离散数学深刻复习资料

离散数学深刻复习资料
离散数学深刻复习资料

《离散数学》习题与解答

第一篇数理逻辑

第一章命题逻辑

1-1(1)指出下列语句哪些是命题,哪些不是命题,如果是命题指出他的真值

a)离散数学是计算机科学系的一门必修棵

b)∏> 2 吗?

c)明天我去看电影

d)请勿随地吐痰

e)不存在最大质数

f)如果我掌握了英语,法语,那么学习其他欧洲的语言就容易多了

g)9+5<12

h)x<3

i)月球上有水

j)我正在说假话

[解]

a)不是命题

b)是命题,真值视具体情况而定

c)不是命题

d)是命题,真值为t

e)是命题,真值为t

f)是命题,真值为f

g)不是命题

h)是命题, 真值视具体情况而定

i)不是命题

1-2(1)用P表示命题“天下雪”,(又表示命题“我将去镇上”,R表示命题“我有时间”.以符号形式写出下列命题:

(a)如果天不下雪和我有时间,那么我将去镇上.

(b)我将去镇上,仅当我有时间.

(c)天不下雪

(d)天下雪,那么我不去镇上

[解]

a)(┐P∧R)→Q

b)Q→R

c)┐P

d)P→┐Q

1-2(2)将下面这段陈述中所出现的原子命题符号化,并指出他们的真值,然后将这段陈述中的每一命题符号化 2 是有理数是不对的.2是偶素数.2或4是素数.如果2是素数则3也是素数.2是素数当且仅当3也是素数.

[解]:陈述中出现5个原子命题,将他们符号化为:

P: 2 是有理数其真值为F

Q:2是素数其真值为T

R:2是偶数其真值为T

S:3是素数其真值为T

U:4是素数其真值为F

陈述中各命题符号化为:

┐P;Q∧R;Q∨U;Q→S;Q<=>S

1-2(3)将下列命题符号化

a)如果3+3=6,则雪是白色的.

b)如果3+3≠6,则雪是白色的

c)如果3+3=6,则雪不是白色的.

d)如果3+3≠6,则雪不是白色的

e)王强身体很好,成绩也很好.

f)四边形ABCD是平行四边形,仅当其对边平行

[解]:设P:3+3=6 Q:雪是白色的

R:王强成绩很好S:王强身体很好

U: 四边形ABCD是平行四边形V: 四边形ABCD的对边是平行的于是:

a)可表示为:P→Q

b)可表示为: ┐P→Q

c)可表示为: P→┐Q

d)可表示为:┐P→┐Q

e)可表示为:S∧R

f)可表示为:U<=>V

1-3(1)判别下列公式中哪些是合式公式,那些不是合式公式

a) (Q→R∧S)

b) (P<=>(R→S))

c) ((┐P→Q)→(Q→P)))

d) (RS→T)

e)((P→(Q→R))→((P→Q)→(P→R)))

[解]:

a)不是合式公式(若规定运算符优先级后也可以作为合式公式)

b)是合式公式

c)不是合式公式(括号不配对)

d)不是合式公式

e)是合式公式

1-3(2)对下列各式用指定的公式进行代换:

a) (((A→B)→B)→A),用(A→C)代换A,用((B∧C)→A代换B。

b)((A→B)∨(B→A),用B代换A,A代换B.

[解]:a)((((A→C)→((B∧C)→A))→((B∧C)→A))→(A→C))

b)((B→A)∨(A→B))

1-3(3)用符号形式写出下列命题

a)假如上午不下雨,我去看电影;否则就在家里读书或看报.

b)我今天进城,除非下雨.

c)仅当你走,我将留下.

[解]a)设P:上午天下雨. Q:我去看电影

R:我在家读书S:我在家看报

原命题可译为:(┐P→Q)∧(P→(R∨S))

b)设:P:我今天进城Q:天下雨

原命题可译为:┐Q→P

c)设:P:你走Q:我留下

原命题可译为:Q→P

1-3(4)称┐P→┐Q为条件命题P→Q的反换式

Q→P为条件命题P→Q的逆换式

┐Q→┐P为条件命题P→Q的逆反式

试写出如下条件命题的反换式,逆换式,逆反式。

(a)如果他有勇气,则他将得胜。

(b)如果天下雨,我不去。

[解](a)设P:他有勇气,Q:他将得胜

原条件命题可译为:P→Q

反换式:┐P→┐Q,表示:如果他没有勇气,则他将不能获胜。

逆换式:Q→P,表示:如果他将得胜,则他有勇气。

逆反式:┐Q→┐P,表示:如果他不获胜,则他没有勇气。

(b)设P:天下雨,Q:我去

原条件命题可译为:P→┐Q

反换式:┐P→Q,表示:如果如果天不下雨,则我去。

逆换式:Q→P,表示:如果我不去,则天下雨。

逆反式:┐Q→┐P,表示:如果我去,则天不下雨。

1-4(1)试求下列各命题公式的真值表并解释其结果

(a)(P→Q)∧(Q→P);

(b)(P∧Q)→P;

(c)Q→(P∨Q);

(d)(P→Q)<=>(┐P∨Q);

(e)(┐P∨Q)∧(┐(┐P∧┐Q));

(f)┐(P→Q)∧Q∧R 。

[解] (a)从真值表1-1中可看出:(P→Q)∧(Q→P)<=>(P<=>Q)

(b) 从真值表1-2中可看出:(P∧Q)→P是永真式

(c) 从真值表1-3中可看出:Q→(P∨Q)是永真式

(d) 从真值表1-4中可看出:(P→Q)<=>(┐P∨Q)是永真式

(e) 从真值表1-5中可看出:(┐P∨Q)∧(┐(┐P∧┐Q))

<=>┐P∨Q

<=>P→Q

<=>┐(P∧┐Q)

(f) 从真值表1-6中可看出:┐(P→Q)∧Q∧R是永真式

表1-1

表1-2

表1-3

表1-4

表1-5

表1-6 1-4(2)用真值表判断下列各组公式是否等价:(a)P→(Q→R)与(P∧Q)→R

(b)(P→Q)→R与(P∧Q)→R

[解]由表1-7可知P→(Q→R) <=>(P∧Q)→R 而(P→Q)→R<≠>(P∧Q)→R

表1-7

1-4(3)试以真值表证明下列命题:

(a)合取运算的结合律

(b)德摩根定律

[解] (a)如表1-8,(P∧Q)∧R<=>

(b)如表1-9,┐(P∧Q)<=>┐P∨┐Q

┐(P∨Q)<=>┐P∧┐Q

表1-8

表1-9

2-4(4)证明下列等价式:

(a)A→(B→A)<=>┐A→(A→┐B);

(b)(A∨B)→C<=>(A→C)∧(B→C);

(c) ┐(A<=>B)<=>(A∧┐B)∨(┐A∧B);

(d) (((A∧B)∧C)→D)∧(C→(A∨(B∨D)))<=>(C∧(A<=>B))→D

[证](a)A→(B→A)<=>┐A∨(┐B ∨A)

<=>(┐B ∨A)∨┐A

<=>(A∨┐B)∨┐A

<=>A∨(┐B∨┐A)

<=>A∨(┐A∨┐B)

<=>A∨(A→┐B)

<=>┐A→(A→┐B)

(b)(A→C)∧(B→C)<=>(┐A∨C)∧(┐B∨C)

<=>(┐A∧┐B)∨C

<=>┐(A∨B)∨C

<=>(A∨B)C

(c)┐(A<=>B)<=>┐((A→B)∧(B→A))

<=>┐((┐A∨B)∧(┐B∨A))

<=>┐(┐A∨B)∨┐(┐B∨A))

<=>(A∧┐B)∨(B∧┐A))(d)(((A∧B)∧C)→D)∧(C→(A∨(B∨D)))

<=>((┐(A∧B∧C)∨D)∧(┐C∨(A∨B∨D)))

<=>(┐A∨┐B∨┐C∨D)(┐C∨A∨B∨D)

<=>(┐C∨D)∨((┐A∨┐B)∧(A∨B))

<=>(┐C∨D)∨((A∧┐B)∨(B∧┐A))

<=>(┐C∨D)∨┐((┐A∨B)∧(┐B∨A))

<=>(┐C∨┐((┐A∨B)∧(┐B∨A)))∨D

<=>┐(C∧(┐A∨B)∧(┐B∨A))∨D

<=>┐(C∧(A→B)∧(B→A))∨D

<=>┐(C∧(A<=>B))∨D

<=>(C∧(A<=>B))→D

1-4(5)判断下列命题公式的类型(永真;永假;非永真,也非永假):(a)((P→Q)∧P)→Q;

(b)┐(P→(P ∨Q))∧R;

(c)P ∧(((P ∨Q) ∧┐P) →Q).

[解] (a)((P→Q)∧P)→Q

<=>((┐P∨Q)∧P)→Q

<=>┐((┐P∨Q)∧P)∨Q

<=>(┐(┐P∨Q)∨┐P)∨Q

<=>((P∧┐Q)∨┐P)∨Q

<=>((P∨┐P)∧(┐Q∨┐P))∨Q

<=>(┐Q∨┐P)∨Q

<=>T∨┐P

<=>T

∴(a)为永真式

(b)┐(P→(P ∨Q))∧R

<=>┐(┐P∨P ∨Q)∧R

<=>(P∧┐P ∧┐Q)∧R

<=>F∧R

<=>F

∴(b )为永假式

(c)P ∧(((P ∨Q) ∧┐P) →Q)

<=>P ∧(┐((P ∨Q) ∧┐P) ∨Q)

<=>P ∧(┐((P∧┐P )∨(Q ∧┐P)) ∨Q)

<=>P ∧(┐(F∨(Q ∧┐P)) ∨Q)

<=>P ∧(┐Q ∨P ∨Q)

<=>P∧T

<=>P

∴(c )为非永真式,也非永假式

1-4.(6)化简如下语句:“情况并非如此:若他不来,则我不去”。

[解]:首先符号化上述语句。

设P:他来。Q:我去

则原句:┐(┐P→┐Q)

然后化简上述命题公式

┐(┐P→┐Q)

<=>┐(┐┐Q→┐┐P)

<=>┐(Q→P)

<=>┐(┐Q∨P)

<=>Q ∧┐P

即:我去了,但他未来。

1—4(7)(a)如果A∨C<=>B∨C,是否有A<=>B?

如果A∧C<=>B∧C,是否有A<=>B?

如果┐A<=>┐B,是否有A<=>B?

[解](a)不能说必有A<=>B,因为当A∨C<=>B∨C时,有可能某种指派使C为T,但A、B的值并不相同

(b)不能说必有A<=>B,因为当A∧C<=>B∧C时,有可能某种指派

使C为F,但A、B的值并不相同

(c)结论正确。因为(A→B)<=>(┐B→┐A),所以┐B→┐A为永真式时,A→B也是永真式。即┐B=>┐A时,必有A=>B。同理┐A=>┐B时,B=>A。所以┐B<=>┐A时,必有A<=>B

1—5(1)试证下列各式为永真式:

(a)(P ∧(P→Q))→Q;

(b)┐P→(P→Q);

(c)((P→Q)∧(Q→R))→(P→R);

(d)((P∧Q)∨(Q∧R)∨(R∧P))<=>((P∨Q)∧(Q∨R)∧(R∨P))[解](a)(P ∧(P→Q))→Q

<=>(P ∧(┐P∨Q))→Q

<=>(P ∧┐P)∨(P∧Q))→Q

<=>(P ∧Q)→Q

<=>┐(P ∧Q)∨Q

<=>┐P∨┐Q∨Q

<=>┐P∨T

<=>T

(b)┐P→(P→Q)

<=>P∨(┐P∨Q)

<=>P∨┐P∨Q

<=>T∨Q

<=>T

(c)当本条件命题的后件为F时,必有P:T;R:F考察条件的前件(P→Q)∧(Q →R)。当Q:F时,因P→Q:F;当Q:T时,因Q→R:F。所以前件必为F。

故(P→Q)∧(Q→R)=>P→R

因此((P→Q)∧(Q→R))→(P→R)是永真式

(d)(P∧Q)∨(Q∧R)∨(R∧P)

<=>(Q∧(P∨R))∨(R∧P)

<=>(Q∨(R∧P))∧((P∨R)∨(R∧P))

<=>(Q∨R)∧(Q∨P)∧(P∨R)

<=>(P∨Q)∧(Q∨R)∧(R∨P)

∴(P∧Q)∨(Q∧R)∨(R∧P)<=>(P∨Q)∧(Q∨R)∧(R∨P)1-5(2)不构造真值表证明下列蕴涵式:

(a)(P→Q)=>P→(P∧Q);

(b) (P→Q)→Q=>P∨Q;

(c)(Q→(P ∧┐P))→(R→(R→(P ∧┐P)))=>R→Q

[证] (a)解法1

设P→Q为T,则

(1)P为T,Q为T 因而P→(P∧Q)为T

或(2)P为F 则必有P→(P∧Q)为T

所以(a)成立。

解法2

设P→(P∧Q)为F

则P为T,Q为F 所以P→Q为F

所以(a)成立。

解法3

(P→Q)→(P→(P∧Q))

<=>┐(┐P∨Q)∨(┐P∨(P∧Q))

<=>┐(┐P∨Q)∨((┐P∨P)∧(┐P∨Q))

<=>┐(┐P∨Q)∨(┐P∨Q)

<=>T

所以(a)成立。

(b) 设P∨Q为F,则P为F,Q为F

则P→Q为T,所以(P→Q)→Q为F

所以(b)成立。

(c)(Q→(P ∧┐P))→(R→(R→(P ∧┐P)))

<=>┐(┐Q∨F)∨(┐R∨(┐R∨F))

<=>┐(┐Q)∨(┐R∨┐R)

<=>┐(┐Q)∨┐R

<=>┐Q→┐R

<=>R→Q

所以(Q→(P ∧┐P))→(R→(R→(P ∧┐P)))<=>R→Q

当然有(Q→(P ∧┐P))→(R→(R→(P ∧┐P)))=>R→Q1-5(3)试证明P<=>Q,Q逻辑蕴含P。

[证]本题要求证明:(P<=>Q)∧Q=>P

设(P<=>Q)∧Q为T,则Q为T且(P<=>Q)为T

所以P必为T,因而蕴含式成立。

1-5(4)逻辑推证下列各式:

(a)P=>(┐P→C);

(b)┐A∧B∧C=>C;

(c)C=>A∨B∨┐B;

(d)┐(A∧B)=>┐A∨┐B;

(e)┐A→(B∨C),D∨E,(D∨E)→┐A=>B∨C;

(f)(A∧B)→C,┐D,┐C∨D=>┐A∨┐B。[证](a)若P为T,则┐P为F,故┐P→C必为T。所以(a)成立。

(b)若C为F,则┐A∧B∧C必为F。故(b)成立。

(c)因为A∨B∨┐B<=>T。故C=>A∨B∨┐B。

(d)设┐A∨┐B为F,则A为T且B为T

所以A∧B为T,┐(A∧B)为F。故(d)成立。

(e)设┐A→(B∨C),D∨E,(D∨E)→┐A均为T则因D∨E为T及(D∨E)→┐A为T,而可得┐A为T

又因┐A→(B∨C)为T故得B∨C为T,故(e)成立。

(f)设(A∧B)→C,┐D,┐C∨D均为T,

则D为F,由┐C∨D为T,可知C为F。

再由(A∧B)→C为T可得A∧B为F,

因而必有┐(A∧B)为T,也即A∨┐B为T,

故(f)成立。

1-6(1)把下列各式用只含∨和┐的等价式表达,并要尽可能简单:(a)(P∧Q)∧┐P;

(b)(P→(Q∨┐R))∧┐P∧Q;

(c)┐P∧┐Q∧(┐R→P)。

[解](a)(P∧Q)∧┐P

<=>(P∧┐P)∧Q

<=>F∧Q

<=>┐(T∨┐Q)

(b)(P→(Q∨┐R))∧┐P∧Q

<=>(┐P∨Q∨┐R)∧(┐P∧Q)

<=>(┐P∧┐P∧Q)∨(Q∧┐P∧Q)∨(┐R∧┐P∧Q)

<=>(┐P∧Q)∨(┐P∧Q)∨(┐P∧Q∧┐R)

<=>(┐P∧Q)∨(┐P∧Q∧┐R)

<=>(┐P∧Q)∧(T∧┐R)

<=>(┐P∧Q)∧T

<=>┐P∧Q

<=>┐(P∨┐Q)

(c)┐P∧┐Q∧(┐R→P)

<=>┐P∧┐Q∧(R∨P)

<=>(┐P∧┐Q∧R)∨(┐P∧┐Q∧P)

<=>(┐P∧┐Q∧R)∨F

<=>┐P∧┐Q∧R

<=>┐(P∨Q∨┐R)

1-6(2)对下列各式仅用“或非”(↓)表示:

(a)┐P;

(b)P∨Q;

(c)P∧Q;

[解]:(a)┐P<=>┐(P ∨P)<=>P ↓P

(b)P∨Q<=>┐(┐(P∨Q))<=>┐(P↓Q)

<=>(P↓Q)↓(P↓Q)(c)P∧Q<=>┐(┐P∨┐Q)<=>┐P↓┐Q

<=>(P ↓P)↓(Q↓Q)1-6(3)对下列各式仅用“与非”(↑)表示:

(a)┐P;

(b)P∨Q;

(c)P∧Q;

[解]:(a)┐P<=>┐(P ∧P)<=>P↑P

(b)P∨Q<=>┐(┐P∧┐Q)<=>┐P↑┐Q

<=>(P↑P)↑(Q↑Q)(c)P∧Q<=>┐(┐(P∧Q))<=>┐(P↑Q)

<=>(P↑Q)↑(P↑Q)

1-6(4)把P→(┐P→Q)分别表示成只含“↑”和只含“↓”的等价公式。[解]P→(┐P→Q)<=>┐P∨(P∨Q)<=>T∨Q<=>T

<=>┐P∨P<=>(┐P↑┐P)↑(P↑P)

<=>P↑(P↑P)。

P→(┐P→Q)<=>┐P∨P

<=>(┐P↓P)↓(┐P↓P)

<=>((P↓P)↓P)↓((P↓P)↓P)。

1-6(5)把P↑Q表示成只含“↓”的等价公式,把P↓Q表示成只含“↑”的等价公式。

[解]P↑Q<=>┐(P∧Q)<=>┐P∨┐Q<=>(P ↓P)∨(Q↓Q)<=>[(P ↓P)↓(Q↓Q)]↓[(P ↓P)↓(Q↓Q)]。

P↓Q<=>┐(P∨Q)<=>┐P∧┐Q<=>(P↑P)∧(Q↑Q)<=>[(P↑P)↑(Q↑Q)]↑[(P↑P)↑(Q↑Q)]。

1-6(6)证明{∨},{∧}和{→}不是最小联结词组。

[证](反证法)若{∨},{∧},{→}均是最小联结词组,则

否定(┐)命题连接词可分别仅用∨,∧,→表示,即

┐P<=>(P∨…)

┐P<=>(P∧…)

┐P<=>P→(P→(P→…)…)

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学试题与参考答案

《离散数学》试题及答案 一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 命题公式Q Q P →∨)(为 ( ) (A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式 2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。 (A). P Q →; (B).P Q ∧; (C).P Q ?→?; (D).P Q ?∨. 3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( ) (A) 1A (B) {1,2, 3}A (C) {{4,5}}A (D) A 4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B C )= ( ) (A) {<1,c >,<2,c >} (B) {,<2,c >} (C) {,} (D) {<1,c >,} 5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图; (C)欧拉图; (D) 平面图. 二、填空题:本大题共5小题,每小题4分,共20分。把答案填在对应题号后的横线上。 6. 设集合A ={,{a }},则A 的幂集P (A )= 7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><, 那么R -1= 8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系. 9. 写出一个不含“→”的逻辑联结词的完备集 . 10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R =???? ? ?????001001101,那么R 的关系图为

离散数学考试题详细答案

离散数学考试题(后附详细答案) 一、命题符号化(共6小题,每小题3分,共计18分) 1.用命题逻辑把下列命题符号化 a)假如上午不下雨,我去看电影,否则就在家里读书或看报。 设P表示命题“上午下雨”,Q表示命题“我去看电影”,R表示命题“在家里读书”,S表示命题“在家看报”,命题符号化为:(PQ)(PRS) b)我今天进城,除非下雨。 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:Q→P或P→Q c)仅当你走,我将留下。 设P表示命题“你走”,Q表示命题“我留下”,命题符号化为:Q→P 2.用谓词逻辑把下列命题符号化 a)有些实数不是有理数 设R(x)表示“x是实数”,Q(x)表示“x是有理数”,命题符号化为: x(R(x) Q(x)) 或x(R(x) →Q(x)) b)对于所有非零实数x,总存在y使得xy=1。 设R(x)表示“x是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: x(R(x) E(x,0) →y(R(y) E(f(x,y),1)))) c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b. 设F(f)表示“f是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)a(A(a)→b(B(b) E(f(a),b) c(S(c) E(f(a),c) →E(a,b)))) 二、简答题(共6道题,共32分) 1.求命题公式(P→(Q→R))(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。 (5分) (P→(Q→R))(R→(Q→P))(PQR)(PQR) ((PQR)→(PQR)) ((PQR) →(PQR)). ((PQR)(PQR)) ((PQR) (PQR)) (PQR)(PQR) 这是主合取范式 公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为 (PQR(PQR(PQR(PQR(PQR(PQR 2.设个体域为{1,2,3},求下列命题的真值(4分) a)xy(x+y=4) b)yx (x+y=4) a) T b) F 3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。(4分) x(F(x)→G(x))→(xF(x)→xG(x)) x(F(x)→G(x))→(yF(y)→zG(z)) x(F(x)→G(x))→yz(F(y)→G(z)) xyz((F(x)→G(x))→(F(y)→G(z))) 4.判断下面命题的真假,并说明原因。(每小题2分,共4分)

离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数1 q: 3是无理数0 r: 2是无理数 1 s: 6能被2整除1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式

(5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ?(?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q)

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

离散数学试题及解答

离散数学 2^m*n 一、选择题(2*10) 1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。 (A)P→?Q (B)P∨?Q (C)P∧Q (D)P∧?Q 2.下列命题公式为永真蕴含式的是()。 (A)Q→(P∧Q)(B)P→(P∧Q) (C)(P∧Q)→P (D)(P∨Q)→Q 3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定 是()。 (A)所有人都不是大学生,有些人不会死 (B)所有人不都是大学生,所有人都不会死 (C)存在一些人不是大学生,有些人不会死 (D)所有人都不是大学生,所有人都不会死 4、永真式的否定是()。

(A)永真式(B)永假式(C)可满足式(D)以上均有可能 5、以下选项中正确的是()。 (A)0= ? (B)0 ? (C)0∈? (D)0?? 6、以下哪个不是集合A上的等价关系的性质?() )。 (A)2 (B)4 (C)3 (D)5 10.连通图G是一棵树,当且仅当G中()。 (A)有些边不是割边(B)每条边都是割边 (C)无割边集(D)每条边都不是割边

二、填空题(2*10) 1、命题“2是偶数或-3是负数”的否定是________。 2、设全体域D是正整数集合,则命题?x?y(xy=y)的真值是______。 3、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为 4 5 6、设 7 8 (1)若A去,则C和D中要去1个人; (2)B和C不能都去; (3)若C去,则D留下 五、(15分)设A={1,2,3},写出下列图示关系的关系矩阵,并讨论它们的性质:

离散数学试卷及答案一

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有 一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( ) A.汉密尔顿回路 B.欧拉回路 C.汉密尔顿通路 D.初级回路 2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( ) A.10 B.12 C.16 D.14 3.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( ) A.b∧(a∨c) B.(a∧b)∨(a’∧b) C.(a∨b)∧(a∨b∨c)∧(b∨c) D.(b∨c)∧(a∨c) 4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( ) A.<{1},·> B.〈{-1},·〉 C.〈{i},·〉 D.〈{-i},·〉 5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交 运算,下列系统中是代数系统的有( ) A.〈Z,+,/〉 B.〈Z,/〉 C.〈Z,-,/〉 D.〈P(A),∩〉 6.下列各代数系统中不含有零元素的是( ) A.〈Q,*〉Q是全体有理数集,*是数的乘法运算 B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算 C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,?x,y∈Z D.〈Z,+〉,Z是整数集,+是数的加法运算 7.设A={1,2,3},A上二元关系R的关系图如下: R具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性 8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( ) A.R∪I A B.R C.R∪{〈c,a〉} D.R∩I A 9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的 等价关系,R应取( ) A.{〈c,a〉,〈a,c〉} B.{〈c,b〉,〈b,a〉} C.{〈c,a〉,〈b,a〉} D.{〈a,c〉,〈c,b〉} 10.下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x

离散数学题库

常熟理工学院20 ~20 学年第学期 《离散数学》考试试卷(试卷库01卷) 试题总分: 100 分考试时限:120 分钟 题号一二三四五总分阅卷人得分 一、单项选择题(每题2分,共20分) 1.下列表达式正确的有( ) (A)(B)(C)(D) 2.设P:2×2=5,Q:雪是黑的,R:2×4=8,S:太阳从东方升起,下列( )命题的真值为 真。 (A)(B)(C)(D) 3.集合A={1,2,…,10}上的关系R={|x+y=10,x,y A},则R 的性质为( ) (A)自反的(B)对称的(C)传递的,对称的(D)传递的 4.设,,其中表示模3加法,*表示模2乘法,在集合上 定义如下运算: 有称为的积代数,则的积代数幺元是( ) (A)<0,0> (B)<0,1> (C)<1,0> (D)<1,1> 5.下图中既不是Eular图,也不是Hamilton图的图是( ) 6.设为无向图,,则G一定是( ) (A)完全图(B)树(C)简单图(D)多重图 7.设P:我将去镇上,Q:我有时间。命题“我将去镇上,仅当我有时间”符号化为()。 (A) P Q (B)Q P (C)P Q (D) 8.在有n个结点的连通图中,其边数() (A)最多有n-1条(B)最多有n 条(C)至少有n-1条(D)至少有n条 9.设A-B=,则有() (A)B=(B)B(C)A B (D)A B 10.设集合A上有3个元素,则A上的不同的等价关系的个数为() (A)5 (B)7 (C)3 (D)6 二、填空题(每题2分,共20分)

1.n个命题变元组成的命题公式共有种不同的等价公式。 2.设〈L,≤〉为有界格,a为L中任意元素,如果存在元素b∈L,使,则称b是a 的补元。 3.设*,Δ是定义在集合A上的两个可交换二元运算,如果对于任意的x,y∈A,都有 ,则称运算*和运算Δ满足吸收律。 4.设T是一棵树,则T是一个连通且的图。 5.一个公式的等价式称作该公式的主合取范式是指它仅由组成。 6.量词否定等价式? ("x)P(x) ?,? ($x)P(x) ?。 7.二叉树有5个度为2的结点,则它的叶子结点数为。 8.设是一个群,是阿贝尔群的充要条件是。9.集合S={α,β,γ,δ}上的二元运算*为 * αβγδ αδαβγ βαβγδ γβγγγ δαδγδ 那么,代数系统中的幺元是,α的逆元是。 10.设A={<1,2>,<2,4>,<3,3>},B={<1,3>,<2,4>,<4,2>} = 。 = 。 三、判断题(每题1分,共10分) 1.命题公式是一个矛盾式。() 2.,若,则必有。() 3.设S为集合X上的二元关系,则S是传递的当且仅当(S S)S。() 4.任何一棵二叉树的结点可对应一个前缀码。() 5.代数系统中一个元素的左逆元一定等于该元素的右逆元。() 6.一个有限平面图,面的次数之和等于该图的边数。() 7.A′B = B′A () 8.设*定义在集合A上的一个二元运算,如果A中有关于运算*的左零元θl和右零θr,则A中 有零元。() 9.一个循环群的生成元不是唯一的。() 10.任何一个前缀码都对应一棵二叉树。() 四、解答题(5小题,共30分) 1.(5分)什么是欧拉路?如何用欧拉路判定一个图G是否可一笔画出? 2.(8分)求公式 (P∨Q)R 的主析取范式和主合取范式。

离散数学试卷二十三试题与答案

试卷二十三试题与答案 一、单项选择题:(每小题1分,本大题共10分) 1.命题公式)(P Q P ∨→是( )。 A 、 矛盾式; B 、可满足式; C 、重言式; D 、等价式。 2.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨?; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。 3.谓词公式)())()((x Q y yR x P x →?∨?中的 x 是( )。 A 、自由变元; B 、约束变元; C 、既是自由变元又是约束变元; D 、既不是自由变元又不是约束变元。 4.在0 Φ之间应填入( )符号。 A 、= ; B 、?; C 、∈; D 、?。 5.设< A , > 是偏序集,A B ?,下面结论正确的是( )。 A 、 B 的极大元B b ∈且唯一; B 、B 的极大元A b ∈且不唯一; C 、B 的上界B b ∈且不唯一; D 、B 的上确界A b ∈且唯一。 6.在自然数集N 上,下列( )运算是可结合的。 (对任意N b a ∈,) A 、b a b a -=*; B 、),max(b a b a =*; C 、b a b a 5+=*; D 、b a b a -=*。 7.Q 为有理数集N ,Q 上定义运算*为a*b = a + b – ab ,则的幺元为( )。 A 、a ; B 、b ; C 、1; D 、0。 8.给定下列序列,( )可以构成无向简单图的结点度数序列。 A 、(1,1,2,2,3); B 、(1,1,2,2,2); C 、(0,1,3,3,3); D 、(1,3,4,4,5)。 9.设G 是简单有向图,可达矩阵P(G)刻划下列 ( )关系。 A 、点与边; B 、边与点; C 、点与点; D 、边与边。 10.一颗树有两个2度结点,1个3度结点和3个4度结点,则1度结点数为( )。 A 、5; B 、7; C 、9; D 、8。

离散数学试题及解答

精品文档 离散数学 10.设仃限集丸 B. |A|■申 p|p |p(AxB)| = 带伞”可符号化为( ) (C ) P A Q (D ) P A Q 2 ?下列命题公式为永真蕴含式的是( ) (A ) C H( P A Q ) ( B ) P -( P A Q ) (C ) (P A Q — P ( D (P V Q)— Q 3、 命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死 的”的否定是( )。 (A) 所有人都不是大学生,有些人不会死 (B) 所有人不都是大学生,所有人都不会死 (C) 存在一些人不是大学生,有些人不会死 (D) 所有人都不是大学生,所有人都不会死 4、 永真式的否定是()。 (A )永真式 (B )永假式 (C )可满足式 (D )以上均有可能 5、以下选项中正确的是()。 (A ) 0= ? (B ) 0 ? (C 0€ ? (D ) 0?? 6、以下哪个不是集合A 上的等价关系的性质?( ) (A )自反性 (B )有限性 (C )对称性 (D ) 传递性 7、集合 A={1,2,…;10}上的关系 R={|x+y=10,x,y € A},贝U R 的性质为 ()。 (A )自反的 (B )对称的 (C )传递的,对称的 (D )传递的 8?设 D=为有向图,V={a, b, c, d, e, f}, E={, , , , } 是()。 选择题(2*10) 1 ?■令P :今天下雨 了, Q:我没带伞,则命题“虽然今天下雨了,但是我没 2A m*n (A) P - Q (B ) P V Q

离散数学试卷及答案(17)

一、判断正误20% (每小题2分) 1、设A.B. C是任意三个集合。 (1)若A∈B且B?C,则A?C。() (2)若A?B且B∈C,则A?C。() (3)若A?B且B∈C,则A?C。() (4)A) ( ) ( ) (C A B A C B ⊕ = ⊕。() (5)(A–B)?C=(A?C)-(B?C)。() 2、可能有某种关系,既不是自反的,也不是反自反的。() 3、若两图结点数相同,边数相等,度数相同的结点数目相等,则两图是同构的。() 4、一个图是平面图,当且仅当它包含与K 3, 3 或K 5 在2度结点内同构的子图。() 5、代数系统中一个元素的左逆元并一定等于该元素的右逆元。() 6、群是每个元素都有逆元的半群。() 二、8% 将谓词公式)) , ( ) ( ) ( ) (( )) , ( ) ( )( (z y Q z y P y y x Q x P x? ∧ ? → → ?化为前束析取范式与前束合取范式。 三、8% 设集合A={a,b,c,d}上的关系R={,,,}写出它的关系矩阵和关系图,并用矩阵运算方法求出R的传递闭包。 四、9% 1、画一个有一条欧拉回路和一条汉密尔顿回路的图。 2、画一个有一条欧拉回路,但没有一条汉密尔顿回路的图。 3、画一个有一条欧拉回路,但有一条汉密尔顿回路的图。

五、10% 证明:若图G是不连通的,则G的补图G 是连通的。 六、10% 证明:循环群的任何子群必定也是循环群。 七、12% 用CP规则证明: 1.F A F E D D C B A →?→∨∧→∨,。 2.?∨??∨?(()()())()()((x P x x Q x P x )()x Q x 。 八、10% 用推理规则证明下式: 前提: ))()()(()),()()(())()()(((y W y M y y W y M y x S x F x ?∧?→?→∧? 结论:?→?)()((x F x S ))(x 九、13% 若集合X={(1,2),(3,4),(5,6),……} }|,,,{12212211y x y x y x y x R +=+>><><<= 1、证明R 是X 上的等价关系。 2、求出X 关于R 的商集。 一、 填空 20%(每小题2分)

离散数学全部试卷

离散数学试题与答案试卷一 一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+ x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 8.图的补图为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ?; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A B C

?;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。 A.{4,3}Φ 3、设A={1,2,3},则A上的二元关系有()个。 A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() Rο是自反的; A.若R,S 是自反的,则S Rο是反自反的; B.若R,S 是反自反的,则S Rο是对称的; C.若R,S 是对称的,则S Rο是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s t s p A R= ∧ =则P(A)/ R=() < > ∈ s (| || |} {t ) , ( | , A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是() 10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4 度结点。 A.1;B.2;C.3;D.4 。

最新离散数学试卷及答案 (1)

离散数学试题(A卷答案) 一、证明题(10分) 1) (P∧Q∧A→C)∧(A→P∨Q∨C)? (A∧(P?Q))→C。 证明: (P∧Q∧A→C)∧(A→P∨Q∨C) ?(?P∨?Q∨?A∨C)∧(?A∨P∨Q∨C) ?(?P∨?Q∨?A∨C)∧(?A∨P∨Q∨C) ?((?P∨?Q∨?A)∧(?A∨P∨Q))∨C ??((P∧Q∧A)∨(A∧?P∧?Q))∨C ??( A∧((P∧Q)∨(?P∧?Q)))∨C ??( A∧(P?Q))∨C

?(A∧(P?Q))→C 2) ?(P↑Q)??P↓?Q。 证明:?(P↑Q)??(?(P∧Q))??(?P∨?Q))??P↓?Q。 二、分别用真值表法和公式法求(P→(Q∨R))∧(?P∨(Q?R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。 证明: 公式法:因为(P→(Q∨R))∧(?P∨(Q?R)) ?(?P∨Q∨R)∧(?P∨(Q∧R)∨(?Q∧?R)) ?(?P∨Q∨R)∧(((?P∨Q)∧(?P∨R))∨(?Q∧?R))

?(?P∨Q∨R)∧(?P∨Q∨?Q)∧(?P∨Q∨?R)∧(?P∨R∨?Q)∧(?P∨R∨?R) ?(?P∨Q∨R)∧(?P∨Q∨?R)∧(?P∨?Q∨R) ? M∧5M∧6M 4 ? m∨1m∨2m∨3m∨7m 所以,公式(P→(Q∨R))∧(?P∨(Q?R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。 真值表法:

式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。 三、推理证明题(10分) 1)?P∨Q,?Q∨R,R→S P→S。 证明:(1)P附加前提

离散数学试卷及答案(1)

一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为 则 R= 。

8.图的补图为 。 9.设A={a ,b ,c ,d} ,A 上二元运算如下: 那么代数系统的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。 10.下图所示的偏序集中,是格的为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ? ; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A .{4,3}Φ?; B .{Φ,3,4}; C .{4,Φ,3,3}; D . {3,4}。 3、设A={1,2,3},则A 上的二元关系有( )个。

A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() R 是自反的; A.若R,S 是自反的,则S R 是反自反的; B.若R,S 是反自反的,则S R 是对称的; C.若R,S 是对称的,则S R 是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s p R= t s ∈ =则P(A)/ R=() < > ∧ A ) (| || |} ( , {t , | s A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“?”的哈斯图为() 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是()

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学试卷及答案

一、填空 20% 1、 P :你努力,Q :你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。 2、论域D={1,2},指定谓词P 则公式),(x y yP x ??真值为 。 2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。 3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R= (列举法)。 R 的关系矩阵M R = 。 5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ; A 上既是对称的又是反对称的关系R= 。 6、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 7、4阶群必是 群或 群。 8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 10、公式R Q P Q P P ?∧∨?∧∧?∨)(())(( 的根树表示为 。 二、选择 20% (每小题2分) 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→ 。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为

离散数学试题与答案

离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=_____{3}______________; ρ(A) - ρ(B)=____{{3},{1,3},{2,3},{1,2,3}}__________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = ___2^(n^2)________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是____A1 = {(a,1), (b,1)}, A2 = {(a,2), (b,2)}, A3 = {(a,1), (b,2)}, A4 = {(a,2), (b,1)},_________ _____________, 其中双射的是______A3, A4__________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取式是____P∧?Q∧R (m5)____. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为___12______,分枝点数为_______3_________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=______{4}______; A?B=____{1,2,3,4}_________;A-B=______{1,2}_______ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______自反性____________, _________对称性_________, _________传递性_____________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有_____(1,0,0)__________, ______(1,0,1)________, ________(1,1,0)________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2= ___{(1,3),(2,2),(3,1)}____,R2?R1 =_____{(2,4), (3,3), (4,2)}_____, R12=_______{(2,2), (3,3)}_________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = ______2^(m*n)___________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = _____{x | -1 ≤x < 0, x ∈R}_______ , B-A = ______{x | 1 < x < 2, x ∈R}_____ , A∩B = ______{x | 0 ≤x ≤1, x ∈R}__________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ ________{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}_________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束式是_____?y?x(P(y)→Q(x))________ _____. 15.设G是具有8个顶点的树,则G中增加__21___条边才能把G变成完全图。 16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是________(R(a)∧R(b))→(S(a)∨S(b))______________________.

相关文档
最新文档