关于低温的概念、技术和应用

关于低温的概念、技术和应用
关于低温的概念、技术和应用

关于低温的概念、技术和应用

毕延芳2001/5/20

引言

低温技术不仅与人们当代高质量生活息息相关,同时与世界上许多尖端科学研究(诸如超导电技术、航天与航空技术、高能物理、受控热核聚变、远红外探测、精密电磁计量、生物学和生命科学等)密不可分。在超低温条件下,物质的特性会出现奇妙的变化:空气变成了液体或固体;生物细胞或组织可以长期贮存而不死亡;导体的电阻消失了——超导电现象而磁力线不能穿过超导体——完全抗磁现象;液体氦的黏滞性几乎为零——超流现象,而导热性能比高纯铜还好。下面我们将以通俗易懂的方式介绍低温趣事、低温技术的应用和低温产生。

自然界低温

大多数人知道,水的冰点是0℃(以下温度凡未说明都以摄氏度计),比人的体温低37度。在我国领土的最北端漠河,冬天最低温度可达零下50-60度;当飞机在8,000米高空飞行时,高空的气温低达零下80多度;而地球南极的冬天气温可低达零下90度。在太空,远离太阳,接收太阳光的热愈少,则温度愈低。月球背阳面的温度为零下160多度,而冥王星温度是零下229度。在远离恒星的辽阔无际的超冷区域,大体温度是零下270度。

物态/物性与温度的关系

在夏天奔泻呼啸的黄河到冬天可以走汽车;人们天天呼吸的空气到零下196度都会变成液体,如果进一步降温到零下217度,则空气也冻成了坚硬的固体。总之,随着温度降低,人们生存必需的氧气,用于电弧焊接保护的氩气,占空气77%的氮气,充霓虹灯的氖气和充灌气球的氢气都相继液化和冻结。氦气是最后被液化的气体,在大气中氦气含量不到百万分之一,原先只在太阳光谱中发现氦的谱线,后来在铀矿和天然气中发现地球上也有,由于它的液化温度低,直到20世纪初才被液化,液氦在大气压下无论如何降温也不冻结成固体,只有在25大气压以上才会凝结成固体。

由上面的叙述可见,随着温度降低,室温时的气态物质可以转化成液态、固态。如果升高温度(数百万度),气态可以转化为等离子态,所有原子和分子游离成带电的电子和正离子,人们称等离子态为物质的第四态。一些金属、合金、金属间化合物和氧化物,当温度低于临界温度时出现超导电性(即零电阻现象)和完全抗磁性(把磁力线完全排除出体外现象)。液氦温度低于零下271度时还出现超流现象,液体的黏滞度几乎为零,杯子内的液氦会沿器壁爬到杯子下面,液体的传热系数比铜还好。上述两种现象可称为超导态和超流态,人们把超导态和超流态称为物质的第五态。

那么低温是否有尽头?对此问题英国科学家开尔文在1848年已做了回答,从理想气体的压力、体积与温度的关系式,他推论绝对温标的0度是低温的尽头。所谓绝对0度,即摄氏零下273.15度(记为0 K,绝对温度=摄氏温度+273.1),正如理论上所说它是分子运动完全停止的温度。在自然界,运动是物质存在的形式,运动是物质的固有属性,要物质的热运动完全停止是办不到的,但人们可以不断地接近绝对零度。有报道说,最低的温度记录是 3.3′10-8K。

随着温度降低金属材料的长度会缩短,导电性和机械强度提高,比热减小,热导率也有大的

变化。低温使一些物质内部结构发生变化,在室温下亮晶晶的锡制品在严寒的冬天会

图1. 温度与物态

变成粉末状灰锡;橡胶和塑料失去了弹性和塑性;碳钢会发脆,历史上曾发生过多起大型轮船在极地附近海域行驶时焊缝开裂而沉没的事故;高纯金属(如铝、铜、银、铂等)在4K温度时的电阻比室温时低几百几千倍,比热也比室温下小几千倍,而热导率在10-40K之间出现相当高的峰值后再下降。

普冷/低温与人们的生活

人们司空见惯的电冰箱、空调器和超市中的速冻食品与生活密切相关。依靠人工制冰技术,人们在炎热的盛夏可以享受溜冰运动的乐趣。在医院里可以用零下几十度的冷刀切除人皮肤上的疣子,由于血液冻结,可以避免大量流血;低温麻醉术可以避免一般药物麻醉对人体的伤害。在现代化大医院中,检查人体软组织病变的核磁共振成象仪(见图2)对于诊断早期癌症十分有效,避免了传统的开刀切片检查的痛苦。这种核磁成象仪需要有效孔径比人体大的大体积5,000-15,000高斯高稳定度的均匀磁场,用超导磁体产生,其运行温度是4.2K,用液氦冷却。缺氧病人用的氧气源是液态氧,由空气液化后进行氧氮分离而制备获得的。在大城市的夜晚,人们看到的五光十色的霓虹灯中所充的稀有气体(氖、氩、氪、氦等)都是在空气液化后分离制备的。汽油或柴油作为汽车燃料对环境污染比较严重,天然气是比较清洁的燃料,采用液化天然气比压缩天然气使汽车携带更多燃料,天然气的液化温度是零下162度。也有人认为使用液氢作为汽车燃料是最清洁的,在德国已经开始试用(见图3)。在城市地下交通建设中,为避免在建筑物下挖掘地铁隧道而引起塌方,可将隧道周围的土层进行冻结。

低温与科学技术

冷冻方法可以长期保存食物,城市需要冷库,家庭拥有冰箱,空调设备使人们在炎热夏天变得舒适……对大多数人已不陌生,这些都属于普冷技术范畴。低温技术是指温度低于零下150度的领域。由于低温与科学研究和许多高新技术相关,下面分别叙述。

科学研究

低温物理学是涉及低温学现象和相关物理学研究,本身就是一门获15项以上诺贝尔奖的年轻学科。人们比较熟悉有冯暤声瓦尔斯(真实气体定律提出者),卡曼林暟耗谒?/FONT>(氦液化和超导电性发现者),巴丁、库柏、施瑞弗(提出超导电性BCS理论),约瑟夫逊(发现超导隧道效应者)和李政道、杨振宁等人。

低温技术为物理学研究开辟了广阔的天地。1956年哥伦比亚大学吴健雄博士利用刺刀磁体和0.01K低温条件,测定放射性钴60放射出来电子在原子核自旋方向的分布,验证李政道和杨振宁博士提出的弱相互作用下宇称不守恒的观点,打破了物理学的一条基本规律“宇称守恒定律”。

1911年荷兰莱顿大学教授卡曼林-昂内斯在液氦温度发现了水银的超导电性(电流在导体内无电阻流动),人们首先想到用超导材料制造电磁体,但遗憾的是几乎所有超导纯金属在2000高斯磁场时失去超导电性。直到1970年代,才制造出在液氦温度(4.2K)能产生5~12万高斯

强磁场实用的铌钛合金和铌三锡金属化合物超导材料。

用钕铁硼永磁材料可产生数千高斯大体积稳态磁场而不消耗电能;用电磁铁(铜/铝线圈+导磁材料)能经济地产生8,000~15,000高斯小体积的磁场;要产生高于15,000高斯磁场或大体积磁场,不得不大大增加电能消耗。如果要求的磁场工作孔径较小(~32mm),则水冷比特线圈可以产生25万高斯稳态强磁场,但耗电~10兆瓦。要产生大体积稳态强磁场还得求助于超导磁体。

在20世纪后30多年中,人们为高能粒子物理研究建造了巨大的氢泡室,让碰撞后的高能粒子通过充满液氢的容器,由于沿粒子轨迹使液体气化,从而可拍摄记录粒子的轨迹。如果再施加磁场使粒子偏转,则从粒子速度和曲率半径算出粒子的质量。泡室曾为多种基本粒子的发现作出了贡献。大型超导探测器磁体,直径和长度都达数米。美国费米实验室的超导加速器,德国汉堡超导质子-正电子对撞机,这两个加速器周长大于6公里,各装有一千多个超导二极磁体(使带电粒子束弯转)和四极磁体(使粒子束聚焦),所有超导磁体都运行在液氦温度。超导加速器的最大优点是大大缩小加速器尺寸和节省运行费,如果用常规的电磁铁产生磁场5万高斯,则电力消耗大得惊人;这样要提高加速器的最高能量,要么加大周长尺寸,要么明细增加电力消耗;由于超导磁体没有电阻,可以产生5万高斯以上大体积磁场,而并不需要巨大功率电源,从而减少了运行费。目前正在欧洲建造的LHC超导加速器(14′1012电子伏特质子-质子对撞机),周长达27公里,超导磁体数目更多(1600),磁场高达8.3万高斯,总的冷重达36,000吨,用1.9K超流氦冷却。当然,为超导磁体降温和保冷必需消耗四十兆瓦的电力。

超导直线加速器可以避免电子回旋加速器的能量辐射,不需要弯转磁体,但它需要大量超导微波谐振腔使粒子束提高能量,超导铌谐振腔需要用液氦或超流氦冷却,德国计划建造的超导直线加速器长达20多公里。总之,低温超导技术为高能物理研究提供了强大的技术支撑。

强磁场装置为各种物性研究提供了大量机遇,世界上目前最强的稳态强磁场达到40万高斯,由水冷的比特线圈和超流氦冷却的超导线圈联合产生,其中14万高斯由超导线圈产生。孔径为32mm超导磁体的最高磁场可达21万高斯,铌三锡超导线圈运行在1.8K温度。

低温为化学研究提供了独特领域,在室温或高温下由于分子运动速度快,化学反应的中间过程细节难以捕捉。低温使反应速度放慢,从而有机会搞清反应过程的细节,并人为地控制化学反应的进程,为理论化学作出了宝贵贡献。在低温化学实验室,利用可控制的自由基合成出新的有机化合物,而自由基的制取、保存和有控制地参与化学反应都是在4K-200K低温进行的。自由基是在分子分裂时产生的、含有单独未配对的电子,因此性质非常活泼,在室温下存在时间很短(百万分之一秒)。

低温也生物学研究开辟了广阔天地。低温曾使一些生物的生存遭到过威胁,但又使它们的生存获得保障和延续。低温可以抑制数目过程,在低温下生命活动暂停或延缓,当温度回升后有机体的生理机能仍然有可能恢复原来的活力。试验证明,在液氮温度下保存血液可长达21年。在畜牧业已普遍推广使用的种牛的精液在液氮中可长期冷冻保存。准备移植的人体器官先要经过特殊的冷藏处理,它的物理化学结构都发生了奇妙的变化,这样,移植的组织容易和机体相协调。世界上第二个试管婴儿在受精卵植入母体前冷藏了53天。现在,人类对于面临灭绝的动植物正在建立基因库,显然基因库必需在液氮低温下才行。

能源研究与技术

能源是人类社会赖以存在和发展的基础,开发受控热核聚变能曾被认为是彻底解决人类能源的根本途径,因为每公升海水含有的氢同位素氘和氚的聚变能相当于300公斤汽油。而氘和氚的自持核聚变只有在上亿度的高温等离子体内才会发生,唯用强磁场才可能装容(或约束)如此高温物质。因为等离子体里所有带电粒子在磁场内受洛仑兹力作用,沿着磁力线作螺旋运动,具有一定位形的磁场使等离子体不与真空室的器壁接触,而且磁场越强对等离子体约束得约好。如果用铜导体制造的线圈来产生这约束磁场,只能以脉冲的方式工作,否则将消耗非常可观的功率,使核聚变达到能量得失平衡的运行点更加困难。磁约束核聚变装置是超导磁体大规模应用的重要领域之一,已建成和运行的超导托卡马克装置有法国的Tore Supra(液氦低温冷重达170吨,超导线圈用超流氦冷却)),俄国的T-15(液氦温度冷重300吨),日本的Triam-1M和我国HT-7(液氦温区冷重14吨);还有日本的超导大型螺旋器装置LHD(液氦温区冷重达800吨)。目前由西欧、日本和俄国三方合作设计、建造的国际热核聚变实验堆,其超导磁体的冷重近万吨,一旦建成运转,人们将可看到一个集多种极端物理条件于一体的巨型装置――冷却超导磁体的深低温(4.5K)、产生核聚变的超高温、约束等离子体的强磁场(12万高斯)、等离子体容器放电前的高真空和使等离子体加热到聚变温度的超大功率电磁波加热系统。

在能源技术领域超导磁体和超导技术还有更广泛用途,如超导电动机和超导发电机、超导电感电力贮能、超导变压器、超导电力传输线,上述超导电力工程应用是利用超导的零电阻特性来提高效率,多数已有样机投入试运行;而用高温超导材料制造的故障电流限制器则利用超导材料的临界特性和其失超后电阻变化很大的原理。

聚变实验装置装容等离子体的真空室在放电前要求很高真空度,采用低温泵是最佳选择。此泵可以用液氦致冷,也可用微型制冷机供冷。

目前世界上运行的高温气冷裂变堆用氦气作为传热工质,据说为纯化氦气每年得花费100万美元的液氮。

天然气是当前主要能源之一,当它降温至零下162度时变成液体,体积缩小约640倍,从而便于运输,大型运输液化天然气的船泊可装运125,000m3(5万吨级)。天然气的液化、液化天然气的贮存和运输可谓是大型低温工程。

航空与航天技术

低温使室温下气体转化成液体,气体液化后其密度增加几百倍,液化后的气体必须在绝热良好的容器里保存,容器的重量比起用压力容器装容同等质量的气体方法要减轻许多。因此液氧和液氢常常作为推进火箭使用的燃料,火箭是人们探索宇宙所必需的运载工具。第二次世界大战时发射的火箭已用液氧和酒精或煤油作为燃料,到二十世纪五十年代液氢取代酒精/煤油成为火箭燃料,因为它的比冲量比煤油大30%。一架宇宙飞船的推进火箭携带的液氧多达530m3,液氢1438m3。这些低温燃料还起到冷却火箭外壳,使它与大气高速摩擦时不被烧蚀。有人研究用液氢与甲烷固液混合物作为近音速和远超音速飞机的燃料,因为低温燃料可以冷却飞机表面。

广漠无际的宇宙空间是高真空极低温环境,在飞船上天之前必需在模拟环境中进行试验,这对于保证宇宙飞船的安全十分重要。这人工的空间模拟环境的获得必需依靠低温技术,低温技术不仅使巨大的模拟器(数百立方米容积真空罐)内达到足够低的温度,还利用低温泵原理获得高真空。

航空或航天器的设计及实验研究都依赖于风洞试验,超音速飞机和宇航火箭必需在低温风洞内考验。温度越低,声速也越低。所以在低温风洞内有一股极其强大的冷气流吹过试验模型或实物,可以经济地获得比较大的超音速倍数,而这种风洞的液氮消耗量高达454公斤/秒。

超导磁悬浮技术的一个可能应用领域是航天器的发射,使它在离开地面时已具有很高的速度,因为这加速由地面供给能源,从而减少了火箭需携带的燃料。

宇航员在太空长期生活离不开氧气,呼吸用的氧气是从地面以液氧的方式带到太空的。

太空探测仪器要求低温致冷,因为太空深处的温度低达 3.5K,远红外辐射非常非常微弱,探测超宽红外辐射带仪器需要用1.8K超流氦冷却。

超导体除了零电阻特性外,另一个奇妙特性是完全抗磁性。无论是超导线绕成的闭合线圈或块状超导材料都排斥磁力线穿过,或者说磁场排斥超导体。利用这完全抗磁性可以制造无摩擦轴承,制造超导陀螺仪,因为无摩擦轴承使陀螺仪以每分钟几万转速度高速旋转,无论航空器或航天器的飞行如何方向变化,超导陀螺仪的旋转轴指向保持不变。

工业与交通运输应用

气体工业是利用低温技术分离气体,它的原料可以是空气、天然气、焦炉气或者石油裂化气,其产品是工业生产或科研需要的各种纯度氮气、氧气、氩气、烷烃气体、烯烃气体、氦气和其他稀有气体。在美国工业气体的年产值达50亿美元,占低温产业约1/3。

传统的制氧方法是将空气压缩并降温到-190度成为液体,然后利用液氮、液氧与其他组分(氩、氪、氖、氦等)气化点差异进行分离。

在冶金工业,氧气用于顶吹转炉或电炉,因为炼钢需要大量氧气用以脱碳。美国有50%液氧用于炼钢,20%液氧用于化学工业制造抗冻剂。在普通板金切割需要消耗氧气或氮气,不锈钢的焊接需要氩气保护,避免焊缝氧化。在石油化工工业,氧气用来裂解重油,生产烃烯气,或气化重油、煤粉,制备合成氨原料气。氧气还被用于城市污水处理。

氮的化学性质不活泼,可作为保护气、置换气和密封气。食品工业速冻工艺过程消耗相当大量的液氮;口香糖的切片和包装也需要液氮;塑料/橡胶制品表面去光亮和油漆颜料的冷却等等都需用液氮。

氩是惰性气体,可用作金属冶炼的保护气,也用于不锈钢、铝和其他合金焊接的保护气。在微电子工业晶片制造中,氩也常作保护气。氩、氪、氖、氦等惰性气体在电光源和激光器制造中大有用途。

伴随汽车工业的发展,每年有大量的橡胶轮胎报废。为使废轮胎不造成环境污染,又利用废弃资源,工业界利用低温下橡胶、塑料和普通碳钢的脆性进行粉碎处理。在食品和制药业也利用低温粉碎技术。

在石油气分离方面,用低温技术分离其中的氢气和其他惰性气体,制取高纯度的乙烯。

超导与低温技术在交通运输方面也大有用武之地,时速可超过500公里的超导磁悬浮列车在日本、美国和加拿大研制中;在海面或水下超导磁流体推进有许多优点,因为它依靠超导磁体产生的强磁场,当垂直于磁场方向经海水通以电流时产生了强大推力。这种推进方法不依赖运动机械,因此噪音小,推力平稳,使声纳难以侦察。1993年日本的“太和1号“船下水,说明在国外已经进入试运行阶段。

生产优质陶瓷制品和印刷精美画册都需要高品质高岭土,当天然高岭土矿中往往含有黄色氧化铁。利用超导高梯度磁场可以将这些杂质分离,获得高品质高岭土。此外超导磁分离技术还可以用于燃煤发电厂分离煤中的硫,以减少对锅炉和周围环境的污染。在工业污水处理中也可用超导磁分离技术去除弱磁性颗粒物

低温真空技术

利用低温获得高真空是十分有效的技术,当温度降到零下260度以下时,除氦以外其他气体都凝结成固体,因此低温泵是抽速非常高的泵,可高达103~104 m3/s;而且又非常清洁。低温真空技术不仅在宇宙环境模拟和核聚变研究发挥重要作用,在微电子器件制造、冷冻干燥和真空冶金等方面获得了广泛应用

低温/超导电子学

低温能降低电子器件的噪声,在远红外探测技术必需用38~80K微型制冷机来提高微弱信号的声噪比,如气象卫星上用来测定海水表面层温度分布、云层分布及温度的红外辐射仪,用于测定物质比辐射率以确定宇宙星体构造的红外分光光度仪;探测地层中矿藏分布和资源的红外多光谱扫描仪,防空预警系统中导弹制导系统的红外探测器。在低温下利用约瑟夫逊效应量子器件可精确地测量极微弱磁场变化,有人已将约瑟夫逊效应记录人的脑磁图,用来诊断某些疾病。也有人利用超导微电子器件制造速度更快的计算机。所有超导电子器件都以超导隧道效应为基础,已发展成一门前景灿烂的学科,预计到2020年在信息技术领域,超导应用的产值占46%。

1962年约瑟夫逊发现了超导隧道效应,在两块超导体中间的绝缘介质厚度薄到一定程度(10-9~10-8m),电子能成对地畅通无阻地穿越介质,好象绝缘山体开了条隧道。但这无阻的隧道电流是有限制的,当电流密度过大时会出现奇妙的特性:一是介质层两端出现电压,说明有正常电子的隧道通过;二是同时又出现了一种高频超导电流,超导电流的频率与介质层两端的电压成正比。如果用一定频率的微波去照射超导隧道结,同时外加一定的直流电压,当电压由小逐渐增大,超导隧道结上出现的电流会作阶梯式的变化。或者说,只有外加电压的变化是一个特定的数值时电流才会发生一次突变,而电压阶越大小与微波频率相关,频率越高阶越电压越大。微波频率与电压变化具有明显的对应关系,利用此奇异特性可以制成放

大、混频、检测等各种各样电子器件。这些器件灵敏度高,损耗小,响应速度快。依靠超导隧道结电磁波检测器可以去接收宇宙深处天体发射来的极其微弱微波信号,发现了蟹状星云的脉冲星。超导隧道结也可以制成参量放大器,噪声指数非常小。利用超导隧道效应可以制造量子干涉仪,用来测量电压和磁场的微小变化,具有极高的灵敏度和分辨率,它能测量10-11高斯磁场,比霍尔探针灵敏一万倍。它能够用来寻找弱磁性矿藏,可以用于地热能寻找,可用来记录人心脏跳动时微弱的生物磁场变化,也用于引力波和磁单极子探测。利用微波照射超导隧道结时电流-电压特性阶梯形曲线与微波频率相关的定量规律,去监视电压基准器,这是在标准计量方面的重要应用。约氏量子干涉效应可制成高速开关器件,1988年已达到1.5微微秒,其功耗远低于半导体开关器件,为计算机未来发展提供新的研究领域。

低温产生

西方国家的工业革命以蒸汽机发明为先导,蒸汽机是把燃煤的热量转化为机械功;而现代的制冷技术最普遍的方法是消耗消耗机械功来制取冷量。压缩机先把制冷工质(可以是氨、氟里昂、空气、氢气、氦气或其他气体)压缩,用冷却水或风冷把压缩气体的发热带走;经换热器预冷后的压缩气体工质经膨胀机膨胀降温制冷或通过节流阀降温。用氨作为制冷工质,最冷能达到零下33.5℃,用氟里昂-14最低能达零下128℃。最低温度是以制冷工质的凝固点为限,用氦气作为制冷工质可以达到零下271℃。

1823年英国科学家法拉第采用加压与冷却方法液化了二氧化碳,1877年利用同样方法使氧气液化,1885年德国科学家林德利用气体的狭口膨胀效应发展制冷技术,达到零下190℃使空气液化;随后又实现了氮气和氢气的液化,1908年荷兰科学家荷兰科学家卡曼林-昂内斯液化了温度最低的氦气。

科学技术的发展出现了其他制冷方法,诸如半导体温差制冷,涡流管制冷,吸收式制冷,脉冲管制冷,太阳能光-电转换制冷和光-热转换制冷等等;在极低温领域还有3He-4He的稀释制冷(可达绝对温度10-3K),顺磁盐绝热去磁制冷(可达10-3K温度)和核去磁制冷(可达到10-6-10-8K低温)等方法。

亚低温治疗的流程及注意事项

亚低温治疗的流程及注意事项标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

亚低温治疗的流程及注意事项 1.什么是亚低温治疗 是一种以物理方法将患者的体温降低到预期水平而达到治疗疾病目的的治疗方法。 2.亚低温治疗在神经外科的适应症有哪些 ⑴原发性和继发性脑干损伤,尤其伴有去大脑强直者; ⑵弥漫性脑损伤,伴有广泛脑水肿及ICP(颅内压)增高者; ⑶丘脑下部损伤,或有持续性中枢高热者; ⑷颅内血肿清除或内、外减压术后脑肿胀严重,仍有ICP增高者; ⑸伤后有明显精神症状或谵妄、躁动不安者; ⑹创伤性蛛网膜下隙初学伴有ICP增高者; ⑺外伤后脑梗死伴有ICP增高者。 3.亚低温治疗的禁忌症有哪些 ⑴患者有严重复合伤或已处于全身衰竭期; ⑵合并低血压、休克尚未纠正或有出血倾向者; ⑶怀疑有颅内血肿,正在观察阶段的患者; ⑷年老且伴有严重心血管功能不良者。 4.亚低温治疗的准备工作 ⑴应行脑室外穿刺引流术,监测并记录ICP、HR、BP、R和SPO2变化情况。 ⑵患者行气管切开,呼吸机辅助呼吸。 ⑶冬眠药物备用:维库溴铵吗啡芬太尼咪达唑仑。 ⑷为防止出现低血压应备用升压药物。 ⑸冰毯温度先设定在20℃左右,根据情况调整冰毯温度,并做好测量肛温的准备。 5.冬眠药物的使用 ⑴患者如有躁动可肌注M1半量(杜冷丁50mg 氯丙嗪25mg 异丙嗪25mg),同时静脉缓慢推注稀释至20ml的芬太尼或咪达唑仑一支。 ⑵维库溴铵先静脉稀释缓慢推注1-2支,再将10支维库溴铵稀释为50ml静脉泵入,开始为5ml/h,根据患者病情调整剂量,一般为3ml/h持续给药,一般为5-7天。 ⑶吗啡100mg稀释后静脉持续泵入。 ⑷因维库溴铵有引起横纹肌溶解的副作用,使用冬眠药物时应在保持患者体温的情况下,尽量少用维库溴铵,多使用吗啡。 ⑸在使用维库溴铵时有可能出现低血压的情况,应在床旁备用升压药物。 6.

结构方程模型的概念和特点

概念: 结构方程建模(Structural Equation Modeling. 简称SEM) 是一种综合运用多元回归分析、路径分析和确认型因子分析方法而形成的一种统计数据分析工具,是基于变量的协方差矩阵来分析变量之间关系得一种统计方法,也称为协方差结构分析。它既能够分析处理测量误差,又可分析潜在变量之间的结构关系。 特点: 1.同时处理多个因变量 结构方程分析可同时考虑并处理多个因变量。在回归分析或路径分析中,即使统计结果的图表中展示多个因变量,在计算回归系数或路径系数时,仍是对每个因变量逐一计算。所以图表看似对多个因变量同时考虑,但在计算对某一个因变量的影响或关系时,都忽略了其他因变量的存在及其影响。 2.容许自变量和因变量含测量误差 态度、行为等变量,往往含有误差,也不能简单地用单一指标测量。结构方程分析容许自变量和因变量均含测量误差。变量也可用多个指标测量。用传统方法计算的潜变量间相关系数与用结构方程分析计算的潜变量间相关系数,可能相差很大。 3.同时估计因子结构和因子关系 假设要了解潜变量之间的相关程度,每个潜变量者用多个指标或题目测量,一个常用的做法是对每个潜变量先用因子分析计算潜变量(即

因子)与题目的关系(即因子负荷),进而得到因子得分,作为潜变量的观测值,然后再计算因子得分,作为潜变量之间的相关系数。这是两个独立的步骤。在结构方程中,这两步同时进行,即因子与题目之间的关系和因子与因子之间的关系同时考虑。 4.容许更大弹性的测量模型 传统上,只容许每一题目(指标)从属于单一因子,但结构方程分析容许更加复杂的模型。例如,我们用英语书写的数学试题,去测量学生的数学能力,则测验得分(指标)既从属于数学因子,也从属于英语因子(因为得分也反映英语能力)。传统因子分析难以处理一个指标从属多个因子或者考虑高阶因子等有比较复杂的从属关系的模型。 5.估计整个模型的拟合程度 在传统路径分析中,只能估计每一路径(变量间关系)的强弱。在结构方程分析中,除了上述参数的估计外,还可以计算不同模型对同一个样本数据的整体拟合程度,从而判断哪一个模型更接近数据所呈现的关系。

亚低温治疗流程

亚低温治疗流程 适应症 开始时机 目标温度 亚低温维持 时间 复温最主要的是缓慢可控的复温,每4H体温 升高1℃,恢复至37℃为xx 持续12-24小时 心跳骤停者(特别是院外室颤 性心脏骤停者) 自主循环恢复后仍昏迷(对指 令无反应)立即实施亚低温治疗多采用物理、药物联合降温法数小时内 降至目标温度(32-34℃),主要预防降 xx过程中出现寒战及心律失常等并发症 持续3-5天(颅内压高峰期)或一直到颅内压正常后颅脑损伤GCS评分≤8分(包括颅脑外伤、脑出血、脑梗塞)脑损伤后或术后立即开始亚低温治疗 亚低温是对复苏后昏迷患者唯一有脑保护作用的措施。目前国内外临床上的亚低温治疗一般是32-34℃。 2010美国心脏协会CPR指南推荐对于院外室颤性心脏骤停的成人ROSC后仍昏迷(对指令无有意义的反应)患者应该降温到32~34°C并持续12~24小时(class I)。

对于任何心律失常所致的成人院内心跳骤停,或具有无脉性电活动或心脏停搏所致的成人院外心脏骤停ROSC后昏迷患者,也要考虑人工低温(class II b)。ROSC后第一个48小时期间,对于心脏骤停复苏后的自主性轻度亚低温(>32°C)的昏迷患者不要开始复温(class III)。 重度颅脑损伤后的亚低温治疗还存在争议,但许多研究认为: 损伤后尽早实施亚低温治疗,轻度低于35℃,持续3-5天(颅内高压高峰时期)或一直到颅内压正常后,有神经保护的作用。 降温方法: 1.冰袋、冰帽置于头部或腋窝、腘窝等。Bush等对成功复苏后的27例患者联合应用冰袋、冰水浸湿的毛巾进行降温,大约需7.5小时可达到目标温度。 2.装有循环冷冻液的降温毯或装有循环空气的特制床垫 Haugk等研究发现,在体表黏附装置中有循环冰水的垫子进行降温,降温速度可达1.2°/h。 3.冰水、酒精浸浴 4.体表黏附温垫进行降温 5.静脉输液法 9个病例组研究显示用500ml-30ml/Kg的0.9%生理盐水或乳酸林格氏液降温是安全的。 也有文献表示,静脉输液法无法准确监测降温的幅度,而且需要大量液体对有些危重患者不利。 6血管内导管降温。将一装有温度可控的循环盐水导管插入到大静脉(通常有股静脉插入到下腔静脉),其降温高效、可靠、可主动控制性复温而且并发症较少。 7.人工体外循环降温。应用血管内温度监控系统控制和维持脑深部温度,降温准确快速,容易控制,但侵袭性过强、价格昂贵、技术要求过高。

大大数据概念、技术、特点、应用与案例

大数据 目录 一、大数据概念 (1) 二、大数据分析 (2) 三、大数据技术 (3) 四、大数据特点 (4) 五、大数据处理 (4) 六、大数据应用与案例分析 (6) 一、大数据概念 "大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。"大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。 "大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"

指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数据的极限"。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。 二、大数据分析 从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢? 1、可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了 2、数据挖掘算法 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,

林子雨大数据技术原理及应用第四章课后作业答案

大数据技术原理与应用第四章课后作业 黎狸 1.试述在Hadoop体系架构中HBase与其他组成部分的相互关系。 HBase利用Hadoop MapReduce来处理HBase中的海量数据,实现高性能计算;利用Zookeeper作为协同服务,实现稳定服务和失败恢复;使用HDFS作为高可靠的底层存储,利用廉价集群提供海量数据存储能力; Sqoop为HBase的底层数据导入功能,Pig 和Hive为HBase提供了高层语言支持,HBase是BigTable的开源实现。 2.请阐述HBase和BigTable的底层技术的对应关系。 3.请阐述HBase和传统关系数据库的区别。 4.HBase有哪些类型的访问接口? HBase提供了Native Java API , HBase Shell , Thrift Gateway , REST GateWay , Pig , Hive 等访问接口。 5.请以实例说明HBase数据模型。

6.分别解释HBase中行键、列键和时间戳的概念。 ①行键标识行。行键可以是任意字符串,行键保存为字节数组。 ②列族。HBase的基本的访问控制单元,需在表创建时就定义好。 ③时间戳。每个单元格都保存着同一份数据的多个版本,这些版本采用时间戳进行索 引。 7.请举个实例来阐述HBase的概念视图和物理视图的不同。 8.试述HBase各功能组件及其作用。 ①库函数:链接到每个客户端; ②一个Master主服务器:主服务器Master主要负责表和Region的管理工作; ③③许多个Region服务器:Region服务器是HBase中最核心的模块,负责存储和 维护分配给自己的Region,并响应用户的读写请求

大数据技术原理与应用-林子雨版-课后习题答案复习进程

大数据技术原理与应用-林子雨版-课后习 题答案

第一章 1.试述信息技术发展史上的3次信息化浪潮及具体内容。 2.试述数据产生方式经历的几个阶段 答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。 3.试述大数据的4个基本特征 答:数据量大、数据类型繁多、处理速度快和价值密度低。 4.试述大数据时代的“数据爆炸”的特性 答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。 5.数据研究经历了哪4个阶段? 答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。 6.试述大数据对思维方式的重要影响 答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。 7.大数据决策与传统的基于数据仓库的决策有什么区别 答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。 大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。

8.举例说明大数据的基本应用 9.举例说明大数据的关键技术 答:批处理计算,流计算,图计算,查询分析计算 10.大数据产业包含哪些关键技术。 答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。 11.定义并解释以下术语:云计算、物联网 答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。 物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。

大数据基本概念及技术

大数据是当前很热的一个词。这几年来,云计算、继而大数据,成了整个社会的热点,不管什么,都要带上“大数据”三个字才显得时髦。大数据究竟是什么东西?有哪些相关技术?对普通人的生活会有怎样的影响?我们来一步步弄清这些问题。 一、基本概念 在讲什么是大数据之前,我们首先需要厘清几个基本概念。 1.数据 关于数据的定义,大概没有一个权威版本。为方便,此处使用一个简单的工作定义:数据是可以获取和存储的信息。 直观而言,表达某种客观事实的数值是最容易被人们识别的数据(因为那是“数”)。但实际上,人类的一切语言文字、图形图画、音像记录,所有感官可以察觉的事物,只要能被记下来,能够查询到,就都是数据(data)。

不过数值是所有数据中最容易被处理的一种,许多和数据相关的概念,例如下面的数据可视化和数据分析,最早是立足于数值数据的。 传统意义上的数据一词,尤其是相对于今天的“大数据”的“小数据”,主要指的就是数值数据,甚至在很多情况下专指统计数值数据。这些数值数据用来描述某种客观事物的属性。 2.数据可视化 对应英语的data visulization(或可译为数据展示),指通过图表将若干数字以直观的方式呈现给读者。比如非常常见的饼图、柱状图、走势图、热点图、K线等等,目前以二维展示为主,不过越来越多的三维图像和动态图也被用来展示数据。 3.数据分析 这一概念狭义上,指统计分析,即通过统计学手段,从数据中精炼对现实的描述。例如:针对以关系型数据库中以table形式存储的数据,按照某些指定的列进行分组,然后计算不同组的均值、方差、分布等。再以可视化的方式讲这些计算结果呈现出来。目前很多文章中提及的数据分析,其实是包括数据可视化的。

大数据的概念、技术及应用

大数据的概念、技术及应用1 概述 1.1 大数据的概念和特点 1.1.1 大数据的基础 1.1.2 大数据如何“与时俱进”? 1.1.3 大数据发展趋势 人工智能 物联网结合 各个行业的深入 1.2 大数据的技术基础 1.2.1 从数据仓库开始 1.2.2 HADOOP 生态圈 1.2.3 与云计算的关系 1.2.4 数据运维能力提升 1.3 大数据的应用举例 1.3.1 大数据提升客户分析能力 1.3.2 大数据提升产品分析能力 1.3.3 大数据提升管理水平 1.3.4 大数据提升各行业“智慧” 1.4 大数据下的人工智能(AI) 1.4.1 什么是人工智能

1.4.2 人工智能改变哪些行业? 1.4.3 大数据下的人工智能有何不同? 1.4.4 人工智能的“颠覆” 1.5 大数据如何精细化管理 1.5.1 量化管理的引出 1.5.2 大数据如何提升“量化”的维度和深度1.5.3 从艺术到技术 1.5.4 自动驾驶到自动管理? 1.6 电信企业的大数据“商机” 1.6.1 从网络运营到数据运营 1.6.2 提炼“内功” 1.6.3 提升外部管理能力 1.6.4 扩展增值产品运营市场 2 大数据的行业解决方案应用案例 2.1 基础应用范围 2.2 石油行业应用案例 2.3 交通行业应用案例 2.4 旅游行业应用案例 2.5 金融行业应用案例 2.6 电信行业应用案例 2.7 互联网行业应用案例等

3 大数据技术基础 3.1 从数据仓库开始 3.1.1 数据仓库的“集中” 3.1.2 数据仓库的模型标准化3.1.3 大数据的演进 3.2 HADOOP 生态圈 3.2.1 开源社区概述 3.2.2 开源改变了什么?3.2.3 HADOOP 生态圈内容3.2.4 HADOOP 的技术原则3.2.5 HADOOP 的运维3.3 HADOOP 基础 3.3.1 HDFS 的原理 3.3.2 MAP/REDUCE 原理3.3.3 YARN 原理 3.4 HIVE/HBASE 技术 3.4.1 HIVE 的原理 3.4.2 HBASE 的原理 3.4.3 两者的关系 3.5 SPARK 技术 3.5.1 基本原理

(完整版)大数据技术原理与应用林子雨版课后习题答案

第一章 1.试述信息技术发展史上的3次信息化浪潮及具体内容。 2.试述数据产生方式经历的几个阶段 答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。 3.试述大数据的4个基本特征 答:数据量大、数据类型繁多、处理速度快和价值密度低。 4.试述大数据时代的“数据爆炸”的特性 答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。 5.数据研究经历了哪4个阶段?

答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。 6.试述大数据对思维方式的重要影响 答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。 7.大数据决策与传统的基于数据仓库的决策有什么区别 答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。 大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。 8.举例说明大数据的基本应用 答: 9.举例说明大数据的关键技术

答:批处理计算,流计算,图计算,查询分析计算 10.大数据产业包含哪些关键技术。 答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。 11.定义并解释以下术语:云计算、物联网 答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。 物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。 12.详细阐述大数据、云计算和物联网三者之间的区别与联系。

结构的几何构造分析概念

结构的几何构造分析概念 1-1 1、几何组成分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。 几何可变体系:不考虑材料应变条件下,体系的位置和形状可以改变的体系。几何不变体系:不考虑材料应变条件下,体系的位置和形状保持不变的体系。 2、自由度:描述几何体系运动时,所需独立坐标的数目。 平面内一个动点A,其位置要由两个坐标 x 和 y 来确定,所以一个点的自由度等于2。平面内一个刚片,其位置要由两个坐标 x 、y 和AB 线的倾角α来确定,所以一个刚片在平面内的自由度等于3。 3、刚片:平面体系作几何组成分析时,不考虑材料应变,所以认为构件没有变形。可以把一根杆、巳知是几何不变的某个部分、地基等看作一个平面刚体,简称刚片。 4、约束:如果体系有了自由度,必须消除,消除的办法是增加约束。约束有三种: 5、多余约束:减少体系独立运动参数的装置称为约束,被约束的物体称为对象。使体系减少一个独立运动参数的装置称为一个约束。例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n 个刚片的复刚性节点相当于n—1个单刚性节点。如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。

6、瞬变体系及常变体系:常变体系概念:体系可发生大量的变形,位移。区别于瞬变体系:瞬变体系概念:体系可发生微小的变形,位移。 7、瞬铰:两刚片间以两链杆相连,其两链杆约束相当(等效)于两链杆交点处一简单铰的约束,这个铰称为瞬铰或虚铰。 2-2平面杆件体系的计算自由度 1、体系是由部件(刚片或结点)加上约束组成的。 2、刚片内部:是否有多余约束。内部有多余约束时应把它变成内部无多余约束的刚片,而它的附加约束则在计算体系的约束总数时应当考虑进去。 3、复铰:连接两个以上刚片的铰结点。连接n个刚片的铰相当于(n-1)个单铰。 4、单链杆:连接两个铰结点的链杆。 5、连接两个以上铰结点的链杆。 连接 n 个铰结点的复链杆相当于(2n-3)个单链杆。 6、平面体系的计算自由度 W :W=3m-(2n+r) m:钢片数 n:单绞数 r:支座链杆数上面的公式是通用的。 W=2J-(b+r) J:结点个数 b:链杆数 r:支座链杆数上面的公式用于完全由铰接的连杆组成的结构体系。 7、自由度与几何体系构造特点: 静定结构的受力分析

大数据的概念、特征及其应用

马建光等:大数据的概念、特征及其应用 (2013-09-05 16:15:35) 转载▼ 分类:学习资料 标签: 杂谈 大数据的概念、特征及其应用 马建光,姜巍 (国防科技大学人文与社会科学学院,湖南长沙410074) 源自:国防科技2013年4月 [摘要]随着互联网的飞速发展,特别是近年来随着社交网络、物联网、云计算以及多种传感器的广泛应用,以数量庞大,种类众多,时效性强为特征的非结构化数据不断涌现,数据的重要性愈发凸显,传统的数据存储、分析技术难以实时处理大量的非结构化信息,大数据的概念应运而生。如何获取、聚集、分析大数据成为广泛关注的热点问题。介绍大数据的概念与特点,分别讨论大数据的典型的特征,分析大数据要解决的相关性分析、实时处理等核心问题,最后讨论大数据可能要面临的多种挑战。 [关键词]大数据; 非结构化信息; 解决核心问题; 未来挑战 一、引言 自上古时代的结绳记事起,人类就开始用数据来表征自然和社会,伴随着科技和社会的发展进步,数据的数量不断增多,质量不断提高。工业革命以来,人类更加注重数据的作用,不同的行业先后确定了数据标准,并积累了大量的结构化数据,计算机和网络的兴起,大量数据分析、查询、处理技术的出现使得高效的处理大量的传统结构化数据成为可能。而近年来,随着互联网的快速发展,音频、文字、图片视频等半结构化、非结构化数据大量涌现,社交网络、物联网、云计算广泛应用,使得个人可以更加准确快捷的发布、获取数据。在科学研究、互联网应用、电子商务等诸多应用领域,数据规模、数据种类正在以极快的速度增长,大数据时代已悄然降临。 首先,全球数据量出现爆炸式增长,数据成了当今社会增长最快的资源之一。根据国际数据公司IDC 的监测统计[1],即使在遭遇金融危机的2009 年,全球信息量也比2008 年增长了62%,达到80 万PB ( 1PB 等于10亿GB) ,到2011 年全球数据总量已经达到1. 8ZB ( 1ZB 等于1 万亿GB,) ,并且以每两年翻一番的速度飞速增长,预计到2020 年全球数据量总量将达到40 ZB,10年间增长20 倍以上,到2020 年,地球上人均数据预计将达5247GB。在数据规模急剧增长的同时,数据类型也越来越复杂,包括结构化数据、半结构化数据、非结构化数据等多种类型,其中采用传统数据处理手段难以处理的非结构化数据已接近数据总量的75%。 如此增长迅速、庞大繁杂的数据资源,给传统的数据分析、处理技术带来了巨大的挑战。为了应对这样的新任务,与大数据相关的大数据技术、大数据工程、大数据科学和大数据应用等迅速成为信息科学领域的热点问题,得到了一些国家政府部门、经济领域以及科学领域有关专家的广泛关注。2012 年3 月22 日,奥巴马宣布美国政府五大部门投资2 亿美元启动“大数据研究和发展计划( Big Data Research and Development Initiative) ”[2],欲大力推

大数据技术原理与应用 林子雨版 课后习题答案(精编文档).doc

【最新整理,下载后即可编辑】 第一章 1.试述信息技术发展史上的3次信息化浪潮及具体内容。 2.试述数据产生方式经历的几个阶段 答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。

3.试述大数据的4个基本特征 答:数据量大、数据类型繁多、处理速度快和价值密度低。 4.试述大数据时代的“数据爆炸”的特性 答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。 5.数据研究经历了哪4个阶段? 答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。 6.试述大数据对思维方式的重要影响 答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。 7.大数据决策与传统的基于数据仓库的决策有什么区别 答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。 大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。

8.举例说明大数据的基本应用 答: 9.举例说明大数据的关键技术 答:批处理计算,流计算,图计算,查询分析计算 10.大数据产业包含哪些关键技术。 答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。

11.定义并解释以下术语:云计算、物联网 答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。 物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。 12.详细阐述大数据、云计算和物联网三者之间的区别与联系。

亚低温治疗护理技术

亚低温治疗护理技术 一、技术简介 国际医学界将机体低温分为轻度低温(mild hypothermia ,33~35℃),中度低温(moderate hypothermia ,28~32℃),深度低温(profound hypothermia ,17~27℃)和超深度低温(ultra-profound hypothermia ,16℃以下)。1993年江基尧等首先将轻、中度低温(28~35℃)称之为亚低温, 随后这一概念被国内所广泛引用。 二、目的 亚低温能显著降低重型颅脑伤患者的死亡率,改善颅脑伤患者神经功能预后,并且不产生任何严重并发症,治疗重型颅脑伤患者具有疗效肯定和安全方便等优点。 三、适应症 1、重型( GCS 6~8 分)和特重型颅脑伤患者( GCS 3~5 分)、广泛性脑挫裂伤脑水肿。 2、原发性和继发性脑干伤。 3、难以控制的颅内高压。 4、中枢性高热。 5、各种原因所致的心跳骤停,如电击伤、溺水、一氧化氮中毒所致的脑缺血及低氧患者。 6、新生儿缺氧缺血性脑病。 7、心肺复苏后脑病。 四、禁忌症、

1.患者有严重的复合伤或已处于全身衰竭期; 2.合并低血压,休克尚未纠正或有出血倾向者; 3.疑有颅内血肿,正在观察阶段的患者; 4.老年且伴有严重心功能不全或心血管疾病的患者、妊娠妇女。 五、评估 评估患者意识状态、生命体征、水、电解质及凝血功能,用物、环境准备是否齐全适宜。 六、技术操作难点及对策 (一) 降温及复温的速度控制; 1.原因分析 (1)降温及复温速度过快。 (2)降温及复温过程中,冬眠合剂撤离较快。 (3)使用冰块降温,温度不易控制。 (4)输液或鼻饲温度较高,影响整体降温效果。 (5)使用的体温计不正确,不能准确反映患者体温。 2.解决方法 (1)严格控制降温及复温速度 (2)冬眠合剂应用要适量,根据患者情况及时调整冬眠药物泵注入速度和剂量,严防寒颤; (3)保持亚低温治疗仪正常工作,室内温度维持在18~20℃,必要时加用物理降温措施; (4)需鼻饲时,饮食温度以30~32℃为宜或不能超过当时体温;

大数据技术原理及应用

大数据技术原理及应用 (总10页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

大数据技术原理及应用 大数据处理架构—Hadoop简介 Hadoop项目包括了很多子项目,结构如下图 Common 原名:Core,包含HDFS, MapReduce和其他公共项目,从Hadoop 版本后,HDFS和MapReduce分离出去,其余部分内容构成Hadoop Common。Common为其他子项目提供支持的常用工具,主要包括文件系统、RPC(Remote procedure call) 和串行化库。 Avro Avro是用于数据序列化的系统。它提供了丰富的数据结构类型、快速可压缩的二进制数据格式、存储持久性数据的文件集、远程调用RPC的功能和简单的动态语言集成功能。其中,代码生成器既不需要读写文件数据,也不需要使用或实现RPC协议,它只是一个可选的对静态类型语言的实现。Avro系统依赖于模式(Schema),Avro数据的读和写是在模式之下完成的。这样就可以减少写入数据的开销,提高序列化的速度并缩减其大小。 Avro 可以将数据结构或对象转化成便于存储和传输的格式,节约数据存储空间和网络传输带宽,Hadoop 的其他子项目(如HBase和Hive)的客户端和服务端之间的数据传输。 HDFS HDFS:是一个分布式文件系统,为Hadoop项目两大核心之一,是Google file system(GFS)的开源实现。由于HDFS具有高容错性(fault-tolerant)的特点,所以可以设计部署在低廉(low-cost)的硬件上。它可以通过提供高吞吐率(high throughput)来访问应用程序的数据,适合那些有着超大数据集的应

大数据概念、技术及应用

大数据概念、技术及应用 ——段方老师 1 概述 1.1 大数据的概念和特点 1.1.1 大数据的基础 1.1.2 大数据如何“与时俱进”? 1.1.3 大数据发展趋势 人工智能 物联网结合 各个行业的深入 1.2 大数据的技术基础 1.2.1 从数据仓库开始 1.2.2 HADOOP 生态圈 1.2.3 与云计算的关系 1.2.4 数据运维能力提升 1.3 大数据的应用举例 1.3.1 大数据提升客户分析能力 1.3.2 大数据提升产品分析能力 1.3.3 大数据提升管理水平

1.3.4 大数据提升各行业“智慧” 1.4 大数据下的人工智能(AI) 1.4.1 什么是人工智能 1.4.2 人工智能改变哪些行业? 1.4.3 大数据下的人工智能有何不同? 1.4.4 人工智能的“颠覆” 1.5 大数据如何精细化管理 1.5.1 量化管理的引出 1.5.2 大数据如何提升“量化”的维度和深度1.5.3 从艺术到技术 1.5.4 自动驾驶到自动管理? 1.6 电信企业的大数据“商机” 1.6.1 从网络运营到数据运营 1.6.2 提炼“内功” 1.6.3 提升外部管理能力 1.6.4 扩展增值产品运营市场 2 大数据的行业解决方案应用案例 2.1 基础应用范围 2.2 石油行业应用案例 2.3 交通行业应用案例 2.4 旅游行业应用案例

2.5 金融行业应用案例 2.6 电信行业应用案例 2.7 互联网行业应用案例等 3 机器学习基础 3.1 多维分析方法 3.1.1 OLAP 分析 3.1.2 上钻和下钻 3.1.3 用OLAP 分析问题 3.2 分析算法 3.2.1 回归算法 线性回归 逻辑回归 3.2.2 决策树算法 C4.5 算法 CART 算法 3.2.3 贝叶斯算法 朴素贝叶斯算法 BBN(Bayesian Belief Network)算法 3.2.4 基于核的算法 支持向量机SVM 算法 线性判别分析(Linear Discriminate Analysis ,LDA)

亚低温治疗仪操作技术

亚低温治疗仪操作技术 操作流程: 1.使用前准备①先见查各接口是否脱落,导线是否松脱②将体温传感器按相应的颜色插好(位置不可调换)③将毯、帽接口按标记方向插好(出、入水接口处有方向标志)④在冰毯上铺一层薄毡。 2.接好电源,打开电源开关,液晶显示工控图案及状态线和水位显示线,请检查水箱内的水位是否正常,液晶显示屏上水位显示线3—4条线为正常,显示1条线则需加水(95%乙醇500ml+4500ml的纯净水)。该仪器可同时供两人使用,分别左、右两个水循环,d单人使用时请正确选择水循环。 3.根据病人情况调节“水温设置”和“体温设置”,中间为水温设置,左右两侧为体温设置,请根据毯、帽接口正确选择“左侧”或“右侧”体温设置。 4.将体温传感线放在患者腋窝或插入肛门,请妥善固定传感线。传感线持续感应病人温度变化是保证该治疗仪正常工作的关键。 5.请按下水温控制键“on/off和体温控制键“on/off”,仪器进入工作状态。使用降温功能时,水温控制启动时液晶屏上显示“开”字,制冷系统是否启动,取决于制冷液体的温度和所设定的温度,当所测液体温度<所测定温度的下线,则压缩机停止运行中间直线段静止;当 所测温度>所测温度上线,则压缩机停止运行中间直线段动态变化。体温控制启动时液晶屏上显示“开”字,水泵是否启动,取决于所测体温和所设定温度,当所测体温度<所测温度的下线,则水循环停止运行对应侧的旋转符号静止;当所测温度>所设温度的上线,则水循环停止运行对应侧的旋转符号旋转。使用复温功能时,所有相反。 6.在使用过程中,密切观察病人的反应,若想停止治疗,可再次按下水温控制键“on/off” 和体温控制键“on/off”,仪器停止工作。 注意事项 1.保证本仪器的网电源及接地环境安全稳定。 2.本机底板背面有接地标记,请确保接地。 3.本仪器只限使用自配的传感器;不得向水箱中加任何固体物质。 4.不得在高温、高湿、易燃、失衡、强腐蚀性、烟尘过量、电磁辐射的场所使用本仪器。 5.不得拉拽本仪器的电源、导连线、冰毯街头及软管。 6.本仪器物客户可自行维修的组件,发生故障时请勿自行拆卸。 7.毯、帽使用后必须平放,不能折叠,以免损坏。 8.毯、帽为耗材,其使用期限为三个月。

大数据概念

大数据概念 研究机构Gartner—大数据概念 "大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能 力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无 法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。亚马逊网络服务(AWS)、大数据科学 家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数 据的极限"。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪

些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开 源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。 大数据分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。 大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。 大数据技术

基于结构设计中的概念设计分析

基于结构设计中的概念设计分析 基于结构设计中的概念设计分析 摘要:随着时代的发展与人民生活水平的提高,建筑工程项目的规模、投资力度、技术复杂程度都在不断提高,特别是建筑结构设计的影响因素和要求也在不断增多。本文通过阐述建筑概念设计的内涵,探讨将概念设计应用于建筑结构设计中应该把握的若干要点,希 望能够给予建筑结构设计者一些工作上的借鉴及帮助 关键词:现代建筑结构设计;概念设计;工程实例 Abstract: With the development of the times and the improvement of people's living standard, the construction project scale, investment, technical complexity continues to increase, especially the influence of structural design of the factors and requirements are also increasing. This paper describes the connotation of architectural concept design, to explore the key points of application of conceptual design in structural design should grasp, hoping to give designers building structure of some work experience and help Key words: modern architecture design; conceptual design; engineering example 中图分类号:TU3文献标识码A 文章编号: 引言:概念设计是结构设计的核心和灵魂,它贯穿于结构设计的全过程。概念设计运用得合理,能使结构满足建筑要求并以最快的方式将荷载传递到基础、地基中,创造更为安全、舒适的工作和生活环境。并节约材料和资金,概念设计是一名设计工作者进行创新设计的基础。 1、概念设计简述 概念设计就是运用清晰的结构概念,依据整个结构体系与分体系

大数据的概念及相关技术

一.大数据的概念 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。 “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。 二.大数据的相关技术 1.大数据采集技术 数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。 大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。 2.大数据预处理技术 主要完成对已接收数据的辨析、抽取、清洗等操作。 1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。 2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项, 因此要对数据通过过滤“去噪”从而提取出有效数据。 3.大数据存储及管理技术 大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化,半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。 开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据

相关文档
最新文档