太阳能电池项目策划报告书

太阳能电池项目策划报告书
太阳能电池项目策划报告书

新建年产300MW单晶硅太阳能电池项目

环境阻碍报告书

(简本)

建设单位:英利能源(中国)有限公司评价单位:北京京诚嘉宇环境科技有限公司二○一○年七月

目录

1总论 (3)

1.1 项目背景及由来 (3)

1.2 评价标准 (4)

1.2.1环境质量标准 (4)

1.2.2排放标准 (5)

1.3 评价工作等级 (5)

1.4 评价范围及环境爱护目标 (6)

2项目概况 (6)

2.1项目名称、建设地点及建设性质 (6)

2.2建设规模及产品方案 (7)

2.3建设内容 (7)

2.4总平面布置 (8)

2.5物料及能源消耗 (8)

2.6要紧设备 (10)

2.7公用工程及辅助设施 (11)

2.7.1给排水 (11)

2.7.2供电 (12)

2.7.3供热、空调及通风 (13)

2.8人员及工作制度 (15)

2.9征地、拆迁、移民 (15)

3工程污染源分析 (15)

3.1施工期污染源分析 (15)

3.1.1施工噪声 (15)

3.1.2施工扬尘 (16)

3.1.3施工废水 (16)

3.1.4施工固废 (16)

3.2运营期污染源分析 (16)

3.2.1运营期大气污染源 (16)

3.2.2运营期水污染源分析 (20)

3.2.2.1含氟废水及酸碱废水处理系统 (20)

3.2.3 噪声污染源 (29)

3.2.4 固体废物 (30)

4环境现状 (31)

4.1声环境质量现状 (31)

4.2大气环境质量现状 (31)

4.3地表水环境质量现状 (31)

4.4地下水环境质量现状 (31)

5施工期环境阻碍分析 (32)

5.1施工噪声对环境的阻碍 (32)

5.2施工扬尘对环境的阻碍 (32)

5.3施工废水对环境的阻碍 (33)

5.4施工固废对环境的阻碍 (33)

6运营期环境阻碍分析与评价 (33)

6.1大气环境阻碍分析与评价 (33)

6.2水环境阻碍分析与评价 (33)

6.3噪声环境阻碍分析与评价 (33)

6.4固体废物阻碍分析 (33)

7污染减缓措施与环境治理 (34)

7.1施工期污染减缓措施 (34)

7.2运营期污染减缓措施 (34)

8污染物排放总量操纵 (35)

9公众参与 (35)

10清洁生产分析 (35)

11规划相容性及选址合理性分析 (36)

12环境经济损益分析 (36)

13结论与建议 (36)

1总论

1.1项目背景及由来

太阳能光伏发电是目前成熟的可再生能源技术,具有诸多优点,如安全可靠、无噪音、无污染、能量随处可得、不受地域限制、无需消耗燃料、无机械转动部件、设备故障率低、维护简便、可无人看护、建站周期短、规模大小随意、无需架设输电线路、能够方便的与建筑物相结合等,以上优点差不多上常规发电和其它发电方式所不能及的。我国太阳能电池和组件的产量在2002年往常长期徘徊在全球产量的1%左右,然而自2004年以来,在国际光伏市场尤其是德国、日本市场的强大需求拉动下,我国光伏产业进展迅速,成为世界光伏产业进展最快的国家之一,为世界瞩目。2006年我国在光伏领域的产能达到世界份额的10%以上,仅次于日本、欧洲,居世界第三位。可能到2010年,我国的光伏发电产品产量将突破1000MW,成为世界最大的太阳能电池生产国。

在光伏市场的应用方面,2002~2004年,国家组织实施了“送电到乡”工程,中央和地点财政共安排了47亿资金,在内蒙古、青海、新疆、四川、西藏和陕西等12个省(市、区)的1065个乡镇,建设了一批独立的光伏、风光互补、小水电等可

再生能源电站,其中光伏电站占大部分,应用了1.7万KW的光伏电池,促进了国内光伏产业的兴起。到2006年,全国累计光伏发电容量为8万KW,其中42%为独立光伏发电系统,用于解决电网覆盖不到的偏远地区居民用电量问题,此外,通信等工业领域和光伏消费品的市场份额也在逐年增长。

英利能源(中国)有限公司(以下简称“英利中国”)是英利绿色能源国际控股有限公司(以下简称“英利国际”)在中国河北省保定市国家高新技术产业开发区投资成立的外商独资企业,注册资本12000万美元。英利国际系在英属维尔京群岛注册成立的有限责任公司,是英利绿色能源控股有限公司(以下简称“英利开曼”)的全资子公司,英利开曼于2007年6月8日在纽交所成功上市,共发行2900万股美国存托凭证(ADS),共融资3.19亿美元,成为继无锡尚德、常州天合和江西赛维LDK之后,第四家在纽交所上市融资的中国光伏企业。

英利中国拥有雄厚的技术力量。聘请了在光伏领域从事多年研究并有突出贡献的专家、教授为指导,与多家科研院所建立了长期的合作关系,为企业的可持续进展提供了有效的保障。

英利中国的主营业务有硅太阳能电池及其相关配套产品、风机及其相关配套产品、热发电产品、操纵器、逆变器、兆瓦级跟

踪器的研发、生产、销售、技术咨询及服务;太阳能光伏电站工程的设计、安装、施工。

随着国家光伏行业的飞速进展,英利中国为满足市场需求,英利能源(中国)有限公司原拟于该地块内建设的“新建年产400MW多晶硅太阳能电池项目”(环评于2009年2月3日获得环境爱护部的批复,环审[2009]94号)目前未开工建设。依照实际市场需求,建设单位拟将已获环评批复的新建年产400MW多晶硅太阳能电池项目变更为新建年产300MW单晶硅太阳能电池项目。

依照《中华人民共和国环境阻碍评价法》、《建设项目环境爱护治理条例》的规定,建设单位英利能源(中国)有限公司托付北京京诚嘉宇环境科技有限公司对新建年产300MW单晶硅太阳能电池项目进行环境阻碍评价。按照《建设项目环境阻碍评价分类治理名录》的要求,本项目属于编制环境阻碍报告书的类不。评价单位认为本项目符合《外商投资产业指导目录(2007年修订)》鼓舞外商投资产业目录中第三类“制造业”的第(二十一)小类“通信设备、计算机及其他电子设备制造业”中第18项“高技术绿色电池制造:动力镍氢电池、锌镍蓄电池、锌银蓄电池、锂离子电池、高容量全密封免维护铅酸蓄电池、太阳能电池、燃

料电池、圆柱型锌空气电池等”的规定,在现场踏勘、资料收集的基础上,通过工程分析和污染源调查,环境现状监测,环境阻碍预测和评价,编制完成了《新建年产300MW单晶硅太阳能电池项目环境阻碍报告书》,现提交专家评估会评审。

1.2评价标准

1.2.1环境质量标准

(1)项目北厂界临保定市北三环路(主干道)、南厂界临开北路(主干道)、东厂界临阳光北大街(主干道),执行《声环境质量标准》(GB3096-2008)中4a类标准;项目西厂界紧邻保定天威英利新能源有限公司三期工程地块,属于工业区内部,执行《声环境质量标准》(GB3096-2008)中3类标准;

(2)环境空气质量执行《环境空气质量标准》(GB3095-1996及2000年修改单的通知)中的二级标准;HCl、Cl2和NH3执行《工业企业设计卫生标准》(TJ36-79)中居住区大气中有害物质的最高容许浓度,非甲烷总烃参照执行以色列环境空气质量标准,异丙醇参照执行前东德环境空气质量标准。

(3)项目废水经厂内污水处理站处理后,外排废水通过市政污水管网进入鲁岗污水处理厂进一步处理,而后排入一亩泉河,

最终进入府河,依照冀水资[2004]42号文《河北省水功能区划》,一亩泉河及府河划分为地表水水域环境功能IV类区,水质执行《地表水环境质量标准》(GB3838-2002)IV类标准;

(4)项目所在区地下水水质执行《地下水质量标准》(GB/T14848-93)中的Ⅲ类标准。

1.2.2排放标准

(1)生产废气中的颗粒物、HCl、Cl2、氟化物、NOx、非甲烷总烃执行《大气污染物综合排放标准》(GB16297-1996)表2中“新污染源大气污染排放限值”二级标准,碱性废气、污水处理站等产生的NH3及H2S等恶臭污染物执行《恶臭污染物排放标准》(GB14554-93)新、扩、改建项目二级标准。上述标准中未涉及的大气污染物异丙醇、溴,依照《大气污染物综合排放标准详解》中规定的方法进行计算得到该污染物的排放标准。

(2)污水排放执行《污水综合排放标准》(GB8978-1996)表4中三级标准,并同时满足鲁岗污水处理厂进水水质要求,其中COD≤350mg/L,氟化物排放执行GB8978-1996表4中其他排污单位的二级标准;氯化物排放执行《氯化物排放标准》(DB13/831-2006)表1中三级Ⅰ类标准。

(3)施工期噪声执行《建筑施工场界噪声限值》(GB12523-90)。

(4)运营期项目北厂界临保定市北三环路(主干道)、南厂界临开北路(主干道)、东厂界临阳光北大街(主干道),执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中的4类标准;项目西厂界紧邻保定天威英利新能源有限公司三期工程地块,属于工业区内部,执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准。

(5)一般工业固体废物执行《一般工业固体废物贮存、处置场污染物操纵标准》(GB18599-2001);危险废物执行《危险废物贮存污染物操纵标准》(GB18597-2001)及《危险废物鉴不标准》(GB5085.1~5085.7-2007)。

1.3评价工作等级

大气环境阻碍评价工作等级:三级;

声环境阻碍评价工作等级:三级;

水环境阻碍评价工作等级:简要评述;

环境风险评价工作等级:二级。

1.4评价范围及环境爱护目标

声环境阻碍评价范围:施工期声环境评价范围为建设项目边界往外200m范围内,运营期声环境评价范围为建设项目边界往外100m范围内。

大气环境阻碍评价范围:以要紧废气排气筒为中心,以2.5km 为半径,面积约为19.6km2的圆形区域。

水环境阻碍评价范围:项目污水处理站、保定国家高新技术产业开发区市政污水管网至鲁岗污水处理厂。

环境风险评价范围:本次风险评价以危险源为中心,周围3km半径的区域为评价范围。环境爱护目标见表 1-1。

表 1-1环境爱护目标(敏感点)情况表

2项目概况

2.1项目名称、建设地点及建设性质

项目名称:新建年产300MW单晶硅太阳能电池项目

建设单位:英利能源(中国)有限公司

建设性质:变更、新建

建设地点:位于保定国家高新技术产业开发区内,于英利能源(中国)有限公司已征工业土地内建设,具体位置在保定市北三环路以南,阳光北大街以西,开北路以北,天威英利新能源有限公司三期工程以东

占地面积:项目总占地面积163579m2

投资总额:项目总投资估算为20亿元

2.2建设规模及产品方案

拟建项目建设规模为300MW/a,要紧包括三个生产线:单晶硅硅片生产线、太阳能电池片生产线、太阳能电池组件生产线。

项目产品为高效率低成本N型单晶硅太阳电池,产品规格为:1W~350W。产品规格将依照市场需求情况进行灵活调节,160W~350W的组件约占总产量的99%,其中以160W~220W的产品为主;其余1%左右为160W以下的组件产品。项目所生产的单晶硅太阳能电池硅片厚约180μm,电池效率不低于18.6%。本项

目所生产的单晶硅太阳能电池的规格及技术参数见表 2-1。

表 2-1 项目所产单晶硅太阳能电池的规格及技术参数

型号

输出功率范围

(W)额定电压

(V)

外形尺寸及误差

(mm)

TPA156×156 3.82~4.63 0.48

(156±0.5)×

(156±0.5)2.3建设内容

本项目要紧包括主体工程、储运设施、公用工程及辅助设施等。厂内不设职员宿舍,不新设食堂,职员用餐要紧依托天威英利三期工程的食堂。项目差不多组成情况见表 2-2。项目要紧技术经济指标见表 2-3。

表 2-2 拟建项目差不多组成情况表

号项目组成

1

主体工

程新建生产厂房3栋,将三条生产线均布置在厂房内:单晶硅硅片生产线、太阳能电池片生产线、太阳能电池组件生产线

2

储运设

施新建特气房1栋,气体储罐区1座,对天威英利三期工程现有厂内危险化学品库扩建

以扩容,其余的原材料库房、成品库房、装卸平台等均依托天威英利三期工程已有设施

3 公用工

程及辅

助设施

新建动力楼1栋(6#厂房,3层),在楼内设

置给排水及消防、污水处理站、纯水站、供

电、供热、通风与空调、空压、通讯等

表 2-3 项目要紧技术经济指标表

指标单位数量备注

1 项目占地面积m254024.69

2 建设规模MW/年300

3 产品方案

160W以下MW/年 3 约占1%

160W~350W MW/年297 约占99%

4 总建筑面积m2123126

5 年用电量万KWh 34600

6 年耗水量万m356.8

7 年耗蒸汽量吨5140

8 项目定员人2600

9 年工作日天300

10 总投资

万美

元38430

折合人民币261324

万元

10.1 建设投资

218231

10.2 建设期利息万元4633

10.3 流淌资金万元38460

11 年均销售收入万元473143

12 年均利润总额万元73493

13 投资利税率% 37.09

14 财务内部收益率% 38.16 所得税前

资本金内部收

15

% 57.59

益率

16 投资回收期年 4.48

17 总投资收益率% 37.81

2.4总平面布置

本项目的建构筑物要紧包括生产车间1栋、动力楼1栋、特气房1栋、气体储罐区1座。同时对天威英利三期工程内的危险化学品库房进行扩建。其余原材料库房、成品库房以及公用工程及辅助设施均依托天威英利三期工程地块内已有的设施。

2.5物料及能源消耗

项目物料及能源消耗情况见表 2-4。

表 2-4 项目原辅材料及能源消耗情况一览表

名称规格单位数量一原辅材料

1 免洗硅料99.9999% t/a 1410 2

石英坩埚

EW01505

55kg/个个/a 6000

3 液氩t/a 415.2

4 氦气瓶/a 62280

5 单晶搀杂剂要紧成分:

硼硅母合

kg/a 840

6 氮化硅kg/a 6000

7 液氮kg/a 7674600 8

碳化硅

GC1200#

t/a 7200

9 切割液SK-27 要紧成分

为聚乙二

t/a 8589.836

10 聚氨酯组合料t/a 7.11045

11

TAB钢线

0.12mm

480km/卷卷/a 625.5 12 TAB钢线200km/卷卷/a 285.75

0.25mm

13 环氧树脂t/a 9.29625

2.943kg/

块/a 75000 14 玻璃板

15 滑轮外套个/a 3282

16 带锯条个/a 3282

17 银铝浆t/a 9.19425

18 铝浆t/a 126.321

19 银浆t/a 20.787

正级、负级、

20

个/a 14895背场丝网

21 钢化玻璃m2/a2197500

22 EVA m2/a 4642500

23 背板m2/a 2310000

24 接线盒个/a 1717500

25 铝材铝边框t/a 4577.25

26 锡片t/a 161.25

27 汇流带t/a 33

28 高纯液氧t/a 49.8

29 硅烷99.999% kg/a 4686.255

30 液氨(NH3)99.999% kg/a 8708.963

31 三氯氧磷99.9999% kg/a 1658.85

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

钙钛矿太阳能电池的光物理原理

钙钛矿太阳能电池的光物理原理 钙钛矿太阳能电池的光物理 溶液制备法制备的有机-无机杂化钙钛矿型太阳能电池,是光伏领域的一种新型太阳能电池新型材料,其光电转换效率已经超过17%,并且在该领域产生了巨大影响。这篇文章中,在这类新的光伏材料中,关于载流子动力学和电荷转移机制中的光物理和新的发现,进行了检验和提炼。一些开放性物理问题也将被讨论。 关键词:甲基氨碘化铅,钙钛矿型太阳能电池,光物理,瞬态吸收光谱,电荷动力学,电荷转移机制 有机无机杂化钙钛矿型太阳能电池(或简单的钙钛矿型太阳能电池)是在低成本光电池的研究中的最主要的突破。在这大约5年的期间里,这些溶液加工制备的太阳能电池成为第三代太阳能电池的先驱,比如有机太阳能电池,染料敏化太阳能电池,量子点太阳能电池。尽管,在最近举行的材料研究学会2014春季会议报告中声称,电池的转化效率已经达到了19.3%,但是到目前为止,能够证明确定的记录是17.9%,而在2009年,这个记录只有3.8%。相比较而言,染料敏化太阳能电池需要二十多年的研究才超过10%的转化效率。尽管在器件性能的显著增加,但钙钛矿型太阳能电池中的光物理机制仍然是不明确的。在本文中,我将首先简要地回顾了目前的钙钛矿型太阳能电池领域的进展,然后追踪一下光物理研究的发展。我还会强调一下钙钛矿中电子和空穴的扩散长度,CH3NH3PbI3的热空穴冷却动力学 和放大自发辐射的发现。最后,在这些材料中,一些关于光物理的问题也会进行讨论。 2.有机无机钙钛矿太阳能电池 2.1 三维的有机无机钙钛矿电池的结构 钙钛矿是一般化学式为AMX3 化合物的总称。A阳离子在立方晶胞的8个角上,M阳离子被6个X阴离子包围,位于[PbI6]4- 八面体的中心。如图1,CH3NH3PbI3情况。尽管钛酸钙的通用名称有着相同的“钙钛矿”标签,但有机无机钙钛矿材料与他们同名仅仅是因为他们的结构。在纳米科学发展的19世纪80年代,这类杂化材料能够形成三维(3D)到零维(0-D)与[PbI6]4- 八面体单元的类似物,直到把晶胞已作为广泛应用在半导体介观量子限制效应模型而深入研究。CH3NH3PbX3 (其中x是Cl,Br,I)是广泛调查的光伏材料的选择,这个材料由3D八面体网状结构形成。 2.2该领域和基本器件结构的概述

精选钙钛矿太阳能电池研究综述资料

精品文档 钙钛矿太阳能电池 引言 21世纪以来,人口急剧增长,能源和环境问题日益明显。目前,人们主要消耗的是不可再生能源,例如煤、天然气、石油等化石燃料。而未来人类还需大量的能源,故人类正在积极开发新能源。 而太阳能具有清洁、无污染、分布广并且能量充分,是目前广大科研人员的研究重点。而光伏为开发太阳能的主要对象,主要其具有安全、清洁、成本低廉等优点。目前,市场上主要为第一代硅基太阳能电池,大约占了90%,其余的约10%被CdTe和GIGS为代表的第二代薄膜太阳能电池所占据。然而,硅基太阳能电池在原材料和制造上,其成本都比较高,工艺较复杂。因此,人们正在努力开发高效率、低成本的新型太阳能电池。如钙钛矿太阳能电池[1]。 近年来,钙钛矿太阳能电池由于光电效率高,工艺简单等一些优异性能而受到人们的广泛关注。现如今广大研究人员正在大力研究,开发钙钛矿太阳能电池,其光电转化效率正在不断突破、提高,有可能达到甚至超过单晶硅太阳电池(25.6%)的水平。其中钙钛矿太阳能电池的光电转化效率被证实已达到了20. 1%[2],这项重大的成就于2013 年度,成功被Science 评选为十大科学突破之一[3]。 一钙钛矿太阳能电池的发展历程 人们从十年以前就开始研究钙钛矿型结构化合物,刚开始由于其具有优异的光子传导性以及半导体特性,而被应用于薄膜晶体管和有机发光二极管中。[4] 2009 年,Miyasaka 等[5]首先制得钙钛矿结构的太阳能电池,它主要是以 CH3NH3PbBr和CHNHPbI为光敏化剂。这成功地跨出了钙钛矿太阳能电池发3333展的第一步,也为钙钛矿太阳能电池发展奠定了重要的基础。 2011年,Park 等[6]以CHNHPbI为光敏化剂,通过改善工艺及优化原料333组分比,成功制备了光电转化效率为6. 54%的钙钛矿太阳能电池,其结构和性能得到了一定的提升。 精品文档. 精品文档 2012年,Snaith 等[7]利用CHNHPbICl作为光吸收剂,并且将结构中的233TiO层用AlO层进行替代,最终电池的效率增加到10.9%。钛矿太阳能电池逐322渐引起了科研人员的广泛关注,进入了高速发展阶段。 2013 年,钙钛矿太阳能电池在结构以及性能上,都得到了进一步的优化。Gratzel 等[8]制备了光电转化效率为15% 的钙钛矿太阳能电池,所采用的方法是两步连续沉积法。同年,Snaith 等[9]采用双源蒸镀法成功制备了平面异质结钙钛矿太阳能电池,其光电转换效率为15. 4%。 2014 年,Han 等[10]采用全印刷的手段来制备无空穴传输层,同时用碳电极取代金属电极,成功制备了光电转化效率为11. 60%的钙钛矿太阳能电池。Kelly 等

染料敏化太阳能电池工艺以及研究现状

染料敏化太阳能电池工艺以及研究现状张安玉1309050319

染料敏化太阳能电池工艺以及研究现状 张安玉 摘要:染料敏化太阳能电池是一种新型的太阳能电池,由于其制作工艺简单,制造成本低廉,有着广泛的应用前景,是太阳能电池的重要发展方向。其中,染料敏化剂是太阳能电池的重要组成部分,已成为研究的热点。本文主要介绍染料敏化太阳电池的组成结构和工作原理,综述了染料敏化太阳能电池的研究现状,论述了光阳极上半导体薄膜的制备、改性方法;阐述了敏化染料和氧化还原电解质的要求、特点和分类。指出高性能半导体薄膜、光谱响应宽稳定性好的敏化染料以及高效全固态电解质的研发与应用是今后的主要研究方向。并对未来的发展趋势和前景进行展望。 关键词: 染料敏化太阳能电池;光阳极;敏化染料 太阳能是一种取之不尽、用之不竭的清洁能源,如何有效地将太阳能转化为电能或其他可利用的能源是物理和化学界的重大课题.其中太阳能电池是研究的热点项目,目前发展最成熟的是硅基太阳能电池,该类型电池实验室光电转换效率已接近25%,与理论值的29%非常接近。但是它对材料的纯度要求较高,制作工艺复杂,成本昂贵,这极大地限制了它的广泛应用。 目前发展成熟的太阳能电池是硅基太阳能电池,单晶硅太阳能电池的效率已达到25% 以上[1],但是它对材料的纯度要求高、制作工艺复杂、成本昂贵,这极大地限制了它的广泛应用。1991 年,瑞士洛桑高等工业学院的Gratzel 教授及其小组报道了染料敏化纳米晶太阳能电池(dye-sensitized solar cells,DSSC)的光电转化效率为7.1%[2],从此由于它简单的制作工艺、相对高的光电转化效率、低廉的成本等优点迅速成为广大科学家及科学工作者的研究热点与重点。1染料敏化太阳能电池(DSSC)的结构与原理 1.1结构 DSSC 的结构是典型的“三明治”结构,光敏染料太阳能电池的构造和原理如图1,一般是由光阳 极、敏化染料、氧化还原电解质以及对电极(通常为铂电极)组成。其中光阳极包括:透明导电基底(这里为导电玻璃)、纳米多孔半导体。 图 1 染料敏化太阳能电池的结构与工作原理示意图

(完整版)钙钛矿太阳能电池研究综述

钙钛矿太阳能电池 引言 21世纪以来,人口急剧增长,能源和环境问题日益明显。目前,人们主要消耗的是不可再生能源,例如煤、天然气、石油等化石燃料。而未来人类还需大量的能源,故人类正在积极开发新能源。 而太阳能具有清洁、无污染、分布广并且能量充分,是目前广大科研人员的研究重点。而光伏为开发太阳能的主要对象,主要其具有安全、清洁、成本低廉等优点。目前,市场上主要为第一代硅基太阳能电池,大约占了90%,其余的约10%被CdTe和GIGS为代表的第二代薄膜太阳能电池所占据。然而,硅基太阳能电池在原材料和制造上,其成本都比较高,工艺较复杂。因此,人们正在努力开发高效率、低成本的新型太阳能电池。如钙钛矿太阳能电池[1]。 近年来,钙钛矿太阳能电池由于光电效率高,工艺简单等一些优异性能而受到人们的广泛关注。现如今广大研究人员正在大力研究,开发钙钛矿太阳能电池,其光电转化效率正在不断突破、提高,有可能达到甚至超过单晶硅太阳电池(25.6%)的水平。其中钙钛矿太阳能电池的光电转化效率被证实已达到了20. 1%[2],这项重大的成就于2013 年度,成功被Science 评选为十大科学突破之一[3]。 一钙钛矿太阳能电池的发展历程 人们从十年以前就开始研究钙钛矿型结构化合物,刚开始由于其具有优异的光子传导性以及半导体特性,而被应用于薄膜晶体管和有机发光二极管中。[4] 2009 年,Miyasaka 等[5]首先制得钙钛矿结构的太阳能电池,它主要是以 CH3NH3PbBr 3和CH 3 NH 3 PbI 3 为光敏化剂。这成功地跨出了钙钛矿太阳能电池发展的 第一步,也为钙钛矿太阳能电池发展奠定了重要的基础。 2011年,Park 等[6]以CH 3NH 3 PbI 3 为光敏化剂,通过改善工艺及优化原料组 分比,成功制备了光电转化效率为6. 54%的钙钛矿太阳能电池,其结构和性能得到了一定的提升。

太阳能电池的发展历史

龙源期刊网 https://www.360docs.net/doc/ee5492074.html, 太阳能电池的发展历史 作者:张金晶 来源:《商情》2016年第26期 【摘要】相对于风能、地热能、生物能和潮汐能等新能源,太阳能以污染小、可利用率高、资源分布广泛和使用安全可靠等优点,成为最具有发展前景的能源之一。目前,随着太阳能电池制备技术的不断完善,其技术的开发应用已经走向商业化、大众化,特别是一些小功率、小器件的太阳能电池在一些地区都已经大量生产而且广泛使用。所以谁先开发光电转换效率高、制备成本低的太阳能电池就能在将来的市场抢占先机。 【关键词】太阳能单晶硅薄膜电池 引言:随着社会的飞速发展,能源是影响当今社会进步的重要因素,但是现阶段人类社会发展大部分还是依靠化石能源提供能量。可是化石能源分布极不均衡,并且不可再生,而且燃烧化石能源带来的环境污染、雾霾气候和温室效应严重影响到了人类社会的可持续发展。然而太阳能是一种可再生清洁能源,可以提供充足的能量供人类使用,因此开发新能源,是人类社会薪火相传,世代相传的重要保证。 此外,不可再生能源的过快消耗对当今的环境形势提出了新的挑战。例如如何解决温室效应,臭氧空洞等问题。有限的化石能源以及在开发利用不可再生能源的过程中出现的负面影响,不仅阻碍了人类经济的飞速发展,而且还严重影响到社会的可持续发展。因此,发展一种新型能源已然成为世界各国提升自己综合国力和倡导能源发展的一个重要手段。 1. 第一代太阳能电池 第一代太阳能电池是发展时间最久,制备工艺最为成熟的一代电池,一般按照研究对象我们将其可分为单晶硅、多晶硅、非晶硅电池。按照应用程度来说前两者单晶硅与多晶硅在市场所占份额最多,商业前景最好。 单晶硅太阳电池和多晶硅太阳电池。从单晶硅太阳能电池发明开始到现在,尽管硅材料有各种问题,但仍然是目前太阳能电池的主要材料,其比例约占整个太阳电池产量的90%以上。我国北京市太阳能研究所从20世纪90年代起开始进行高效电池研究,采用倒金字塔表面织构化、发射区钝化、背场等技术,使单晶硅太阳能电池的效率达到了19.8%。多晶硅太阳能电池的研究开发成本较低,稳定性也比较好,这两大优势引起了科研工作者的注意。其光电转换效率随着制备工艺的成熟不断提高,它达到的最高的光电转换效率为21.9%,但是它的电池效率在目前的太阳能电池中仍处于一般水平。 2.第二代太阳能电池

钙钛矿太阳能电池技术的新进展

钙钛矿太阳能电池技术的新进展 钙钛矿太阳能电池技术具有转换效率高、可与晶硅电池叠加、制备过程绿色低碳、且不受稀有金属储量限制等优势,其最大亮点是低成本。 从2009年发展至今,钙钛矿光伏电池的实验室转换效率从3.81%到25.2%,展现出极为迅速的提升趋势。 根据论文,新式钙钛矿光伏电池的单层理论效率可达31%;钙钛矿叠层电池,包括晶硅/钙钛矿的双节叠层转换效率可达35%;钙钛矿三节层电池,理论效率可达45%以上,接近于目前市场上传统光伏电池转化效率的两倍。 在单层钙钛矿技术量产方面,虽然国内外企业均起步不久,但我国企业已屡破世界纪录,其中,仅就五次刷新了钙钛矿组件转换效率的世界纪录。自主研发的钙钛矿小组件效率又创新高,在面积为19.276平方厘米的小组件上,光电转换效率突破18%,刷新了由其保持的世界最高效率。短短3年,将钙钛矿小组件效率提升了6个百分点。 值得一提的是,尽管钙钛矿电池的转换效率被持续刷新,但对电池效率却说法不一。这是由于钙钛矿电池的测试方式不同于传统光伏电池,对于设备和光源的要求较高;测试方法的不尽相同,给测试结果带来了很大误差。 经专家测算,市面上60片规格的晶硅组件,每块含铅量在16克至18克左右,而同样尺寸的钙钛矿组件,每块含铅仅为两克。钙钛矿中的铅是以铅的卤化物形式存在,所以它的物理化学特性十分稳定,并且可以采用多种方式,在组件破碎后阻止金属离子扩散到环境中。 虽然钙钛矿光伏电池具有优异的光学性能、制备过程绿色低能耗,但其走向产业化的过程中却面临着电池稳定性问题的挑战。 传统配方、工艺下钙钛矿光伏电池在连续工作一段时间后会出现明显的效率衰减,其在使用过程中受到的包括湿、热、电场和机械应力在内的老化应力会使未经优化的钙钛矿材料出现本征性蜕变,致使转换效率下降,制约了光伏电池的寿命。 目前这一问题已经有了解决方案。2019年12月,钙钛矿组件在第三方检测实验室通过了全球首次IEC稳定性测试,此次全球首例钙钛矿组件通过商业化光伏组件环境可靠性测试,标志着钙钛矿这一新兴技术正式走出实验室,迈向市场。 根据检测报告显示,在加速老化情况下,他们的钙钛矿组件衰减率小于5%。在器件寿命方面,按晶硅组件的国际标准预测,通过测试后的钙钛矿组件使用寿命为20年左右。

太阳能电池发展现状及存在的主要问题

太阳能电池发展现状及存在的主要问题 晨怡热管2008-10-17 23:05:45 一、2005年国际太阳能电池产业发展情况 2005年,世界太阳能电池总产量1656MW,其中日本仍居首位,762M W,占世界总产量的46%,欧洲为464M W,占总产量的28%,美国156M W,占总产量的9%,其他274MW,占总产量的17%。 2004年全球前14位太阳能电池公司总产量达到1055MW,占当年世界总产量的88.3%,近五年来,日本Sharp公司一直领先,2004年产量达到324MW,见表1。

以2004年数据分析,各种太阳能电池中硅基太阳能电池占总产量的98%,晶体硅太阳能电池占总产量的84.6%,多晶硅太阳能电池占总量的56%,见表2。

2005年,世界光伏市场安装量1460M W,比2004年增长34%,其中德国安装最多,为837MW,比2004年增长53%,占世界总安装量的57%;欧洲为920MW,占总世界安装量的63%,日本安装量292M W,增幅为14%,占世界总安装量的20%;美国安装量为102MW,占世界总安装量的7%,其他安装量为146M W,占世界总安装量的10%。

至2005年全世界光伏系统累计安装量已超过5GW,2005年一年内投资太阳能电池制造业的资金超过10亿美元。现在,一个世界性的问题是制造太阳能的电池的硅原材料紧缺,尽管2005年全世界硅原材料供应增长了12%,但仍然供不应求,国际上长期供货合同抬价25%。持续的硅材料紧缺将对2006年太阳能电池生产产生较大的影响,预计2006年世界太阳能电池产量的增幅将不限制在10%左右。要解决硅材料的紧缺问题预计将需要5年以上的时间。 根据光伏市场需求预测,到2010年,全世界光伏市场年安装量将在3.2G到3.9GW之间,而光伏工业年收入将达到186美元到231亿美元。 日本和欧美各国都提出了各自的中长期PV发展路线图。 按日本的PV路线图(TV Roadmap 2030),到2030年PV电力将达到居民电力消耗的50%(累计安装容量约为100GW),具体的发展目标见表3和表4。

浅谈钙钛矿太阳能电池技术与发展

浅谈钙钛矿太阳能电池技术与进展 全华锋BY619102 摘要:基于钙钛矿材料(CH3NH3PbI)制备的太阳能电池的效率由2009年的3.8%增长到了目前的20.2%,因为其较高的光吸收系数,较低的成本以及易于制备等优势引起了广泛的关注。钙钛矿材料不仅可以作为光吸收层,还可以作为电子传输层(ETM)和空穴传输层(HTM),由此可以制备不同结构的钙钛矿太阳电池:介孔结构、介观超结构、平面结构和有机结构等。除此之外,钙钛矿材料的制备方法的多样性也使其更具吸引力,目前已有一步溶液法、两步连续沉积法、双源共蒸发法和溶液—气相沉积法。本文主要介绍钙钛矿太阳电池的发展历程、工作原理、薄膜的制备方法以及各层的作用,最后对钙钛矿太阳电池面临的问题和发展前景进行介绍。 关键词:钙钛矿材料;太阳电池;光吸收层 1.钙钛矿太阳电池的发展历程 随着人类社会的不断发展与进步,由工业发展带来的能源和环境问题日益明显,化石燃料(石油、煤炭、天然气等)的有限储量及其燃烧带来的全球变暖问题使人们不得不去寻找和开发环保且可再生的新型能源。太阳能来源丰富,取之不尽,用之不竭,而且太阳能绿色环保无污染,是未来有希望获得大规模应用的新能源之一,受到国际社会的广泛关注与研究。将太阳能转换为电能的重要器件之一就是太阳电池。 2009年,日本人Kojim等首先将有机-无机杂化的钙钛矿材料应用到量子点敏化太阳电池中,制备出第一块钙钛矿太阳电池,并实现了 3.8%的效率。但这种钙钛矿材料在液态电介质中很容易溶解,该电池仅仅存在了几分钟级宣告失败,随后,Park等人于2011年将CH3NH3PbI纳米晶粒改为2-3nm,效率达到了6.5%。由于仍然采用液态电解质,仅仅经过10min,电池效率就衰减了80%。为解决钙钛矿的稳定性问题,2012年Kim等人将一种固态空穴传输材料(spiro-OMeTAD)引入到钙钛矿太阳电池中,制备出第一块全固态钙钛矿太阳电池,电池效率达到了9.7%。即使未经封装,电池在经过500小时后,效率衰减很小。空穴传输层(HTM)的使用,初步解决了液态电解质钙钛矿太阳电池不稳定和封装困难的问题。随后Snaith等首次将Cl元素引入到钙钛矿中,并使用Al2O3代替TiO2,证明钙钛

异质结太阳能电池综述

异质结太阳能电池研究现状 一、引言: 进入21世纪,传统的化石能源正面临枯竭,人们越来越认识到寻求可再生能源的迫切性。据《中国新能源与可再生能源发展规划1999白皮书统计,传统化石能源随着人们的不断开发已经趋于枯竭的边缘,各种能源都只能用很短的时间,石油:42年,天然气:67年,煤:200年。而且,由于大量过度使用这些能源所造成的环境污染问题也日益严重,每年排放的二氧化碳达210万吨,并呈上升趋势,二氧化碳的过度排放是造成全球气候变暖的罪魁祸首;空气中大量二氧化碳、粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。正是因为这些问题的存在,人们需要一种储量丰富的洁净能源来代替石油等传统化石能源。而太阳能作为一种可再生能源正符合这一要求。太阳能每秒钟到达地面的能量高达80万千瓦,若把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量就可达5.6×1012千瓦小

时。而我国太阳能资源非常丰富,理论储量达每年1700亿吨标准煤,太阳能资源开发利用的前景非常广阔。在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。太阳能电池的研制和开发日益得到重视。本文简要地综述了各种异质结太阳能电池的种类及其国内外的研究现状。 二、国外异质结太阳能电池 1、TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池 2005年5月份,Kohshin Takahashi等发表了TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池,电池结构如图1。 图1 ITO/PEDOT:PSS/CuPc/PTCBI/Al结构太阳能电池 简图 图2 TCO/TiO2/P3HT/Au电池结构示意图 同时采用了卟啉作为敏化剂吸收光子,产生的电子注入

染料敏化太阳能电池学术发展简史

染料敏化太阳能电池学术发展简史 2016-05-07 13:13来源:内江洛伯尔材料科技有限公司作者:研发部 基于钌化合物的染料敏化太阳能电池 1839年,Becquerel发现氧化铜或卤化银涂在金属电极上会产生光电现象,证实了光电转换的可能。 1960年代,H.Gerischer,H.Tributsch,Meier及R.Memming发现染料吸附在半导体上并在一定条件下产生电流的现象,成为光电化学电池的重要基础。 1980年代, 光电转换研究的重点转向人工模拟光合作用,美国州立Arizona大学的Gust和Moore研究小组成功模拟了光合作用中光电子转换过程,并取得了一定的成绩。Fujihia等将有机多元分子用L B 膜组装成光电二极管,开拓了这方面的工作。 1970年代到90年代,R.Memming,H.Gerischer,Hauffe,H.Tributsh等人大量研究了各种染料敏化剂与半导体纳米晶间光敏化作用,研究主要集中在平板电极上,这类电极只有表面吸附单层染料,光电转换效率小于1%。 1991年,Graetzel M.于《Nature》上发表了关于染料敏化纳米晶体太阳能电池的文章以较低的成本得到了>7%的光电转化效率,开辟了太阳能电池发展史上一个崭新的时代,为利用太阳能提供了一条新的途径。 1993年,Graetzel M.等人再次研制出光电转换效率达10 %的染料敏化太阳能电池, 已接近传统的硅光伏电池的水平。 1997年,该电池的光电转换效率达到了10%-11%,短路电流达到18mA/cm2,开路电压达到720mV。 1998年,采用固体有机空穴传输材料替代液体电解质的全固态Gr?tzel电池研制成功,其单色光电转换效率达到33%,从而引起了全世界的关注。 2000年,东芝公司研究人员开发含碘/碘化物的有机融盐凝胶电解质的准固态染料敏化纳米晶太阳能电池,其光电能量转换率7.3 % 。 2001年, 澳大利亚STA 公司建立了世界上第一个中试规模的DSC 工厂。 2002 年, STA建立了迄今为止独一无二的面积为200m2 DSC 显示屋顶,集中体现了未来工业化的前景;PengWang等人用含 1-methyl-3-propylimidazoliumiodide 和poly(viylidenefloride

太阳能电池的发展与趋势

《物理演示实验》结课论文题目:太阳能电池的发展与趋势 学生姓名: 学号: 专业班级: 2013年 5月25日

摘要:现代社会应是节约型的社会,而社会生活也应是节约能耗的生活。而太阳能作为一种取之不尽的新型环保能源已成为世界各国世界上能源探究工作中的一个重要课题。是我国在经济目前状况下采取的较为简单、经济、环保、可靠的节能办法。近些年,随着我国经济的飞速发展、科技水平的快速提升,太阳能技术已逐渐普及、应用到各个行业领域乃至人们的生活中,而市面上也涌现出了大量的太阳能热水器、太阳能发电设备、太阳能照明器具等产品。其中,太阳能电池的应用,不仅充分发挥了太阳能技术环保、节能、可再生的特点,同时也有效满足了当代社会发展、科技进步的需求。本文就太阳能电池新发展的新概念及新的方向作简要的分析、探讨。 关键字:太阳能新能源太阳能电池 一、引言 太阳内部进行着剧烈的由氢聚变成氦的核反应,并不断向宇宙空间辐射出巨大的能量,可以说是“取之不尽、用之不竭”的能源。地面上的太阳辐射能随时间、地理纬度、气候变化,实际可利用量较低,但可利用资源仍远远大于满足现在人类全部能耗及2100年后规划的能源利用量?。地球上太阳能资源一般以全年总辐射量[kJ/(m^2·年)]和全年日照总时数表示。就全球而言,美国西南部、非洲、澳大利亚、中国西藏、中东等地区的全年总辐射量或日照总时数最大,为世界太阳能资源最丰富地区。我国陆地面积每年接收的太阳辐射总量3.3×10^3~8.4×10^6 kJ/(m^2·年)之间,相当于2.4×10^4亿t标煤,属太阳能资源丰富的国家之一。全国总面积2/3以上地区年日照时数大于2200h,日照在5×10^6kJ/(m^2·年)以上。我国西藏、青海、新疆、甘肃、宁夏、内蒙古高原的总辐射量和日照时数均为全国最高,属太阳能资源丰富地区;除四川盆地、贵州资源稍差外,东部、南部及东北等其他地区为资源较富和中等区,所以在我国太阳能有很大的发展前景。 随着新型太阳能电池的涌现,以及传统硅电池的不断革新,新的概念已经开始在太阳能电池技术中显现,从某种意义上讲,预示着太阳能电池技术的发展趋势。通过对太阳能电池的发展背景、现状进行分析,可将太阳能电池发展的新概念、新方向归纳为薄膜电池、柔性电池、叠层电池、以及新概念太阳能电池。 二、太阳能电池概况 1、太阳能电池定义 太阳能电池就是把太阳光转化为电的一种器件,在一般的情况下(注意条件),太阳能电池 的效率随光强增加而增加的。再进一步说就是太阳能电池效率和安装地的综合气候条件有关系。2、太阳能电池的分类 不同的材料对光的吸收系数不同,禁带宽度也不同,量子效率自然也不同,电池效率自然也 不同了。一般来说,单晶硅/多晶硅对光的系数系数远小于非晶硅的,所以非晶硅太阳能电池厚度仅仅有单晶硅/多晶硅厚度的百分之一即可较好的吸收太阳光。另外理论上讲GaAs太阳能电池的极限效率要大于其他太阳能电池的极限效率,因为GaAs太阳电池的禁带宽度在1.4ev,和地面太阳光光谱能量的最值最为接近。根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池3、功能高分子材料制备的太阳能电池4、纳米晶太阳能电池等。硅是最理想的太阳能电池材料,这是太阳能电池以硅材料为主的主要原因。在以上电池中单晶硅太阳能电池转换效率最高,技术也最为成熟,光电转化效率可达23.3%。随着新材料的不断开发和相关技术的发展,以其它材料为基础的太阳能电池也愈来愈显示出诱人的前景。目前国际成本大规模生产技术的研究主要集中在多晶硅、大面积薄膜非晶硅、CdTe电池、CIS 电池的制造技术、III-V族化合物半导体高效光电池,非晶硅及结晶硅混合型薄膜光电池等方面。 三、太阳能电池发展综述 长期以来,世界各国在大力发展经济的同时,各行业领域的过度生产消耗了大量的能源,倘若继续按照此种趋势发展,在未来的五十年里,能源危机将是影响人类生活、阻碍社会进步的首要问题。目前,不同国家、地区、种类的全部能源中,能够使用的化石能源占90%以上,若是以现阶段世界各国的能源消耗状态发展到二十一世纪的中期,可供使用的能源储备、化石能源所占比例将减少近50%,之后的能源需求必将是以可再生能源、核能为主。基于此种趋势,预计到2100年,在人类所使用的能源中,可再生资源将占有30%以上。可供开发、使用的可再生能源主要有地热能、生

钙钛矿太阳能电池的研究进展

钙钛矿太阳能电池的研究进展 人们对太阳能这一新型能源认识的不断加深,促使以太阳能作为主要能源的各类产品得以广泛应用和发展,其中,钙钛矿太阳能电池则是人们对太阳能这一新型能源不断研究的产物。为了进一步提高人们对钙钛矿太阳能的认识,文章通过对钙钛矿太阳能中的钙钛矿材料进行阐述,进而对钙钛矿太阳能电池中作为重要的部分,即光吸收层的制备方法和钙钛矿太阳能电池的结构方面的研究作出了系统的说明和分析。 标签:钙钛矿;光吸收层;太阳能电池 前言 长期以来,低成本且高转化率的光伏器件一直是光伏器件领域研究的重要方向,自2009年钙钛矿太阳能电池产生后,钙钛矿太阳能电池得到了国际学术界的高度认可和重视。作为一种新型的太阳能电池,钙钛矿太阳能电池无论在其吸光材料还是内部结构方面均具有良好的优势。基于此,加强对钙钛矿太阳能电池光吸收层以及器件结构的研究,无疑成为了理论界和学术界需要共同开展的关键工作。 1 钙钛矿材料概述 对钙钛矿太阳能电池的光吸收层进行分析可知,其实质上是一种有机—无机的杂化材料,其化学式为CH3NH3PbX3,此材料的晶胞结构为典型的钙钛矿晶体结构,其中,PbX6形成八面体,且相互接触沟通构成具有三维结构的框架,而CH3NH3+则被嵌入其内。由于钙钛矿太阳能电池的光吸收层具有电致发光与光致发光的特性,不仅具有直接带隙和较高的光吸收系数,而且还具有良好的截流子输运性能和較高的缺陷容忍度。还需说明的是,钙钛矿光吸收层的禁带宽度同AM1.5光照下的最佳带隙值,即1.4eV极为接近,但却比Br和Cl的含I(碘)的钙钛矿材料在水蒸气条件中更易分解,故在制备过程中可借助Br和Cl元素取代部分CH3NH3PbX3能够提高其抗分解的能力[1]。 2 钙钛矿太阳能电池光吸收层制备方法 就现阶段而言,钙钛矿太阳能电池的高质量光吸收层的制备方法主要以溶液法和共蒸发法为主。 2.1 基于单步法与两步法的溶液法 溶液法主要包括了单步法和两步法两种。其中,单步法通常以一定的化学计量比将CH3NH3X以及PbX2共同溶解在溶剂(N-二甲基甲酰胺)当中从而构成前驱体溶液,而后,将此前驱体溶液直接旋涂在TiO2上,并将其置于100℃的N2手套箱内进行干燥。在整个干燥过程中,前驱体溶液中的发生CH3NH3X与

太阳能光伏电池论文中英文资料对照外文翻译文献综述

光伏系统中蓄电池的充电保护IC电路设计 1.引言 太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。太阳能发电已经在很多国家和地区开始普及,太阳能照明也已经在我国很多城市开始投入使用。作为太阳能照明的一个关键部分,蓄电池的充电以及保护显得尤为重要。由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠,在电池的整个寿命期间电压稳定且不需要维护等优点,所以在各类需要不间断供电的电子设备和便携式仪器仪表中有着广泛的应用。采用适当的浮充电压,在正常使用(防止过放、过充、过流)时,免维护铅酸蓄电池的浮充寿命可达12~16年,如果浮充电压偏差5%则使用寿命缩短1/2。由此可见,充电方式对这类电池的使用寿命有着重大的影响。由于在光伏发电中,蓄电池无需经常维护,因此采用正确的充电方式并采用合理的保护方式,能有效延长蓄电池的使用寿命。传统的充电和保护IC是分立的,占用而积大并且外围电路复杂。目前,市场上还没有真正的将充电与保护功能集成于单一芯片。针对这个问题,设计一种集蓄电池充电和保护功能于一身的IC是十分必要的。 2.系统设计与考虑 系统主要包括两大部分:蓄电池充电模块和保护模块。这对于将蓄电池作为备用电源使用的场合具有重要意义,它既可以保证外部电源给蓄电池供电,又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护,将充电和保护功能集于一身使得电路简化,并且减少宝贵的而积资源浪费。图1是此Ic在光伏发电系统中的具体应用,也是此设计的来源。 免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命,影响蓄电池寿命的因

素有充电速率、放电速率和浮充电压。某些厂家称如果有过充保护电路,充电率可以达到甚至超过2C(C为蓄电池的额定容量),但是电池厂商推荐的充电率是C/20~C/3。电池的电压与温度有关,温度每升高1℃,单格电池电压下降4 mV,也就是说电池的浮充电压有负的温度系数-4 mV/℃。普通充电器在25℃处为最佳工作状态;在环境温度为0℃时充电不足;在45℃时可能因严重过充电缩短电池的使用寿命。要使得蓄电池延长工作寿命,对蓄电池的工作状态要有一定的了解和分析,从而实现对蓄电池进行保护的目的。蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态。但是由于不同的过放电电流对蓄电池的容量和寿命所产生的影响不尽相同,所以对蓄电池的过放电电流检测也要分别对待。当电池处于过充电状态的时间较长,则会严重降低电池的容量,缩短电池的寿命。当电池处于过放电状态的时间超过规定时间,则电池由于电池电压过低可能无法再充电使用,从而使得电池寿命降低。 根据以上所述,充电方式对免维护铅酸蓄电池的寿命有很大影响,同时为了使电池始终处于良好的工作状态,蓄电池保护电路必须能够对电池的非正常工作状态进行检测,并作出动作以使电池能够从不正常的工作状态回到通常工作状态,从而实现对电池的保护。 3.单元模块设计 3.1充电模块 芯片的充电模块框图如图2所示。该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路。 该模块内含有独立的限流放大器和电压控制电路,它可以控制芯片外驱动器,驱动器提供的输出电流为20~30 mA,可直接驱动外部串联的调整管,从

钙钛矿电池和燃料敏化电池综述

CHANGSHA UNIVERSITY OF SCIENCE & TECHNOLOGY 新能源材料(论文) 文献综述 题目:染料敏化太阳能电池与 钙钛矿太阳能电池概述 学生姓名: 学号: 班级: 专业: 指导教师: 2015年1月4日

染料敏化太阳能电池钙钛矿太阳能电池概述 一、引言 进入 21 世纪,世界人口的剧烈增长和环境污染的日益严重,还有能源的枯竭以及生态环境的破坏,使人类对能源尤其是清洁的新能源的开发利用有了更大的需求。太阳能是一种可再生能源,并且具有取之不尽,功率巨大,使用安全等优点,引起了人们极大的关注,而太阳能电池是开发利用太阳能最有效的方法之一。近年来太阳能电池的产量以每年 30%的速度增长。预计到本世纪中叶,它将占世界总发电量的 15~20%。 太阳能电池是利用太阳光和材料相互作用直接产生电能的,是对环境无污染的可再生能源。它的应用可以解决人类社会发展在能源需求方面的问题。太阳能是一种储量极其丰富的洁净能源,太阳每年向地面输送的能量高达 3×1024焦耳,相当于世界年耗能量的 1.5 万倍。因此太阳能电池作为人们利用可持续的太阳能资源,是解决世界范围内的能源危机和环境问题的一条重要途径。 然而,提高太阳能电池的转化效率以及降低成本一直是学者们努力的方向。其中,染料敏化太阳能电池和钙钛矿太阳能电池以其低价的成本和较高的转化效率获得了科学家们的青睐。 摘要: 关键词:染料敏化太阳能电池纳米多孔半导体单一敏化染料准固态电解质固态电解质染料敏化太阳能电池的效率钙钛矿太阳能电池钙钛矿材料

CH3NH3PbX3的制备方法钙钛矿太阳能电池研究进展 二、染料敏化太阳能电池的相关研究 2.1 工作原理 当太阳光照射在染料敏化太阳能电池上,染料分子中基态电子被激发,激发态染料分子将电子注入到纳米多孔半导体的导带中,注入到导带中的电子迅速富集到导电玻璃面上,传向外电路,并最终回到对电极上。而由于染料的氧化还原电位高于氧化还原电解质电对的电位,这时处于氧化态的染料分子随即被还原态的电解质还原。然后氧化态的电解质扩散到对电极上得到电子再生,如此循环,即产生电流。电池的最大电压由氧化物半导体的费米能级和氧化还原电解质电对的电位决定。 2.2 染料敏化太阳能电池的研究现状 (1)光阳极上纳米多孔半导体的研究进展 DSSC 光阳极上的半导体材料多采用纳米多孔TiO2,它是染料分子的载体,同时分离并传输电荷。目前光阳极的研究重点主要是两方面:①寻找制备半导体光阳极薄膜时,可以增大 TiO2比表面积和改善 TiO2表面活性的方法;②由于电子在TiO2薄膜中电子的传输阻力大,影响电池转换效率的进一步提高,故寻找可以替代 TiO2的其它半导体材料。 制备光阳极纳米多孔薄膜的方法很多,包括溶胶-凝胶法,粉末涂敷法、水热法、液相沉积法、化学气象沉积法、电化学法等。其中粉末涂敷法在工业生产中称为丝网印刷法,具有工艺简单、适合大规模

太阳能电池的种类特点及发展趋势word资料14页

太阳能电池的种类特点及发展趋势 一、种类 按照材料分类 ?硅太阳能电池:以硅为基体材料(单晶硅、多晶硅、非晶硅) ?化合物半导体太阳能电池:由两种或两种以上的元素组成具 半导体特性的化合物半导体材料制成的太阳能电池(硫化镉、 砷化稼、碲化镉、硒铟铜、磷化铟) ?有机半导体太阳能电池:用含有一定数量的碳-碳键且导电 能力介于金属和绝缘体之间的半导体材料制成的电池(分子 晶体、电荷转移络合物、高聚物) 单晶硅太阳电池 特点 硅系列太阳能电池中,单晶硅的光电转换效率最高,技术也最成熟,高性能单晶硅电池是建立在高质量单晶硅材料和相关成熟的加工工艺基础上。提高转换效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。单晶硅太阳能电池的转换效率无疑是最高的,在大规模应用和工业生产中仍旧占据主导地位,但由于受单晶硅材料价格及相应繁琐的电池工艺影响,致使单晶硅成本据高不下,严重影响了其广泛应用。 单晶硅太阳能电池的特点是对于大于0.7μm的红外光也有一定的灵敏度。以p型单晶硅为衬底,其上扩散n型杂质的太阳能电池与n型单晶硅为衬底的太阳能电池相比,其光谱特性的峰值更偏向左边(短波长一方)。它对从蓝到紫色的短波长(波长小于0.5μm)的光有较高的灵敏度,但其制

法复杂,成本高,仅限于空间应用。此外,带状多晶硅太阳能电池的光谱特性也接近于单晶硅太阳能电池的光谱特性。 1. 多晶硅太阳电池 特点 单晶硅太阳能电池的缺点是制造过程复杂,制造电池的能耗大。为解决这些问题,用浇铸法或晶带法制造的多晶硅太阳能电池的开发取得了进展。在1976年证明用多晶硅材料制作的太阳能电池的转换效率已超过10%,对大晶粒的电池,有报道效率可达20%。这种低成本的多晶硅太阳能电池已经大量生产,目前,它在太阳能电池工业中所占的分额也相当大。 但是多晶硅材料质量比单晶硅差,有许多 晶界存在,电池效率比单晶硅低; 晶向不一致,表面织构化困难。 单晶、多晶与非晶的区别 多晶:短程有序(团体有序),成百上千个原子尺度,通常是在微米的量 铸造多晶硅 ?结晶形态分 单晶硅 多晶硅 非晶硅 高纯多晶硅 薄膜多晶硅 带状多晶硅 区熔单晶硅 直拉单晶硅

钙钛矿太阳能电池材料的研究进展

第46卷第3期材料工程V。1.46 No.3 2018 年3月第 142 —150 页Journal of MaterialsEngmeering Mar. 2018 pp.142-150 钙钛矿太阳能电池材料的 研究进展 Research Progress on Materials for Perovskites Solar Cells 邱婷,苗晓亮,宋文佳,楼冬,张树芳 (南京理工大学材料科学与工程学院,南京210094) QIU Ting,MIAO Xiao-liang,SONG Wen-jia, LOU Dong,ZHANG Shu-fang (School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094, China) 摘要:钙钛矿太阳能电池的研究在近5年内迅速发展,已经成为非常有活力的研究领域,在较短的时间内电池的效率得 到了显著的提升。钙钛矿太阳能电池中钙钛矿材料的研究对于提高电池的效率有着重要的意义。本文综述了近年来在 钙钛矿层制备方法、新材料的合成等方面存在的主要问题和研究进展。对各种制备方法的特点及改进优化进行了详细 的介绍,并分析了新材料合成的必要性和所面临的问题。最后,指出了在降低钙钛矿毒性、大面积制备钙钛矿太阳能电 池,以及降低成本等方面的研究前景,为今后高效、稳定的钙钛矿太阳能电池的研究提供方向。 关键词:钙钛矿;太阳能电池;制备;薄膜 doi: 10.11868/-.issn.1001-4381. 2015. 001329 中图分类号:O475 文献标识码:A文章编号:1001-4381(2018)03-0142-09 Abstract:Perovskite solar cells(PSCs)have been developed rapidly as one of the most growing photovoltaic technologies in the last five years.The power conversion efficiency(PCE)of the solar cells has been unprecedentedly increased over the relatively short period.It is of great signii-cance to study the perovskite materials in this kind of solar cells for improving the efficiency.The most focused issues asw ell as themain progress in varied fabrication techniques and synthesis of new materials in recent years were reviewed in this paper.The characteristics and improvements of varied fabrication techniques are introduced in detail,the necessity and the problems facing for new materials synthesis were analyzed.Finally,a perspective view on reducing the toxicity of perovskite,preparing large-scale perovskite solar cells,and the cost reduction was given to p rovide the direction ture research of high-efficiency and stable perovskite solar cells. Key words:perovskite;solar cell;fabrication;thin film 近几十年来,随着工业发展和人口増长,全球能源 需求不断増加,特别是对传统能源,如石油、煤炭和天 然气的依赖仍在继续。到目前为止,超过80%的能源 消耗来自化石燃料,这导致了环境污染和气候变暖等 问题。更重要的是,化石燃料是不可再生能源,未来终 将耗尽。而现代社会的发展需要更多低污染、可持续 的能源。太阳能是人类取之不尽、用之不竭的可再生 能源,同时也是清洁能源,在使用过程中不会产生任何 的环境污染。利用太阳能进行发电是近些年来发展最 快、最具活力的研究领域。人们已经研制和开发了各 种太阳能电池。目前,硅基太阳能电池,特别是单晶硅太阳能电池由于转化效率较高已经实现了商品化,并 在大规模应用和工业生产中占据主导地位,但由于其 高昂的材料价格以及繁琐的制备工艺,使得其成本居 高不下,而大幅度降低其成本又非常困难[1]。为此,发 展硅电池的替代产品是非常有必要的。在这种情况 下,成本相对较低的多晶硅薄膜太阳能电池和叠层(多结)非晶硅太阳能电池应用而生。但由于在多晶硅薄 膜电池的生产工艺中,需要高温、高真空的气相沉积过 程,成本仍然较高。对于成本更为低廉的非晶硅太阳 能电池来说,非晶硅大约1. 7e V的光学带隙只能利用 波长在730n m以下的太阳光辐射,明显减少了对近红

相关文档
最新文档