高中数学不等式经典题型集锦(含答案)

高中数学不等式经典题型集锦(含答案)
高中数学不等式经典题型集锦(含答案)

高中数学不等式经典题型集锦

姓名班级学号得分

注意事项:

1、本试题满分100分,考试时间90分钟

2、答题前填好自己的姓名、班级、考号等信息

3.请将答案正确填写在答题卡上

一.单选题(每题3分,共48分)

1.若t∈(0,1],则t+有最小值()

A.2B.3 C.-2D.不存在

2.不等式(1+x)(2-x)(3+x2)>0的解集是()

A.φB.R

C.{x|-1<x<2} D.{x|x>2或x<-1}

3.如果实数x,y满足:,则目标函数z=4x+y的最大值为()A.2 B.3 C.D.4

4.设变量x,y满足约束条件,则z=6x-y的最小值为()A.-8 B.0 C.-2 D.-7

5.在△ABC中,E为AC上一点,且,P为BE上一点,且

(m>0,n>0),则取最小值时,向量=(m,n)的模为()

A.B.C.D.2

6.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3 C.2 D.

7.不等式x2-ax-12a2<0(a<0)的解集是()

A.(-3a,4a)B.(4a,-3a)C.(-3,4)D.(2a,6a)

8.若第一象限的点(a,b)关于直线x+y-2=0的对称点在直线2x+y+3=0上,则的最小值是()

A.1 B.3 C.D.

9.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则的最小值是()

A.5 B.6 C.8 D.9

10.若a,b,c>0且,则2a+b+c的最小值为()A.B.C.D.

11.已知x,y满足,且z=2x-y的最大值是最小值的4倍,则a的值是

()

A.B.C.2 D.-2

12.不等式的解集是()

A.[1,+∞)B.(2,+∞)∪(-∞,-1]

C.[2,+∞)∪(-∞,-1] D.[3,+∞)∪(-∞,2)

13.若不等式x2-ax+b<0的解集为(1,2),则不等式<的解集为()A.(,+∞)B.(-∞,0)∪(,+∞)

C.(,+∞)D.(-∞,0)∪(,+∞)

14.若关于x的不等式-+ax>-1的解集为{x|-1<x<2},则实数a=()A.B.C.-2 D.2

15.若a>0,b>0,则不等式-b<<a等价于()

A.<x<0或0<x<B.-<x<

C.x<-或x>D.x<或x>

16.二次函数f(x)=ax2+bx+c中,a>0且a≠1,对于任意的x∈R都有f(x-3)=f(1-x),设m=f(),n=f[],则()

A.m<n B.m=n

C.m>n D.m,n的大小关系不确定

二.填空题(每题3分,共27分)

17.设,x,y∈R,a>1,b>1,若a x=b y=4,a+b=2,则的最大值为______.

18.已知3a+2b=1,a,b∈R*,则的最小值______.

19.已知实数x,y满足x>y>0且x+y=1,则的最小值是______.

20.若x>0,y>0,且+=2,则6x+5y的最小值为______.

21.已知x,y为正数,且x++3y+=10,则x+3y的最大值为______.

22.若实数a,b满足2a+2b=1,则a+b的最大值是______.

23.已知0<b<a<c≤4,ab=2,则的最小值是______.

24.设x,y∈R,且x2+xy+y2=9,则x2+y2的最小值为______.

25.若x>0,y>0,且y=,则x+y的最小值为______.

三.简答题(每题5分,共25分)

26.已知a,b,c为正数,证明:≥abc.

27.已知不等式|x+2|+|x-2丨<10的解集为A.

(1)求集合A;

,不等式a+b>(x-4)(-9)+m恒成立,求实数m的(2)若?a,b∈A,x∈R

+

取值范围.

28.设,则的最小值为______.

,x+y+z=3.

29.已知x,y,z∈R

+

(1)求++的最小值

(2)证明:3≤x2+y2+z2<9.

30.已知关于x的不等式在x∈(a,+∞)上恒成立,求实数a的最小值.

参考答案

一.单选题(共__小题)

1.若t∈(0,1],则t+ 有最小值()

A.2B.3 C.-2D.不存在

答案:B

解析:

解:构造函数f(t)=t+,

根据双勾函数的图象和性质,

f(t)在(0,)上单调递减,在(,+∞)上单调递增,

所以,当t∈(0,1]时,f(t)单调递减,

=f(1)=3,

即f(t)

min

故答案为:B.

2.不等式(1+x)(2-x)(3+x2)>0的解集是()

A.φB.R

C.{x|-1<x<2} D.{x|x>2或x<-1}

答案:C

解析:

解:∵3+x2>0,

∴原不等式即为(1+x)(2-x)>0,再化为(1+x)(x-2)<0,

解得-1<x<2.

故选C

3.如果实数x,y满足:,则目标函数z=4x+y的最大值为()

A.2 B.3 C.D.4

答案:C

解析:

解:约束条件的可行域如下图示:

由图易得目标函数z=4x+y在A(,)处取得最大,最大值,

故选C.

4.设变量x,y满足约束条件,则z=6x-y的最小值为()A.-8 B.0 C.-2 D.-7

答案:D

解析:

解:由约束条件作出可行域如图,

联立,得B(-1,1),

化目标函数z=6x-y为y=-6x+z,

由图可知,当直线y=-6x+z过B时,直线在y轴上的截距最大,z最小为6×(-1)-1=-7.

故选:D.

5.在△ABC中,E为AC上一点,且,P为BE上一点,且

(m>0,n>0),则取最小值时,向量=(m,n)的模为()A.B.C.D.2

答案:C

解析:

解:∵,∴=m+4n,

又∵P为BE上一点,不妨设=λ,(0<λ<1),

∴=+=+λ=+λ()

=(1-λ)+λ,

∴m+4n=(1-λ)+λ,

∵,不共线,∴,∴m+4n=1,

∴=()(m+4n)=5++

≥5+2=9

当且仅当=即m=且n=时,上式取到最小值,

∴向量=(m,n)的模||==

故选:C

6.若a,b,c>0且a2+2ab+2ac+4bc=12,则a+b+c的最小值是()A.B.3 C.2 D.

答案:A

解析:

解:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=(a2+2ab+2ac+4bc)+b2+c2-2bc=12+(b-c)2≥12,

当且仅当b=c时取等号,

∴a+b+c≥

故选项为A

7.不等式x2-ax-12a2<0(a<0)的解集是()

A.(-3a,4a)B.(4a,-3a)C.(-3,4)D.(2a,6a)

答案:B

解析:

解:x2-ax-12a2<0,

因式分解得:(x-4a)(x+3a)<0,

可化为:或,

∵a<0,∴4a<0,-3a>0,

解得:4a<x<-3a,

则原不等式的解集是(4a,-3a).

故选B

8.若第一象限的点(a,b)关于直线x+y-2=0的对称点在直线2x+y+3=0上,则的最小值是()

A.1 B.3 C.D.

答案:C

解析:

解:设A(a,b)关于直线x+y-2=0的对称点B(x

0,y

)在直线2x+y+3=0上,

∴线段AB的中点(,)在直线x+y-2=0上,

由题意得:,∴a+2b=9,

∴+=+=++≥+2=,

当且仅当:=即b=2a时“=”成立,

故选:C.

9.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则的最小值是()

A.5 B.6 C.8 D.9

答案:D

解析:

解:由x2+y2+2x-4y+1=0得:(x+1)2+(y-2)2=4,

∴该圆的圆心为O(-1,2),半径r=2;

又直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,

∴直线2ax-by+2=0(a>0,b>0)经过圆心O(-1,2),

∴-2a-2b+2=0,即a+b=1,又a>0,b>0,

∴=()?(a+b)=1+++4≥5+2=9(当且仅当a=,b=时取“=”).故选D.

10.若a,b,c>0且,则2a+b+c的最小值为()A.B.C.D.

答案:D

解析:

解:若a,b,c>0且,

所以,

∴,

则(2a+b+c)≥,

故选项为D.

11.已知x,y满足,且z=2x-y的最大值是最小值的4倍,则a的值是

()

A.B.C.2 D.-2

答案:B

解析:

解:由题意可得,∴a<1,不等式组表示的平面

区域如图所示,三角形的三个顶点坐标分别为(a,a),(a,2-a),(1,1).

由z=2x-y可得y=2x-z,则z表示直线y=2x-z在y轴上的截距的相反数,截距越大,z越小

作直线L:y=-2x,把直线向可行域平移,当直线经过(1,1)时,z最大为1,当直线经过点(a,2-a)时,z最小为3a-2,

∵z=2x-y的最大值是最小值的4倍,

∴4(3a-2)=1,

即12a=9,

∴a=.

故选B.

12.不等式的解集是()

A.[1,+∞)B.(2,+∞)∪(-∞,-1]

C.[2,+∞)∪(-∞,-1] D.[3,+∞)∪(-∞,2)

答案:B

解析:

解:不等式化为

即,

即,

转化为:

所以不等式的解集为:(-∞,-1]∪(2,+∞).

故选B.

13.若不等式x2-ax+b<0的解集为(1,2),则不等式<的解集为()A.(,+∞)B.(-∞,0)∪(,+∞)

C.(,+∞)D.(-∞,0)∪(,+∞)

答案:B

解析:

解:因为不等式x2-ax+b<0的解集为(1,2),

所以1+2=a,1×2=b,即a=3,b=2,

所以不等式<为,

整理得,

解得x<0或者x>,

所以不等式的解集为:(-∞,0)∪(,+∞).

故选B.

14.若关于x的不等式-+ax>-1的解集为{x|-1<x<2},则实数a=()A.B.C.-2 D.2

答案:A

解析:

解:由的解集是{x|-1<x<2},可知-1与2是方程

的两根,

∴,解得 a=.

故选A.

15.若a>0,b>0,则不等式-b<<a等价于()

A.<x<0或0<x<B.-<x<

C.x<-或x>D.x<或x>

答案:D

解析:

解:

故选D.

16.二次函数f(x)=ax2+bx+c中,a>0且a≠1,对于任意的x∈R都有f(x-3)=f(1-x),设m=f(),n=f[],则()

A.m<n B.m=n

C.m>n D.m,n的大小关系不确定

答案:A

解析:

解:∵二次函数f(x)=ax2+bx+c中,a>0且a≠1,对于任意的x∈R都有f(x-3)=f(1-x),

∴二次函数f(x)关于直线x==-1对称.

∴m=f()=f(-2),

n=f[]=f()=,

∵a>0且a≠1,

∴函数f(x)在(-∞,-1]上单调递减,

∴.

∴n>m.

故选:A.

二.填空题(共__小题)

17.设,x,y∈R,a>1,b>1,若a x=b y=4,a+b=2,则的最大值为______.答案:

解析:

解:∵a>1,b>1,a+b=2,∴,即ab≤2,当且仅当时取等号.

∵a x=b y=4,∴xlga=lg4,ylgb=lg4,∴===.

故答案为.

18.已知3a+2b=1,a,b∈R*,则的最小值______.

答案:

解析:

解;∵3a+2b=1,a,b∈R*,

∴3a

∵====

∴的最小值为

故答案:.

19.已知实数x,y满足x>y>0且x+y=1,则的最小值是______.答案:

解析:

解:∵x>y>0且x+y=1,∴.

则=+=+=f(x),

f′(x)=-=,

令f′(x)>0,解得<x<1,此时函数f(x)单调递增;令f′(x)<0,解得,此时函数f(x)单调递减.

∴当x=时,函数f(x)取得最小值,=.

故答案为:.

20.若x>0,y>0,且+=2,则6x+5y的最小值为______.

答案:

解析:

解:6x+5y=

==,当且仅当,a=时取等号.

故答案为:.

21.已知x,y为正数,且x++3y+=10,则x+3y的最大值为______.

答案:8

解析:

解:∵x++3y+=10,

∴(x+3y)(x++3y+)=10(x+3y),

∴(x+3y)2-10(x+3y)+10++=0,

∵+≥6(=,即x=y时取等号)

∴(x+3y)2-10(x+3y)+16≤0,

∴2≤x+3y≤8,

∴x+3y的最大值为8,此时x=y=2.

故答案为:8.

22.若实数a,b满足2a+2b=1,则a+b的最大值是______.

答案:-2

解析:

解:∵2a+2b=1,

∴=,即,

∴a+b≤-2,当且仅当,即a=b=-1时取等号,

∴a=b=-1时,a+b取最大值-2.

故答案为:-2.

23.已知0<b<a<c≤4,ab=2,则的最小值是______.答案:

解析:

解:∵已知0<b<a<c≤4,ab=2,∴0<b<1,2<a,a->0.

则=+

=+=(a-)+()+

≥2+=4+=,

当且仅当(a-)=()且c=时,等号成立,

故答案为:.

24.设x,y∈R,且x2+xy+y2=9,则x2+y2的最小值为______.

答案:6

解析:

解:∵,

解得x2+y2≥6,当且仅当x=y=时取等号.

故答案为6.

25.若x>0,y>0,且y=,则x+y的最小值为______.

答案:18

解析:

解:∵x>0,y>0,且y=>0,解得x>2.

∴x+y===x-2++2≥+2=18,当且仅当x=6时取等号,此时x+y的最小值为18.

故答案为:18.

三.简答题(共__小题)

26.已知a,b,c为正数,证明:≥abc.

答案:

证明:∵a,b,c为正数,∴a2(b2+c2)≥2a2bc①,b2(a2+c2)≥2b2ac②,c2(b2+a2)≥2c2ba③

①+②+③可得:2(a2b2+b2c2+c2a2)≥2abc(a+b+c)

∴≥abc.

27.已知不等式|x+2|+|x-2丨<10的解集为A.

(1)求集合A;

,不等式a+b>(x-4)(-9)+m恒成立,求实数m的(2)若?a,b∈A,x∈R

+

取值范围.

答案:

解:(1)不等式|x+2|+|x-2丨<10等价于,

或或,

解得-5<x<5,故可得集合A=(-5,5);

(2)∵a,b∈A=(-5,5),x∈R

+

∴-10<a+b<10,

∴(x-4)(-9)=1--9x+36

=37-(+9x)≤37-2=25,

∵不等式a+b>(x-4)(-9)+m恒成立,

∴m+25≤-10,解得m≤-35

28.设,则的最小值为______.

答案:

解:∵,∴1-2x>0

∴==13+≥13+=25 当且仅当,即x=时,的最小值为25

故答案为:25

,x+y+z=3.

29.已知x,y,z∈R

+

(1)求++的最小值

(2)证明:3≤x2+y2+z2<9.

答案:

,x+y+z=3.

(1)解:∵x,y,z∈R

+

∴++=

==3,

当且仅当x=y=z=1时取等号,

∴++的最小值是3.

(2)证明:∵(x-y)2+(x-z)2+(y-z)2≥0,

∴2(x2+y2+z2)≥2xy+2xz+2yz,

∴3(x2+y2+z2)≥(x+y+z)2=32,

∴x2+y2+z2≥3;

又x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+xz)<0.

综上可得:3≤x2+y2+z2<9.

解析:

30.已知关于x的不等式在x∈(a,+∞)上恒成立,求实数a的最小值.

答案:

解:不等式在x∈(a,+∞)上恒成立,

设y=,

∴x-1≥2,x≥3,

故实数a的最小值3.

高中数学不等式练习题

1、设恒成立的c的取值范围是 A.B.C.D. 2、设,且(其中),则M的取值范围是A.B.C.D. 3、若实数、满足,则的取值范围是 A.B.C.D. 4、已知,,,则的最小值是() (A)(B)4(C)(D) 5、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 (A)(B)(C)(D) 6、已知,若在上恒成立,则实数的取值范围是()

A.B.C.D. 7、已知正实数满足,则的最小值为。 8、如图,目标函数可行域为四边形(含边界),若是该目标函数的最优解,则的取值范围是() (A)(B)(C)(D) 的最大值与最小值之和为 9、函数,当时,恒成立,则 D. 10、已知正数满足,则的最小值为 A.3B.C.4D. 11、二次函数轴两个交点的横坐标分别为。(1)证明:;(2)证明:; (3)若满足不等式的取值范围。 12、设满足约束条件,若目标函数的最大值为10,则的最小值为.

13、已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a

高中数学经典题型50道(另附详细答案)讲解学习

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵ |sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟

悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与 地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆 的方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +

(完整版)高二数学不等式练习题及答案(经典)

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B )a 1 +a ≥2 (a ≠0) (C ) a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

高中数学经典高考难题集锦(解析版)

2015年10月18日杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程. 2.(2010?模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.

(完整)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高一数学《数列》经典练习题-附答案

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则 |m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a 的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

(完整)高中数学不等式练习题

高中数学不等式练习题 一.选择题(共16小题) 1.若a>b>0,且ab=1,则下列不等式成立的是() A.a+<<log2(a+b))B.<log2(a+b)<a+ C.a+<log2(a+b)<D.log2(a+b))<a+< 2.设x、y、z为正数,且2x=3y=5z,则() A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 3.若x,y满足,则x+2y的最大值为() A.1 B.3 C.5 D.9 4.设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9 5.已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6 6.设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 7.设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3] 8.已知变量x,y满足约束条件,则z=x﹣y的最小值为()A.﹣3 B.0 C.D.3

9.若变量x,y满足约束条件,则目标函数z=﹣2x+y的最大值为()A.1 B.﹣1 C.﹣ D.﹣3 10.若a,b∈R,且ab>0,则+的最小值是() A.1 B.C.2 D.2 11.已知0<c<1,a>b>1,下列不等式成立的是() A.c a>c b B.a c<b c C.D.log a c>log b c 12.已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是() A.2 B.2 C.4 D.2 13.设a>0,b>2,且a+b=3,则的最小值是() A.6 B.C.D. 14.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是() A.35 B.105 C.140 D.210 15.设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为() A.2 B.4 C.8 D.16 16.已知两正数x,y 满足x+y=1,则z=的最小值为()A.B.C.D. 二.解答题(共10小题) 17.已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同. (Ⅰ)求m﹣n; (Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值. 18.已知不等式x2﹣2x﹣3<0的解集为A,不等式x2+x﹣6<0的解集为B.(1)求A∩B;

10道经典高中数学题

1.设Sn是等差数列{An}的前n项和,又S6=36,Sn=324,S(n-6)=144,则n=? ①Sn是等差数列 S6=a1*6+6(6-1)/2*d=36,则2a1+5d=12......& 最后六项的和S=an*6-6(6-1)/2*d=6an-15d S(n-6)=Sn-S=324-(6an-15d)=144,则2an-5d=60......@ &+@:a1+an=36 Sn=(a1+an)/2*n n=18 ②解:Sn-S(n-6)=a(n-5)+a(n-4)+......an=324-144=180 而 S6=a1+a2+...a6=36 有 Sn-S(n-6)+S6= a1+a2+...a6+ a(n-5)+a(n-4)+....an =6(a1+an)=180+36=216 那么 (a1+an)=36 Sn=n(a1+an)/2=324 即 36n/2 =324 所以 n=18 2.已知f(x)=(x-1)^2,g(x)=4(x-1),f(an)和g(an)满足,a1=2,且(an+1-an)g(an)+f(an)=0

(1)是否存在常数C,使得数列{an+C}为等比数列?若存在,证明你的结论;若不存在,请说明理由。 (2)设bn=3f(an)-[g(an+1)]^2,求数列{bn}的前n项和Sn (1)存在 C=-1 证明如下 (an+1-an)g(an)+f(an)=0 将f(x)、g(x)带入并化简 得4an+1 - 3an -1 =0 变形为4(an+1 -1)=3(an -1) 所以an-1是以3/4为等比 1为首项的等比数列 (2)an-1=(3/4)^n bn=3f(an)-[g(an+1)]^2 将f(an) g(an+1)带入不要急着化简先将an+1 - 1换成 3/4 (an-1) 化简后bn=-6(an -1)^2=-6*(9/16)^n bn是首项为-27/8等比是9/16的等比数列 Sn=a1(1-q^n)/(1-q)=54/7(9/16)^n-54/7 已知函数f(x)=x^2+ax+b,当实数p,q满足p+q=1,试证明pf(x)+qf(y)>=f(px+qy) pf(x)+qf(y)>=f(px+qy) <=> px^2+pax+pb+qy^2+qay+qb>=(px+qy)^2+apx+aqy+b

(完整)高中数学一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

高一数学函数经典习题及答案

函 数 练 习 题 班级 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,数m 的取值围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y =⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y =⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;

最新高中数学不等式练习题

精品文档 高中数学不等式练习题 一.选择题(共16小题) 1.若a>b>0,且ab=1,则下列不等式成立的是() +ab)<log(a+a+b))B<A.a+.<<log(22<+b))<a()<D.loga+C.a+<log(a+b22xyz,则(=3=5x、y、z为正数,且2)2.设 A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 满足,则x+2y的最大值为(x,y)3.若 D.9A.1 B.3 C.5 满足约束条件yx,4的最小值是().设,则z=2x+y A.﹣15 B.﹣9 C.1 D.9 满足约束条件,yx)5.已知,则z=x+2y的最大值是( A.0 B.2 C.5 D.6 满足约束条件,则z=x+y的最大值为(.设x,y)6 A.0 B.1 C.2 D.3 满足约束条件y.设x),7z=x则﹣y的取值范围是(

A.[﹣3,0],D .[03] B.[﹣3,2]],[C.02 满足约束条件﹣,则z=xyy.已知变量x,的最小值为()8 .D.0 B.﹣A3 .C3 精品文档. 精品文档 满足约束条件,则目标函数z=﹣2x+y的最大值为(9.若变量x,y) .﹣DC.﹣3A.1 B.﹣1 +的最小值是(,且ab>0),则10.若a,b∈R 2..2 BD.CA.1 11.已知0<c<1,a>b>1,下列不等式成立的是() ccab.D.logc>B.alog<bcA.c >cC ba yx,则lg8,lg2=lg2+12.已知x >0,y>0的最小值是() 2D.2 C.BA.2 .4 ,则的最小值是( +b=3)>0,b>2,且a13.设a ...CDA.6 B 2222﹣xy的最小值是(xy=315,则x+.已知14x,y∈R,xy+y)+ A.35 B.105 C.140 D.210 +≥m1恒成立,则,不等式m的最.设正实数x,y满足x>,y>15)大值为( 16D.2 B..4 C.8

高中数学典型题型与解析

高中数学典型题型与解析 一、选择题 1.设,21,a b R a b +∈+=、则2224ab a b --有( ) A .最大值 1 4 B .最小值14 C .最大值 212 - D .最小值54- 2. 某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四 位同学分别给出下列四个结果:①2 6C ;②6 65 64 63 62C C C C +++;③726 -;④2 6A .其中 正确的结论是( ) A .仅有① B .仅有② C .②和③ D .仅有③ 3. 将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:① a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0, 6);④a →的坐标可以有无数种情况,其中真命题的个数是( ) A .1 B .2 C .3 D .4 4. 不等式组? ??>->-a x a x 2412,有解,则实数a 的取值范围是( ) A .(-1,3) B .(-3,1) C .(-∞,1) (3,+∞) D .(-∞,-3) (1,+∞) 5. 设a >0,c bx ax x f ++=2 )(,曲线y =f (x )在点P (0x ,f (0x ))处切线的倾斜角 的取值范围为[0,4π ],则P 到曲线y =f (x )对称轴距离的取值范围为( ) A .[0,]1a B .0[,]21a C .0[,|]2|a b D .0[,|]21 |a b - 6. 已知)(x f 奇函数且对任意正实数1x ,2x (1x ≠2x )恒有 0) ()(2 121>--x x x f x f 则一定正确的是( ) A .)5()3(->f f B .)5()3(-<-f f C .)3()5(f f >- D .)5()3(->-f f 7. 将半径为R 的球加热,若球的半径增加R ?,则球的体积增加≈?V ( ) A . R R ?3 π3 4 B .R R ?2π4 C .2π4R D .R R ?π4 8. 等边△ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起,使平面APQ ⊥平面BPQC ,若折叠后AB 的长为d ,则d 的最小值为( ) A . a 43 B .a 45 C .4 3a D . a 410 9. 锐角α、β满足β α βα2424sin cos cos sin +=1,则下列结论中正确的是( ) A .2π≠ +βα B .2π<+βα C .2π>+βα D .2 π=+βα

高中数学不等式单元测试题(含有详细答案--

高中数学不等式综合测试题 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1> B .2ab ab a >> C .2ab ab a >> D .2 ab a ab >> 2.“0>>b a ”是“2 2 2b a ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .R B .φ C .),(+∞a b D .(,)b a -∞ (理)不等式b ax >的解集不可能...是( ) A .φ B .R C .),(+∞a b D .),(a b --∞ 4.不等式022>++bx ax 的解集是)3 1,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤< B .{|22}x x -<< C .{|13}x x -<< D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x << B .{|11}x x -<< C .{|01x x <<或1}x <- D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确... 的是( ) A . 11a b < B .2b ab < C .2>+b a a b D .||||||b a b a +>+ (理)若011<+b a a b D .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是( ) A .y x +x y B .4 5 22++x x C .tan x +cot x D .x x -+22 9.下列各组不等式中,同解的一组是( ) A .02>x 与0>x B .01 )2)(1(<-+-x x x 与02<+x C .0)23(log 2 1>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{a a C .}8|{≥a a D .}8|{≤a a

最新高一数学不等式练习题

高一数学不等式练习题 1、不等式1 1 2x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-?(2,)+∞ 2、不等式2 01x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-, 3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( ) (A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3} 4 ) A. D. 5、不等式203x x ->+的解集是( ) (A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) 6、若不等式210x ax ++≥对一切102x ?? ∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.5 2- D.3- 7、设x 、y 为正数,则有(x+y)(1 x +4 y )的最小值为( ) A .15 B .12 C .9 D .6 8、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( ) (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 9、下面给出的四个点中,位于???>+-<-+01, 01y x y x 表示的平面区域内的点是( ) (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0) 10、已知函数()???≥ -<+-=01 1x x x x x f ,则不等式()()111≤+++x f x x 的解集是( ) (A) {}121|-≤≤-x x (B) { }1|≤x x (C) {}12|-≤x x (D) {}1212|-≤≤--x x

高一数学集合练习题及答案经典

发散思维培训班测试题 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? ,{}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集

8、设集合A=}{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D } {2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人. 三、解答题 17、已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2x ax b ++,A=}{}{ ()222x f x x ==,试求 f ()x 的解析式

相关文档
最新文档