用完。

聚氨酯胶粘剂的优缺点及应用介绍

聚氨酯胶粘剂的优缺点及应用介绍 我国聚氨酯胶粘剂的研发起步于上世纪60年代。80年代以后,我国对水性聚氨酯的研究更为活跃,但与国外水性聚氨酯胶粘剂系列化大工业的水平相比仍处于开发阶段。90年代,各行各业引进了众多的生产线,一批三资企业相继建立,进口的产品迫切需要国产化。相关的科研院所和生产单位加大开发力度,新产品不断涌现。 聚氨酯胶粘剂是指在分子链中含有氨基甲酸酯基团或异氰酸酯基的胶粘剂。按反应组成分类按反应组成可分为多异氰酸酯胶黏剂、含异氰酸酯基的聚氨酯胶黏剂、含羟基聚氨酯胶黏剂和聚氨酯树脂胶黏剂。按用途与特性分类按用途与特性分类可分为通用型胶黏剂、食品包装用胶黏剂、鞋用胶黏剂、纸塑复合用胶黏剂、建筑用胶黏剂、结构用胶黏剂、超低温用胶黏剂、发泡型胶黏剂、厌氧型胶黏剂、导电性胶黏剂、热熔型胶黏剂、压敏型胶黏剂、封闭型胶黏剂、水性胶黏剂以及密封胶黏剂等。但无论是哪种聚氨酯胶粘剂,都是体系中的异氰酸酯基团与体系内或者体系外含活泼氢的物质发生反应,生成聚氨酯基团或者聚脲,从而使得体系强度大大提高而实现粘接的目的。 迄今为止,除了原有的胶种外,无溶剂聚氨酯结构胶、反应性聚氨酯热熔胶等国外有的胶种,现在我国基本都有。虽然我国聚氨酯工业已有相当规模,但与发达国家相比仍有很大差距,主要是产量不大,技术水平仍较低。聚氨酯胶粘剂究竟具有哪些特性?它又应用于哪些领域呢?今天就由洛阳天江化工新材料有限公司给大家做一些简单介绍吧! 一、聚氨酯胶粘剂的特性 1、粘结力强,初粘力大,适用范围广 由于聚氨酯胶粘剂分子链中的-NCO可以和多种含活泼氢的官能团反应,形成界面化学键结合,因此对多种材料具有极强的粘附性能。不仅可以粘结多孔性的材料,如泡沫塑料、陶瓷、木材、织物等,还可以粘接多种金属、无机材料、塑料、橡胶和皮革等,是一种适用范围很广的胶粘剂。 2、突出的耐低温性能 在极低的温度下,一般的高分子材料都转化为玻璃态而变脆,而聚氨酯胶粘剂即使在-250℃以下仍能保持较高的剥离强度,同时其剪切强度随着温度的降

单组分聚氨酯胶粘剂配方和合成机理剖析

单组分聚氨酯胶粘剂配方和合成机理 1.湿固化机理: 湿固化型聚氨酯胶粘剂中含有活泼的NCO基团,当暴露于空气中时能与空气中的微量水分子发生反应;粘接时,它能与基材表面吸附的水以及表面存在羟基大呢感活性氢基团发生化学反应,生成脲键结构。因此湿固化型聚氨酯胶粘剂固化后的胶层组成是聚氨酯胶粘剂—聚脲结构。 2.软木用聚氨酯胶: 将以NCO为端基的聚氨酯胶粘剂应用于软木碎屑的粘接,由林产化工厂于软木碎屑中加入胶粘剂,混合均匀,加热压制成型,制成软木板材、片材等制品,用作保温、隔音等材料,其特点是耐水、防腐蚀。该胶粘剂是聚氨酯湿固化胶粘剂和密封剂的基础粘料,若对配方稍加调整,亦即加入一定比例的三官团的聚氧化丙烯三醇(如N-330),制成的NCO端基的预聚体胶粘剂即可作为下列材料的粘料(基料): (1)聚氨酯浇注型橡胶的基料; (2)建筑用聚氨酯防水材料的粘料; (3)田径运动场地用聚氨酯橡胶跑道(塑胶跑道)胶面层的粘料; (4)聚氨酯密封胶粘剂的粘料。 该胶粘剂还可用于聚氨酯泡沫塑料、聚苯乙烯泡沫等的粘接,使用方便,无公害,受到用户欢迎。 3.配方 3.1配方1: 聚氧化丙烯多元醇(M=3000) 51份 MDI 26份 TDI(80/20) 8.7份 1,4-丁二醇 4.1份 将上述四组分原料混合,在80℃反应3h后,降温,用10份二甲苯稀释,制得NCO含量约7.3%的预聚体。该预聚体可作为弹性基材的胶粘剂。具有耐水、柔韧性好、强度高等优点。胶膜的拉伸强度可达43.1MPa,伸长率360%,在80℃热水中浸泡7天后仍能保持较好的强度。 3.2配方2: 聚氧化丙烯三醇(M=6000) 400份 聚氧化丙烯二醇(4/=2000) 1000份 MDI 315份 氢化萜烯酚醛树脂 180份 按以上配方原料制成预聚体,再加人气相法二氧化硅、滑石粉等填料以及增塑剂、叔胺和有机锡类催化剂,制成含填料的预聚体。 按HDI缩二脲1610份、r-巯丙基三甲氧基硅烷40份、二甲基硅烷427份、二甲基哌嗪1.3份制成硅烷化合物。 单组分聚氨酯胶粘剂按预聚体:硅烷化合物:萜烯增粘剂=271:6:70(质量份数)混合配制。用于玻璃-帆布、铝-铝、冷轧钢-冷轧钢的粘接。

新型防水涂料聚氨酯防水涂料的优缺点

聚氨酯(PU)防水涂料亦称聚氨酯涂膜防水材料,是以聚氨酯树脂为主要成膜物质的一类高分子防水材料。聚氨酯防水涂料属橡胶系,其组份甲、乙两种组份,甲组份由甲苯二异氨酸酯、二苯基甲烷二异氰酸酯与丙二醇醚、丙三醇醚等原料在加热搅拌下,经过氢转移的加成聚合反应制成;乙组份主要是胺类固化剂或固化剂,加入适量的煤焦油以及增塑剂、防霉剂、填充剂、促进剂等,在加热搅拌田建霞制成的一种混合物。辅助材料有二甲苯、乙酸乙酯、二月桂酸二丁基锡、苯磺酰氯、石渣等。 聚氨酯防水涂料适用于各种屋面防水工程(需覆盖保护层);地下建筑防水工程、厨房、浴室、卫生间防水工程、水池、游泳池防漏;地下管道防水、防腐蚀等。 聚氨酯具有较大的弹性和延伸能力及较好的抗裂性、耐候性、耐酸碱性和抗老化性,而且是冷作业施工,操作简便,能形成无缝的防水层,对任何形状复杂、管道纵横的部位都容易施工,对一定程度的基层裂缝具有较强的适应性。 附加图-聚氨酯防水涂料所应国家标准GB/T19250-2003 表1 单组份聚氨酯防水涂料物理力学性能 序号项目 I II 1 拉伸强度/MPa 1.9 2.45 2 断裂伸长率/% 550 450 3 撕裂强度/(N/mm) 12 14 4 低温弯折性/℃ -40 5 不透水性 0.3MPa 30min 不透水 6 固体含量/% 80 7 表干时间/h 12 8 实干时间/h 24 9 加热伸长率/% 1.0 -4.0

10 潮湿基面粘结强度/MPa 0.50 11 定伸时老化加热老化无裂纹及变形 人工气候老 化 无裂纹及变形 12 热处理拉伸强度保持 率/% 80~150 断裂伸长率/% 500 400 低温弯折性 /℃ -35 13 碱处理拉伸强度保持 率/% 60~150 断裂伸长率/% 500 400 低温弯折性 /℃ -35 14 酸处理拉伸强度保持 率/% 80~150 断裂伸长率/% 500 400 低温弯折性 /℃ -35 15 人工气候老化拉伸强度保持 率/% 80~150 断裂伸长率/% 500 400 低温弯折性 /℃ -35 a.仅用于地下工程潮湿基面时要求 b.仅用于外漏使用的产品 表2 多组分聚氨酯防水涂料物理力学性能 序号项目 I II 1 拉伸强度/MPa 1.9 2.45 2 断裂伸长率/% 450 450 3 撕裂强度/(N/mm) 12 14 4 低温弯折性/℃ -35 5 不透水性 0.3MPa 30min 不透水 6 固体含量/% 92 7 表干时间/h 8 8 实干时间/h 24 9 加热伸长率/% 1.0 -4.0 10 潮湿基面粘结强度/MPa 0.5 11 定伸时老化定伸时老化无裂纹及变形 人工气候老 化 无裂纹及变形

聚氨酯介绍

聚氨酯胶黏剂主要由异氰酸铵,多元醇,含烃基的聚醚,聚酯和环氧树脂,填料,催化剂和溶剂组成。具有反应活性高,常温能固化,耐冲击等很多优异的性能。聚氨酯胶一般分为单组分和双组分两种基本类型,单组分为湿气固化型,双组分为反应固化型。单组分胶施工方便,但固化较慢;双组分有固化快、性能好的特点,但使用时需要配制,工艺较为复杂。两者各有发展前途。按是否有流动性,聚氨酯胶又可分为不垂挂型(non-sagging))和自流平行(self-leveling)。不垂挂型用于垂直面、倾斜面、天花板等场合,固化之前不会由于胶条自重而发生偏移、滑动或流动;而自流平型专门用于水平场合。按使用后的性质还可以分为不干型、半干型和全固化弹性体型 对聚氨酯胶粘剂进行配方设计,要考虑到所制成的胶粘剂的施工性(可操作性)?固化条件及粘接强度?耐热性?耐化学品性?耐久性等性能要求? 1.聚氨酯分子设计--结构与性能 聚氨酯由于其原料品种及组成的多样性,因而可合成各种各样性能的高分子材料?例如从其本体材料(即不含溶剂)的外观性严主讲,可得到由柔软至坚硬的弹性体?泡沫材料?聚氨酯从其本体性质(或者说其固化物)而言,基本上届弹性体性质,它的一些物理化学性质如粘接强度?机械性能?耐久性?耐低温性?耐药品性,主要取决于所生成的聚氨酯固化物的化学结构?所以,要对聚氨酯胶粘剂进行配方设计,首先要进行分子设计,即从化学结构及组成对性能的影响来认识?有关聚氨酯原料品种及化学结构与性能的关系? 2. 从原料角度对PU胶粘剂制备进行设计 聚氨酯胶粘剂配方中一般用到三类原料:一类为NCO类原料(即二异氰酸酯或其改性物?多异氰酸酯),一类为oH类原料(即含羟基的低聚物多元醇?扩链剂等,广义地说,是含活性氢的化合物,故也包括多元胺?水等),另有一类为溶剂和催化剂等添加剂?从原料的角度对聚氨酯胶粘剂进行配方设计,其方法有下述两种? (1).由上述原料直接配制 最简单的聚氨酯胶粘剂配制法是0H类原料和NCO类原料(或及添加剂)简单地混合?直接使用?这种方法在聚氨酯胶粘剂配方设计中不常采用,原因是大多数低聚物多元醇分子量较低(通常聚醚Mr<6000,聚酯Mr<3000),因而所配制的胶粘剂组合物粘度小?初粘力小?有时即使添加催化剂,固化速度仍较慢,并且固化物强度低, 实用价值不大?并且未改性的TDI蒸气压较高,气味大?挥发毒性大,而MDI常温下为固态,使用不方便,只有少数几种商品化多异氰酸酯如PAPl?Desmodur R?Desmodur RF?Coronate L等可用作异氰酸酯原料? 不过,有几种情况可用上述方法配成聚氨酯胶粘剂?例如:(1)由高分子量聚酯(Mr5000-50000)的有机溶液与多异氰酸酯溶液(如Coronate L)组成的双组分聚氨酯胶粘剂,可用于复合层压薄膜等用途,性能较好?这是因为其主成分高分子量聚酯本身就有较高的初始粘接力,组成的胶粘剂内聚强度大;(2)由聚醚(或聚酯)或及水?多异氰酸酯?催化剂等配成的组合物,作为发泡型聚氨酯胶粘剂?粘合剂,用于保温材料等的粘接?制造等,有一定的实用价值? (2).NCO类及OH类原料预先氨酯化改性

常见的胶黏剂及其粘结机理

一、胶黏剂的定义: 通过界面的黏附和内聚等作用, 能使两种或两种以上的制件或材料连接在一起的天然的 或合成的、有机的或无机的一类物质,统称为胶黏剂,又叫黏合剂,习惯上简称为胶。简而言之,胶黏剂就是通过黏合作用,能使被黏物结合在一起的物质。 二、胶黏剂的分类: 胶黏剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;按形态可分为水溶型、水乳型、 溶剂型以及各种固态型等;从胶黏剂的应用领域来分,则胶黏剂主要分为土木建筑、纸张与植物、汽车、飞机和船舶、电子和电气以及医疗卫生用胶黏剂等种类。所以用途不同的胶黏剂的作用机理也是大不一样的,下面就各种材料:木材、玻璃、金属、纸张和塑料的粘结机理做以简单的介绍。 三、六大胶粘理论 聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。

1、吸附理论: 人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶黏剂分子与被粘物表面分子的作用过程有两个过程: 第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利 于布朗运动的加强。第二阶段是吸附力的产生。当胶黏剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。胶黏剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。 2、化学键形成理论: 化学键理论认为胶黏剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化`件,所以不可能做到使胶黏剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。 3、弱界层理论:

水性聚氨酯防水涂料

水性聚氨酯防水涂料 产品介绍 单组份水性聚氨酯防水涂料(YF-SJ)是以水性聚氨酯树脂为基料,并以水为分散介质的高科技涂料,是通过交联改性聚合物含有封闭异氨酸脂的水性聚合物涂料,具有良好的贮存稳定性、涂膜机械性、耐水性、耐溶剂性及耐老化性,是当前市场适用于各类工程的最佳防水涂料。该涂料无溶剂污染,加水固化,使用方便。 产品特点 ◇ 延伸性能优,抗拉强度高,耐高低温,耐老化,耐腐蚀。 ◇固体含量高达65%,成膜率大,单位面积用料少。 ◇无溶剂挥发,无毒无味无污染,特别适用于饮水工程,是100%的环保产品。 ◇ 可添加颜料,做成各种颜色,以满足客户要求,达到防水装饰效果。 ◇ 使用时可加10%的水做固化剂;可添加砂子做成防滑层;可添加橡胶粉末做成防渗漏密封剂;也可添加轻质的空心填料做隔热保温层,均不会影响其防水效果。 适用范围 1、工业与民用建筑的平、斜屋面及各种不规则的屋面,特别是要求带装饰性的屋面及运动场。 2、地铁、隧道、通道、水池、伸缩缝、施工缝、变形缝、天沟及各种水利工程的防渗和密封。

3、可作建筑物裂缝的修补,膨胀结合处的密封。 4、可作防腐地坪、防腐池及管道的外防腐、隔热、保温。 产品性能 指标\等级Ⅰ Ⅱ 拉伸强度MPa≥ 1.9 2.45 断裂延伸率%≥ 550 450 撕裂延伸率N/mm≥ 12 14 固体含量%≥ 65 低温弯折性℃≤ -40 表干时间(h)≤ 12 实干时间(h)≤ 24 施工工艺要点: 1. 基面要求干净,无杂物,无油污,坚固,无起砂,有裂缝缺陷应先进行修复,阴阳角做成圆弧;金属表层须先除锈。 2.材料准备:使用前要先将涂料搅拌均匀,不要有沉淀,然后再加10%的清洁水搅拌均匀即可。 3. 可用刮涂法或机械喷涂施工。平面的防水工程涂刮一道即可成型并达到所需的厚度,立面的防水工程需先涂一道非常薄的涂层,以防流挂,再在基层上一次性施工成设计所需厚度。 4. 如需刮涂第二遍,需在上道涂层完全固化后方可进行(约24小时后)。 5. 铺贴保护层或饰面材料,需在涂膜完全固化后进行。施工时应防

聚氨酯复合粘合剂的应用

聚氨酯复合粘合剂的应用 1 聚氨酯粘合剂的结构和性能 1.异氰酸酯的加成物。使用时,两组分按比例混合后,主剂的—OH与固化剂的—NCO基进1嵌段共聚物 双组分聚氨酯胶粘剂中,主要通常是含有羟基的聚氨酯多元醇,固化剂往往是多元醇和一步氨酯化反应。因为固化剂一般是三元加成物,这种扩链反应一般生成网状高分子结构,形成牢固的粘结层。固化反应产生软段和硬段相间的嵌段共聚物。 1.2软段和硬段 软段是指线性聚酯、聚醚等,一般来说聚酯型比聚醚型具有更高的强度和硬度,这是因为酯基的极性大,内聚能比醚基(—C—O—C—)高好几倍,所以机械强度高。醚基较易旋转分子柔顺性较好,有优越的低温柔软性。同时醚基的耐水性也比酯基好。 硬段主要指氨酯键,是由—NCO基和—OH基反应而生成。不同的多多异氰酸酯对性能有不同的影响,具有对称结构的异氰酸酯能使分子结构规整,促进结晶,所以粘合剂具有较高的机械强度,芳香族异氰酸酯比脂肪酸内聚力大,也给胶粘剂在机械强度方面作出功献。1.3嵌段共聚物结构变化和性能 软、硬链段相间的分子结构,可示意如下: —软段—硬段—软段—硬段—软段— 通过调节软、硬段的品种、比例、主链结构的支化程度都可以对胶的性能产生影响。当胶粘剂的分子量一定时,软段分子量大了,就意味着硬段的嵌入量少,会使强度下降。但如果软段是聚酯,分子量越高结晶性也越高,又能使机械强度提高。如果软段是聚醚,则情况就不同了,因为聚醚的分子量越大,规整性就越差。 分子链段结构不同,则其分子的规整性也不同,分子的规整性越好则其结晶性越强。而结晶性对大分子内聚能影响很大,粘合层的粘接力越大。所以要想取得高的粘合强度就要选择高结晶必性的分子结构。影响结晶性的因素很多,如侧基越小、软段分子量越大结晶性越高,可以提高粘合剂的初粘力和最终剥离力。大的侧基会影响结晶性,却可以保护酯键,提高抗热氧化、水解性能,所以结晶度的选择要适度。 1.4主剂分子量对性能的影响 双组分聚氨酯粘合剂的主剂也是软、硬段相间的嵌段共聚物,固化反应不过是进一步的扩链。但固化或熟化之前主剂的分子量将决定复合工艺的适性:分子量小的粘合剂,涂布性能好,流平性好,但初粘强度低;反之,分子量大的初粘性好,却流平性差。胶粘剂的主剂的分子量还会影响固化后最终达到的性能指标,所以要找到一个平衡点,既要考虑加工过程,又要顾及最终效果,适当的分子量是主剂设计的关健。 2 聚氨酯胶粘剂的分类 2.1胶粘剂的粘度和粘度曲线 2.1.1粘度的概念 流体或半流体流动难易的程度叫粘度。我们有这样的经验稀的液体流得快;粘稠的流体在搅拌的时候阻力大。但这不过是咸觉,粘和稠是相对的。这里讨论的是可以定量测定的粘度。比如让液体通过一根细管道,观察液体流动的速度,通过计算求得粘度值。还可以把液体放在容器里面,插队一根螺旋浆,并且让它旋转,测量旋转时的阻力,再把测得的阻力换算成粘度。 上面说的两种方法就是两种粘度测量仪的原理,前一种是粘度杯,后一种是旋转粘度仪。旋转粘度仪测量出来的粘度是绝对粘度,单位叫P.s或map.s。

聚氨酯分子结构与性能的关系

螇聚氨酯分子结构与性能的关系 聚氨酯由长链段原料与短链段原料聚合而成,是一种嵌段聚合物。一般长链二元醇构成软段,而硬段则是由多异氰酸酯和扩链剂构成。软段和硬段种类影响着材料的软硬程度、强度等性能。 2.3.1 影响性能的基本因素 聚氨酯制品品种繁多、形态各异,影响各种聚氨酯制品性能的因素很多,这些因素之间相互有一定的联系。对于聚氨酯弹性体材料、泡沫塑料,性能的决定因素各不相同,但有一些共性。 基团的聚能 聚氨酯材料大多由聚酯、聚醚等长链多元醇与多异氰酸酯、扩链剂或交联剂反应而制成。聚氨酯的性能与其分子结构有关,而基团是分子的基本组成成分。通常,聚合物的各种性能,如力学强度、结晶度等与基团的聚能大小有关。聚氨酯分子中,除含有氨基甲酸酯基团外,不同的聚氨酯制品中还有酯基、醚基、脲基、脲基甲酸酯基、缩二脲、芳环及脂链等基团中的一种或多种。各基团对分子引力的影响可用组分中各不同基团的聚能表示,有关基团的聚能(摩尔能)见表2-11。

表2-11 基团的聚能/(kJ/mol) 由表2-11可见,酯基的聚能比脂肪烃和醚基的聚能高;脲基和氨基甲酸酯基的聚能高,极性强。因此聚酯型聚氨酯的强度高于聚醚型和聚烯烃型,聚氨酯-脲的聚力、粘附性及软化点比聚氨酯的高。 聚氨酯材料的结晶性、相分离程度等与大分子之间和分子的吸引力有关,

这些与组成聚氨酯的软段及硬段种类有关,也即与基团种类及密集程度有关。 氢键 氢键存在于含电负性较强的氮原子、氧原子的基团和含H原子的基团之间,与基团聚能大小有关,硬段的氨基甲酸酯或脲基的极性强,氢键多存在于硬段之间。据报道,聚氨酯中的多种基团的亚胺基(NH)大部分能形成氢键,而其部分是NH与硬段中的羰基形成的,小部分与软段中的醚氧基或酯羰基之间形成的。与分子化学键的键合力相比,氢键是一种物理吸引力,极性链段的紧密排列促使氢键形成;在较高温度时,链段接受能量而活动,氢键消失。氢键起物理交联作用,它可使聚氨酯弹性体具有较高的强度、耐磨性。氢键越多,分子间作用力越强,材料的强度越高。 结晶性 结构规整、含极性及刚性基团多的线性聚氨酯,分子间氢键多,材料的结晶程度高,这影响聚氨酯的某些性能,如强度、耐溶剂性,聚氨酯材料的强度、硬度和软化点随结晶程度的增加而增加,伸长率和溶解性则降低。对于某些应用,如单组分热塑性聚氨酯胶粘剂,要求结晶快,以获得初粘力。某些热塑性聚氨酯弹性体因结晶性高而脱模快。结晶聚合物经常由于折射光的各向异性而不透明。 若在结晶性线性聚氨酯中引入少量支链或侧基,则材料结晶性下降,交联密度

聚氨酯防水涂料说明

聚氨酯防水涂料百科名片 聚氨酯防水涂料 聚氨酯防水涂料是由异氰酸酯、聚醚等经加 成聚合反应而成的含异氰酸酯基的预聚体, 配以催化剂、无水助剂、无水填充剂、溶剂 等,经混合等工序加工制成的单组分聚氨酯 防水涂料。该类涂料为反应固化型(湿气固 化)涂料、具有强度高、延伸率大、耐水性 能好等特点。对基层变形的适应能力强。聚 氨酯防水涂料是一种液态施工的单组分环 保型防水涂料,是以进口聚氨酯预聚体为基 本成份,无焦油和沥青等添加剂。它是空气 中的湿气接触后固化,在基层表面形成一层 坚固的坚韧的无接缝整体防膜。 防水材料简介 最初的防水材料是焦油沥青和石油青纸胎油毡,起源于欧洲,20世纪20年代传入我国。随着科技的进步,现代防水材料迅速发展,到20世纪70年代,各种高分子防水材料相继问世。目前,我国防水材料已逐步形成卷材、涂料、密封材料三大系列。 合成高分子防水材料是以合成橡胶或合同树脂为主要成膜物质,加入其他辅助材料而配制成的防水涂膜材料。 合成分子防水材料的品牌多种多样,如聚氨酯、丙烯酸及它们的混合物等等。 编辑本段 聚氨酯防水涂料 产品特点 (1)能在潮湿或干燥的各种基面上直接施工 (2)与基面粘结力强,涂膜中的高分子物质能渗入到基面微细细缝内,追随型强。 (3)涂膜有良好的柔韧性,对基层伸缩或开裂的适应性强,抗拉性强度高。 (4)绿色环保,无毒无味,无污染环境,对人身无伤害。 (5)耐候性好,高温不流淌,低温不龟裂,优异的抗老化性能,能耐油、耐磨、耐臭氧、耐酸碱侵蚀。 (6)涂膜密实,防水层完整,无裂缝,无针孔、无气泡、水蒸气渗透系数小,既具有防水功能又有隔气功能。 (7)施工简便,工期短,维修方便 (8)根据需要,可调配各种颜色 (9)质轻,不增加建筑物负载 产品执行标准: GB/T 19250—2003《聚氨酯防水涂料》 JC1066-2008《建筑防水涂料中有害物质限量》 设计及施工规范: GB50345—2004《屋面工程技术规范》 GB50207—2002《屋面工程质量验收规范》 GB50300—2001《建筑工程施工质量验收统一标准》 GB50108—2008《地下工程防水技术规范》

聚氨酯胶粘剂

聚氨酯胶粘剂 聚氨酯胶粘剂是指在分子链中含有氨基甲酸酯基团(-NHCOO-)或异氰酸酯基(-NCO)的胶粘剂。聚氨酯胶粘剂分为多异氰酸酯和聚氨酯两大类。多异氰酸酯分子链中含有异氰基(-NCO)和氨基甲酸酯基(-NH-COO-),故聚氨酯胶粘剂表现出高度的活性与极性。与含有活泼氢的基材,如泡沫、塑料、木材、皮革、织物、纸张、陶瓷等多孔材料,以及金属、玻璃、橡胶、塑料等表面光洁的材料都有优良的化学粘接力。 粘接原理 无论哪种聚氨酯胶粘剂,都是异氰酸酯发生化学反应而固化的。 聚氨酯胶粘剂应用 聚氨酯胶粘剂是目前正在迅猛发展的聚氨酯树脂中的一个重要组成部分,具有优异的性能,在许多方面都得到了广泛的应用,是八大合成胶粘剂中的重要品种之一。 聚氨酯胶粘剂具备优异的抗剪切强度和抗冲击特性,适用于各种结构性粘合领域,并具备优异的柔韧特性。 聚氨酯胶粘粘剂具备优异的橡胶特性,能适应不同热膨胀系数基材的粘合,它在基材之间形成具有软-硬过渡层,不

仅粘接力强,同时还具有优异的缓冲、减震功能。聚氨酯胶粘粘剂的低温和超低温性能超过所有其他类型的胶粘剂。 水性聚氨酯胶粘剂具有低VOC含量、低或无环境污染、不燃等特点,是聚氨酯胶粘剂的重点发展方向。 聚氨酯胶粘剂的多样性为许多粘接难题都准备了解决的方法,且特别适用于其他类型胶粘剂不能粘接或粘接有困难的地方。 此外,聚氨酯胶粘剂还具有韧性可调节、粘合工艺简便、极佳的耐低温性能以及优良的稳定性等等特性。正是由于聚氨酯胶粘剂这种优良的粘接性能和对多种基材的粘接适应性,使其应用领域不断扩大,在国内外近年来成为发展最快的胶粘剂。 铁路建设上的应用 无砟轨道铺设(高铁工程技术的发展方向)用胶将以国产聚氨酯胶粘剂产品为主,单轨每5米嵌入一个凸型挡台,每个挡台两边各需灌注聚氨酯胶粘剂约17.8kg,每公里双轨无砟轨道建设需聚氨酯灌封胶粘剂7吨以上。除了在铁路铺设方面外,高速列车的生产对于聚氨酯胶粘剂的使用需求也大大增加,聚氨酯在车辆上承担着玻璃粘接、地板粘接、嵌缝填充、密封防水等各种必不可少的作用,在车辆上,按照动车组CRH3为基础,单节车厢用聚氨酯胶约84.07L折算约合

聚氨酯结构与性能的相关性

聚氨酯结构与性能的相关性 聚氨酯(简称TPU)是由多异氰酸酯和聚醚多元醇或聚酯多元醇或/及小分子多元醇、多元胺或水等扩链剂或交联剂等原料制成的聚合物。通过改变原料种类及组成,可以大幅度地改变产品形态及其性能,得到从柔软到坚硬的最终产品。聚氨酯制品形态有软质、半硬质及硬质泡沫塑料、弹性体、油漆涂料、胶粘剂、密封胶、合成革涂层树脂、弹性纤维等,广泛应用于汽车制造、冰箱制造、交通运输、土木建筑、鞋类、合成革、织物、机电、石油化工、矿山机械、航空、医疗、农业等许多领域。根据所用原料的不同,可有不同性质的产品,一般为聚酯型和聚醚型两类。可用于制造塑料、橡胶、纤维、硬质和软质泡沫塑料、胶粘剂和涂料等。 聚氨酯由长链段原料与短链段原料聚合而成,是一种嵌段聚合物。一般长链二元醇构成软段,而硬段则是由多异氰酸酯和扩链剂构成。软段和硬段种类影响着材料的软硬程度、强度等性能。 软段对性能的影响 聚醚、聚酯等低聚物多元醇组成软段。软段在聚氨酯中占大部分,不同的低聚物多元醇与二异氰酸酯制备的聚氨酯性能各不相同。 极性强的聚酯作软段得到的聚氨酯弹性体及泡沫的力学性能较好。因为,聚酯制成的聚氨酯含极性大的酯基,这种聚氨酯内部不仅硬段间能够形成氢键,而且软段上的极性基团也能部分地与硬段上的极性基团形成氢键,使硬相能更均匀地分布于软相中,起到弹性交联点的作用。在室温下某些聚酯可形成软段结晶,影响聚氨酯的性能。聚酯型聚氨酯的强度、耐油性、热氧化稳定性比PPG聚醚型的高,但耐水解性能比聚醚型的差。聚四氢呋喃(PTMEG)型聚氨酯,由于PTME G规整结构,易形成结晶,强度与聚酯型的不相上下。一般来说,聚醚型聚氨酯,由于软段的醚基较易旋转,具有较好的柔顺性,优越的低温性能,并且聚醚中不存在相对易于水解的酯基,其耐水解性比聚醚型好。聚醚软段的醚键的α碳容易被氧化,形成过氧化物自由基,产生一系列的氧化降解反应。以聚丁二烯为软

聚氨脂防水做法

聚氨脂防水做法 2.1 材料及要求 2.1.1 聚氨酯防水涂料,应具有出厂合格证及厂家产品的认证文件,并复验以下技术性能。 聚氨酯防水涂料,以甲组份及乙组份桶装出厂;甲组份:异氰酸基含量以3.5±0.2%为宜。 乙组份:羟基含量以0.7±0.1%为宜。 两组份材料应分别保管,存放在室内通风干燥处,贮期甲组份为6个月,乙组份为12个月,使用时甲组份和乙组份料按1∶1的比例配合,形成聚氨酯防水涂料,技术性能指标如下: 固体含量:≥93% 抗拉强度:≥0.6MPa 延伸率:≥300% 低温柔度:在-20℃绕φ20mm圆棒无裂纹 耐热度: 80℃不流淌 不透水性: >0.2MPa 干燥时间: 1~6h 2.1.2 辅助材料: 2.2 主要机具: 2.2.1 电动机具:电动搅拌器。 2.2.2 手用工具:搅拌桶、小铁桶、小平铲、塑料或橡胶刮板、滚动刷、毛刷、弹簧秤、消防器材等。 2.3 作业条件: 2.3.1 地下防水层聚氨酯防水涂料冷作业施工,在地下水位较高的条件下涂刷防水层前,应先降低地下水位,做好排水处理,使地下水位降至防水层操作标高以下300mm,并保持到防水层施工完。 2.3.2 涂刷防水层的基层应按设计抹好找平层,要求抹平、压光、坚实平整,不起砂,含水率低于9%,阴阳角处应抹成圆弧角。 2.3.3 涂刷防水层前应将涂刷面上的尘土、杂物,残留的灰浆硬块,有突出的部分处理、清扫干净。 2.3.4 涂刷聚氨酯不得在淋雨的条件下施工,施工的环境温度不应低于5℃,操作时严禁烟火。 3.1 工艺流程: 基层清理→涂刷底胶→涂膜防水层施工→做保护层 3.2 基层处理:涂刷防水层施工前,先将基层表面的杂物、砂浆硬块等清扫干净,并用干净的湿布擦一次,经检查基层无不平、空裂,起砂等缺陷,方可进行下道工序。 3.3 涂刷底胶(相当于冷底子油): 3.3.1 底胶(基层处理剂)配制:先将聚氨酯甲料、乙料和二甲苯以1∶1.5∶2的比例(重量比)配合搅拌均匀,配好的料在2h内用完。 3.3.2 底胶涂刷:将配制好的底胶料,用长把滚刷均匀涂刷在基层表面,涂刷量为0.3kg/m2左右,涂刷后约4h手感不粘时,即可做下道工序。 3.4 涂膜防水层施工: 3.4.1 材料配制:聚氨酯按甲料、乙料和二甲苯以1∶1.5∶0.3的比例(重量比)配合,用电动搅拌器强制搅拌3~5min,至充分拌合均匀即可使用。配好的混合料应2h内用完,不可时间过长。 3.4.2 附加涂膜层:穿过墙、顶、地的管根部,地漏、排水口、阴阳角,变形缝并薄弱部位,应在涂膜层大面积施工前,先做好上述部位的增强涂层(附加层)。 附加涂层做法:是在涂膜附加层中铺设玻璃纤维布,涂膜操作时用板刷刮涂料驱除气泡,将玻璃纤维布紧密地粘贴在基层上,阴阳角部位一般为条形,管根为块形,三面角,应裁成块形布铺设,可多次涂刷涂膜。 3.4.3 涂刷第一道涂膜:在前一道涂膜加固层的材料固化并干燥后,应先检查其附加层部位有无残留的气孔或气泡,如没有,即可涂刷第一层涂膜;如有气孔或气泡,则应用橡胶刮板将混合料用力压入气孔,局部再刷涂膜,然后进行第一层涂膜施工。 涂刮第一层聚氨酯涂膜防水材料,可用塑料或橡皮刮板均匀涂刮,力求厚度一致,在1.5mm左右,即用量为1.5kg/m2。 3.4.4 涂刮第二道涂膜:第一道涂膜固化后,即可在其上均匀地涂刮第二道涂膜,涂刮方向应与第一道的涂刮方向相垂直,涂刮第二道与第一道相间隔的时间一般不小于24h,亦不大于72h。

聚氨酯胶粘剂的粘接机理

聚氨酯胶粘剂的粘接机理 聚氨酯胶粘剂是目前正在迅猛发展的聚氨酯树脂中的一个重要组成部分,具有优异的性能,在许多方面都得到了广泛的应用,是八大合成胶粘剂中的重要品种之一,适用于各种结构性粘合领域。 大家可能会好奇,聚氨酯胶粘剂的粘结力度这么强,粘结材料的种类又是这么广泛,那么它究竟是如何将各种材料粘结在一起的呢?下面,洛阳天江化工新材料有限公司就聚氨酯胶粘剂粘结材料种类的不同将聚氨酯胶粘剂的粘结机理概括为了以下几类: 一、金属、玻璃、陶瓷等的粘接 金属、玻璃等物质表面张力很高,属于高能表面,在聚氨酯胶粘剂固化物中含有内聚能较高的氨酯键和脲键,在一定条件下能在粘接面上聚集,形成高表面张力胶粘层。一般来说,胶粘剂中异氰酸酯或其衍生物百分含量越高,胶粘层的表面张力越大,胶越坚韧,能与金属等基材很好地匹配,粘接强度一般较高。 1、含-NCO基团的胶粘剂对金属的粘接机理如下: 金属表面一般存在着吸附水(即使经过打磨处理的金属表面也存在微量的吸附水或金属氧化物水合物),-NCO与水反应生成的脲键与金属氧化物之间由于氢键而螯合形成酰脲—金属氧化物络合物,-NCO基团还能与金属水合物形成共价键等。 2、在无-NCO场合,金属表面水合物及金属原子与氨酯键及脲键之间产生范德华力和氢键,并且以TDI、MDI为基础的聚氨酯胶粘剂含苯环,具有冗电子体系,能与金属形成配价键。金属表面成分较为复杂,与聚氨酯胶之间形成的各种化学键或次价键(如氢键)的类型也很复杂。 3、玻璃石板陶瓷等无机材料一般由SO2、CaO和Na2O等成分构成,表面也含吸附水羟基,粘接机理大致与金属相同。 二、塑料橡胶的粘接 橡胶的粘接一般选用多异氰酸酯胶粘剂或橡胶类胶粘剂改性的多异氰酸酯胶粘剂,胶粘剂中所含的有机溶剂能使橡胶表面溶胀,多异氰酸酯胶粘剂的分子量较小,可渗入橡胶表层内部,与橡胶中存在的活性氢发生反应,形成共价键。此外,多异氰酸酯还会与潮气反应生成脲基或缩二脲,并且在加热固化时异氰酸

相关文档
最新文档