实变函数论习题选解全

实变函数论习题选解全
实变函数论习题选解全

《实变函数论》习题选解

一、集合与基数

1.证明集合关系式:

(1))()()()(B D C A D C B A --?---Y ; (2))()()()(D B C A D C B A Y I I -=--; (3)C B A C B A Y )()(-?--;

(4)问)()(C B A C B A --=-Y 成立的充要条件是什么?

证 (1)∵c

B A B A I =-,c

c c B A B A Y I =)((对偶律),

)()()(C A B A C B A I Y I Y I =(交对并的分配律)

, ∴)()(

)()()()(D C B A D C B A D C B A c c c

c c Y I I I I I ==---第二个用

对偶律

)()()()()()(B D C A D B C A D B A C B A c c c c c --=?=Y I Y I I I Y I I 交对并

分配律

.

(2))()()

()()()(c c c

c

D B C A D C B A D C B A I I I I I I I ==--交换律

结合律

)()()()(D B C A D B C A c Y I Y I I -==

第二个用对偶律

.

(3))()()

()()(C A B A C B A C B A C B A c c

c

c I Y I Y I I I =

==--分配律

C B A C B A c Y Y I )()(-=?.

(4)A C C B A C B A ??--=-)()(Y .

证 必要性(左推右,用反证法):

若A C ?,则C x ∈? 但A x ?,从而D ?,)(D A x -?,于是)(C B A x --?; 但C B A x Y )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上,

∵A C ?,∴C C A =I ,如图所示:

故)()(C B A C B A --=-Y .

2.设}1 ,0{=A ,试证一切排列

A a a a a n n ∈ ),,,,,(21ΛΛ

所成之集的势(基数)为c .

证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n ΛΛ为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ΛΛ,令ΛΛn a a a a f 21.0)(=,特别, ]1 ,0[0000.0)0(∈==ΛΛf ,]1 ,0[1111.0)1(∈==ΛΛf ,

即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ΛΛn a a a ,则f 是一一对

应(双射),从而集合E 与集合]1 ,0[对等(即E ~]1 ,0[),而对等的集合有相同的基数,故c E ==]1 ,0[.

3.证明:整系数多项式的全体是可列的(可数的).

证 对任一N ∈n ,n 次多项式n n n x a x a x a a P ++++=Λ2210对应于一个序列:

n a a a a ,,,,210Λ,而每个)0(n i a i ≤≤取自可数集N N Z Y Y }0{-=,因此,全体n 次

整系数多项式n P 是有限个(1+n 个)可数集之并集,仍是可数的.故全体整系数多项式所构成的集合Y N

∈=

n n P P 就是可数个可数集之并集,由定理1.3.8可知:它仍是可数的.

4.设]1,0[C 表示区间]1,0[上一切连续函数所成之集,试证它的势为c .

证 首先,对任意实数R ∈k ,看作常值连续函数,]1 ,0[C k ∈,

∴ ]1 ,0[C ≤R ,即 ]1 ,0[C c ≤;

另一方面,实数列全体之集}),,,,,{(21R ∈=i n a a a a E ΛΛ的基数c E =,为证

c C ≤]1 ,0[,只需证]1,0[C 与E 的一个子集对等即可.事实上,把]1 ,0[中的有理数

]1 ,0[I Q 排列成 ΛΛ,,,,21n r r r .对任何]1 ,0[C f ∈,则f 由它在ΛΛ,,,,21n r r r 处的

值ΛΛ),(,),(),(21n r f r f r f 所完全确定.这是因为]1 ,0[ 在Q 中是稠密的,即对任何

]1 ,0[∈x ,存在上述有理数列的一个子列)(∞→→k x r k n ,由f 的连续性知:

)(lim )(k n k r f x f ∞

→=.

现在,作映射E C →]1 ,0[:?,)),(,),(),(()(21ΛΛαn r f r f r f x f ,则?是单射,而集E C f r f r f r f A n ?∈=}]1 ,0[)),(,),(),({(21ΛΛ是全体实数列E 的一个子集,故

]1 ,0[C ~E A ?,即 c C ≤]1 ,0[.综上可知:c C =]1 ,0[.

附注 ①若?=21A A I ,?=21B B I ,又1f :1A ~1B ,2f :2A ~2B .则存在

f :21A A Y ~21B B Y ;假如21A A ?,21B B ?,21,f f 的意义同前,问是否存在 12A A -到12B B -的一一对应?

解 若?=21A A I ,?=21B B I ,令??

?∈∈=,

),(,

),()(2211A x x f A x x f x f 则)(x f 就是2

1A A Y

到21B B Y 的一一对应.

若21A A ?,21B B ?,则12A A -与12B B -之间不一定存在一一对应.例如:

} , ,,2 ,1{ , }, ,4 ,3{ , },, ,3 ,2{2211ΛΛΛΛΛΛn B A n B n A ====,

),3 ,2( 1:1Λα=+n n n f ,),2,1( :2Λα=n n n f ,

则1f 是1A 到1B 的一一对应,2f 是2A 到2B 的一一对应.

但}2 ,1{ },1{1212=-=-B B A A ,显然12A A -与12B B -之间不存在任何一一对应.

②几个常见的一一对应:

(ⅰ)) ,(b a ~R ,()

) ,( , tan )(2

b a x x f a b a

x ∈-?=--ππ; )1 ,0(~R ,)1 ,0( , 1)(2

∈-=

x x

x

x f ; (ⅱ))1 ,0(~]1 ,0[,将)1 ,0(中的有理数排列为ΛΛ , , , ,21n r r r ,而]1 ,0[中的有理数排列为ΛΛ , , , , ,1 ,021n r r r .作其间的对应f 如下:

?????

?

?>====+,中无理数时是当当当当)1 ,0(

, ),2( ,,

,1 , ,0 )(221x x n r x r r x r x x f n n 则)(x f 是)1 ,0(与]1 ,0[间的一一对应. 注意 这种)(x f 一定不是连续的(为什么?).

(ⅲ)N N ?~N ,()N N ?∈-=-),( , )12(2),(1

j i j j i f i .

这是因为任一自然数均可唯一表示为q n p

?=2(p 非负整数,q 正奇数),而对非负整

数p ,正奇数q ,又有唯一的N ∈j i ,使得12 ,1-=-=j q i p . (ⅳ)}]1 ,0[)()({上的一切实函数为x f x f F =,则c

F 2=. 证 ο

1.c

F 2≥;

设E 为]1 ,0[的任一子集,)(x E χ为E 的特征函数,即?

??-∈∈=.]1,0[ ,0, ,1)(E x E x x E χ

当21 E E 、均为]1 ,0[的子集,21 E E ≠时,)(1x E χ≠)(2x E χ.记

}]1 ,0[{?=E E M ,}]1 ,0[)({?=X E x E χ,

则M ~X ,c M 2==X .而F ?X ,从而有F ≤X ,即F c ≤2. ο2.c F 2≤.

对每一F x f ∈)(,有平面上一点集 }]1 ,0[ ),(),{(∈==x x f y y x G f (即f 的图形)与之对应.记 })({F x f G G f F ∈=,则F ~F G ,F G F = . F G 为平面上一切点集全体B 的子集,而c B 2=,从而有c F G F 2≤=. 综合ο1,ο2立知 c

F 2=.

附注 此题提供了证明两个无限集对等的一般方法,这便是Cantor-Bernstein 定理. 其特殊情况是:若C B A ??,而A ~C ,则B ~C (此结果更便于应用). 5.试证任何点集的内点全体组成的集是开集.

证 设集F 的内点集为0F (称为F 的内部),下证0

F 为开集.

F x ∈?,由内点的定义,存在x 的邻域F I x x x ?=),(βα.现作集Y F

x x I G ∈=

,则

显然G 为开集,且G F

?0

.另一方面,对任意G y ∈,存在0x I ,使得F I y x ?∈0,

所以,y 为F 的内点,即0

F y ∈,也就是说0

F G ?.综上有G F =0为开集.

6.开映射是否连续?连续映射是否开?

解 开映射未必连续.例:在每个区间) ,2 ,1 ,0( ]1 ,[Λ±±=+n n n 上作Cantor 三分集

n P ,且令n n P n n G -+=]1 ,[,而Y +∞-∞

==

n n P P ,Y +∞

-∞

==n n G G ,则G 为开集.又设G 的构

成区间为} ,3 ,2 ,1 ), ,{(Λ=k b a k k .(教材P21例1中的Cantor 集P 即本题中的0P )

现在R 上定义函数 ??

?

??∈=∈---=, ,0 , ,3 ,2 ,1 ), ,( )],21(tan[)(P x k b a x a b x b x f k k k k k Λπ

则f 在R 上映开集为开集,但f 并不连续.事实上,若开区间) ,(βα含于某个构成区间

) ,(k k b a 内,则f 就映) ,(βα为开区间) )]21(tan[ )],21(tan[ (k

k k k k k a b b a b b ------β

παπ;

若开区间) ,(βα中含有P 中的点,则f 就映) ,(βα为R .然而P 中的每个点都是)

(x f

的不连续点.

又连续映射未必为开映射.例:2

)(x x f =在R 上连续,但开集)1 ,1(-的像为)

1 ,0[非开非闭.

7.设E 是Cantor 集P 的补集中构成区间的中点所成的集,求E '. 解 P E ='.分以下三步:

①设Cantor 集为P ,其补集(或叫余集)为G ,则ΛY Y Y ),(),(),(9

89792913231=G . 考察]1 ,0[中的点的三进制表示法,设 ???=,2,0i a ??

?

??=,

2,1,

0i b (Λ ,3 ,2 ,1=i ).

由Cantor 集的构造知:当P y ∈时,y 的小数点后任一位数字都不是1,因而可设

ΛΛn a a a y 21.0=;

当G x ∈时,可设ΛΛ2121.0++=n n n b b a a a x ;特别,对于G 的构成区间的右端点右y 有

ΛΛΛ0200.021n a a a y =右;

对于G 的构成区间的左端点左y 有 ΛΛΛ20222.021n a a a y =左.

由此可见,G E ?,且当E z ∈时,有ΛΛΛ111.0)(212

1n a a a y y z =+=右左. ②下证Cantor 集P 中的点都是E 的极限点:

对P y ∈?,由于ΛΛn a a a y 21.0=,取E z k ∈,则ΛΛΛ111.021n k a a a z =. 由于y 与k z 的小数点后前k 位小数相同,从而

k k k k k y z 3

1

3123313112

1

++

-+++Λ, 故,0 ,0>?>?N ε当N k >时,有

ε

31

,即ε<-y z k , ∴)( ∞→→k y z k ,即 E y '∈.

③下证G x ∈?,有E x '?.事实上,有两种情况:

10.若E x ∈,则只能是G 的构成区间的中点,即ΛΛΛ111.021n a a a x =.由Cantor

集的构造知:对)( x z E z ≠∈?,都有 n x z 3

1

-,所以,E x '?; 20.若E x ?且G x ∈,则)1(,111.0121+>=+n m b a a a a x m m n ΛΛΛ,于是,

E z ∈?,有m x z 3

1

>

-,所以,E x '?. 故G 中的点不属于E '.

综上所述,我们有:P 中的点都是E 的极限点,不在P 中的点都不是E 的极限点,从而P E ='.

8.设点集列}{k E 是有限区间],[b a 中的非空渐缩闭集列(降列),试证?≠∞

=I 1

k k E .

证 用反证法:若

?=∞

=I

1

k k E ,则()] ,[\] ,[\] ,[1

1

b a E b a E b a k k k k ==∞

=∞=Y I ,从而

} ,\] ,[{N ∈=k E b a E k c k 为有界渐张开集列(升列)

,且覆盖],[b a ,由数学分析中的“有限覆盖定理”(Borel )可知:存在子覆盖} , ,2 ,1:{n k E c

k

Λ=,

使得] ,[1b a E n

k c

k ?=Y ,即

()] ,[\] ,[1

b a E b a n k k ==Y . ∴ ] ,[\] ,[1

b a E b a n

k k ==I

,从而?==I n

k k E 1

,故?=n E ,

矛盾!

附注 更一般地,若非空闭集套}{n E :ΛΛ????n E E E 21满足

0sup )(,??→?-=∞

→∈n E y x n y x E n

ρ,

则存在唯一的I

=∈

1

0n n E x .(这等价于“分析学”或“拓扑学”中著名的“压缩映像原理”

) 证 由n E 非空,取) ,3 ,2 ,1( Λ=∈n E x n n ,则}{n x 为Cauchy 基本收敛列.事实上,由于1+?n n E E ,所以,) ,2 ,1 ,0( Λ=?∈++m E E x n m n m n ,从而

0)(sup ,??→?=-≤-∞

→∈+n n E y x n m n E y x x x n

ρ,

由极限存在的Cauchy 准则知:存在唯一的0x 使得0x x n n ??→?∞

→.又由n E 为闭集立知

n E x ∈0,从而I ∞

=∈1

0n n E x .存在性得证.下证唯一性:

若另有I

=∈

1

0n n E y ,则) ,2 ,1( 00Λ=∈n E y x n 、,而0)(00→≤-n E y x ρ,

所以,00x y =.这就证明了唯一性.

9.若] ,[)(b a C x f ∈,则 ()αα≥∈?f E , R 为闭集.

证 只要证:若0x 为()α≥f E 的极限点(即聚点),必有E x ∈0.

由0x 为()α≥f E 的极限点,故有点列) ,2 ,1( Λ=∈n E x n ,满足0lim x x n n

=;

又由于诸 ] ,[ b a E x n ?∈以及)(x f 的连续性,从而有

] ,[ ,)(0b a x x f n ∈≥α 以及 α≥=)(lim )(0n n

x f x f .

这就证明了E x ∈0.

9*.若在],[b a 上,)()(lim x f x f n n

=,记

}],[ ,)({)(b a x x f x E n n ∈>=αα,}],[ ,)({)(b a x x f x E ∈>=αα,

证明:()Y ∞

=∞

→+=

1

1lim )(k k

n n E E αα. 证 一方面,当)(αE x ∈时,α>)(x f ?, k ?使得k

x f 1)(+>α,即k

n n

x f 1)(lim +>α

, N ??当N n >时,k

n x f 1

)(+

>α()()Y ∞

=∞

→∞

→+∈?+

∈?1

11lim lim k k

n n k

n n E x E x αα. 另一方面,()Y ∞

=∞

→+∈

1

1lim k k

n n E x αk ??,使()k n n E x 1lim +∈∞→α, N ??当N n >时, ()k n E x 1+∈α. 即 k

n x f 1)(+>α(N n >)k n n

x f x f 1)(lim )(+≥=?α, α>?)(x f ,从而)(αE x ∈. 综上可得 ()Y ∞

=∞

→+=1

1lim )(k k

n n E E αα. 10.每一个闭集是可数个开集的交集.

证 设F 为闭集,作集) ,2 ,1( }),( {1Λ=<=n F x x G n

n ρ,其中),(F x ρ表示点x 到集F 的距离,则n G 为开集.下证:I n

n G F =.

事实上,由于对任意N ∈n 有n G F ?,故有I

n

n G F ?;

另一方面,对任意I

n

n G x ∈

0,有 ) ,2 ,1( ),(01

0Λ=<≤n F x n

ρ,令∞→n 有0),(0=F x ρ.所以,F x ∈0(因F 为闭集),从而F G n

n ?I .综上可知:I n

n G F =.

附注 此题结果也说明:可数个开集的交不一定是开集,因而才引出了δG -型集的概念.

11.证明:开区间不能表示成两两互不相交的可数个闭集的并集.

证 可有两种证法(很麻烦):一种是反证法,即若Y n

n F b a I ==) ,(0,其中}{n F 为两

两互不相交的闭集列,我们设法找到一点) ,(0b a x ∈,但Y n

n F x ?

0,从而得出矛盾;

另一种证法是:记) ,(b a =?,证明下述更强的结果:若}{n F 为含于?内的任一组两两互不相交的闭集列,则Y n

n F -

?的势(基数)等于连续势c ,从而立知不可能有

Y n

n F b a ==?) ,(.

取1F ,令1010sup , inf F b F a ==,由1F 为闭集,故100 , F b a ∈,且

100000] ,[ , F b a I b b a a ?=<≤<.

又记) ,( , ) ,(0201b b a a =?=?(非空),则有两种情况: ①若)2 , 1( 2

=?∞=i F n n i Y I

中至少有一个空集,比如 2

1?=?∞

=Y I n n F ,而

?=???0111I F I I ,所以, 1

1?=?∞=Y I

n n F , 11

??-?∞

=Y n n F .因此,

c F n

n

=?≥-

?1Y .问题得证.

②)2 , 1( 1

=?∞

=i F n n i Y I

均不为空集,对)2 , 1( =?i i ,在Λ , ,32F F 中存在最小的

下标)

(1i n 使?≠?i n i F I )(1

,显然,2},min{)

2(1)1(11≥=n n n 以及)(1

, , ,00i n F b b a a ?,从

而i n i n i i F F ?=?I I )(1

)(1

为含于开区间i ?内的闭集,对此闭集仿上作出两个闭区间

)2 ,1( )

(1=i I i ,它们满足:

(ⅰ))

2(1)1(10 , ,I I I 互不相交; (ⅱ)Y Y Y

Y 2

1

1

2

1

)

(10

1

===??i i n i i i i F F I I .

对在?中挖去)

2(1)1(10 , ,I I I 后余下的四个开区间重复上述步骤,以此类推,用归纳法假设第N 步作出闭区间)2 , ,2 ,1( )

(N k N k I Λ=,它们满足:

(ⅰ)) , ,2 ,1 ; 2 , ,2 ,1( ,)

(0N n j I I n j n ΛΛ==互不相交;

实变与泛函期末试题答案

06-07第二学期《实变函数与泛函分析》期末考试参考答案 1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分) 证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得 ),(00δδ+-∈x x x 时,a x f >)(, 即 E x U ?),(0δ, 故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集. 证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集. (2) 再证})(|{a x f x E ≥=是一闭集. (7分) 证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得 )(0∞→→n x x n . ………………………..2分 由E x n ∈知a x f n ≥)(, 因为f 连续, 所以 a x f x f x f n n n n ≥==∞ →∞ →)(lim )lim ()(0, 即E x ∈0.……………………………………………………………………………………6分 由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分 知E E E E =?=Y ,E 为闭集. …………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证. 2. 证明Egorov 定理:设,{()}n mE f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且 .)\(δδ,选0,i 使0 1 ,i ε<则当0i n n >时,对一切

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

实变函数与泛函分析要点

实变函数与泛函分析概要 第一章集合基本要求: 1、理解集合的包含、子集、相等的概念和包含的性质。 2、掌握集合的并集、交集、差集、余集的概念及其运算性质。 3、会求已知集合的并、交、差、余集。 4、了解对等的概念及性质。 5、掌握可数集合的概念和性质。 6、会判断己知集合是否是可数集。 7、理解基数、不可数集合、连续基数的概念。 8、了解半序集和Zorn引理。 第二章点集基本要求: 1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。 2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。掌握聚点的性质。 3、掌握开核、导集、闭区间的概念及其性质。 4、会求己知集合的开集和导集。 5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。 6、会判断一个集合是非是开(闭)集,完备集。 7、了解Peano曲线概念。 主要知识点:一、基本结论: 1、聚点性质§2 中T1聚点原则: P0是E的聚点? P0的任一邻域内,至少含有一个属于E而异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞) 2、开集、导集、闭集的性质§2 中T2、T3 T2:设A?B,则A ?B ,· A? · B, - A? - B。 T3:(A∪B)′=A′∪B′. 3、开(闭)集性质(§3中T1、2、3、 4、5) T1:对任何E?R?,?是开集,E′和― E都是闭集。(?称为开核,― E称为闭包的理由也 在于此) T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。 T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。 T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,?是一开集族{Ui}i?I 它覆盖了F(即Fс ∪ i?IUi),则?中一定存在有限多个开集U1,U2…Um,它们

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数与泛函分析

长春理工大学数学研究生入学加试 《实变函数与泛函分析》考试大纲 一、总体要求 考生应按本大纲的要求,掌握Lebesgue的测度论,实变量的可测函数理论,Lebesgue 积分理论与微分理论,掌握度量空间和赋范线性空间的概念和例子,有界线性算子和连续线性泛函的概念和例子,掌握Hilbert空间的基本性质。较好的掌握测度论与抽象积分理论,并且在一定程度上掌握集合的分析方法。 二、教材 《实变函数与泛函分析基础(第二版)》,程其襄等,高等教育出版社,2003. 三、考试内容 (一)集合 1. 掌握集合的概念,集合的包含和相等的关系和判定方法; 2. 熟练掌握集合的和、交、差、余的运算,掌握上限集、下限集和收敛集的定义 3. 会求集合的和、交、差、余,会求集合族的上限集、下限集,会判定集合列是否收敛; 4. 理解集合基数的概念,对等的概念,掌握Bernstein定理,会用Bernstein定理判定集合对等; 5. 掌握可数集合与具有连续基数的不可数集合的概念、例子和运算性质,能够利用已知的例子和运算性质去确定集合为哪类无限集合; 6. 知道不存在具有最大基数的集合。 (二)点集 1. 理解距离和距离空间的概念,懂得Euclid空间是距离空间; 2. 掌握邻域的概念与性质,掌握点列收敛、点集距离、有界集和区间的概念; 3.深入理解内点、外点、界点、聚点、孤立点的定义,理解并掌握集合的开核、导集、边界、闭包的概念及相关的性质; 4. 熟练掌握开集、闭集的概念和相关性质,掌握紧集的概念,完备集的概念,掌握有限覆盖定理; 5. 理解直线上开集、闭集的构造定理,掌握Cantor集的性质。 (三)测度论 1.深入理解并熟练掌握外测度,L-可测集的定义和基本性质,并掌握典型的例子 2.理解σ代数的定义,掌握Borel集、G δ 型集、Fσ型集的定义,明确可测集和Borel 集、Gδ型集、Fσ型集之间的关系,掌握L-可测集类; (四)可测函数 1. 理解并掌握可测函数的定义与等价条件,掌握简单函数的概念,几乎处处收敛的概念,理解简单函数与可测函数的关系; 2. 理解Egorov定理,Lusin定理; 3. 理解并掌握依测度收敛的定义,理解Riesz定理,Lebesgue定理,会利用这两个定理去解决实际问题。

实变函数论与泛函分析曹广福1到5章课后答案

第一章习题参考解答 3.等式)()(C B A C B A --=?-成立的的充要条件是什么? 解: 若)()(C B A C B A --=?-,则 A C B A C B A C ?--=?-?)()(. 即,A C ?. 反过来, 假设A C ?, 因为B C B ?-. 所以, )(C B A B A --?-. 故, C B A ?-)(?)(C B A --. 最后证,C B A C B A ?-?--)()( 事实上,)(C B A x --∈?, 则A x ∈且C B x -?。若C x ∈,则C B A x ?-∈)(;若C x ?,则B x ?,故C B A B A x ?-?-∈)(. 从而,C B A C B A ?-?--)()(. A A C B A C B A C =?-?--=?-?)()(. 即 A C ?. 反过来,若A C ?,则 因为B C B ?-所以)(C B A B A --?- 又因为A C ?,所以)(C B A C --?故 )()(C B A C B A --??- 另一方面,A x C B A x ∈?--∈?)(且C B x -?,如果C x ∈则 C B A x )(-∈;如果,C x ?因为C B x -?,所以B x ?故B A x -∈. 则 C B A x ?-∈)(. 从而 C B A C B A ?-?--)()( 于是,)()(C B A C B A --=?- 4.对于集合A ,定义A 的特征函数为????∈=A x A x x A ,0,1)(χ, 假设 n A A A ,,,21是 一集列 ,证明: (i ))(inf lim )(inf lim x x n n A n n A χχ= (ii ))(sup lim )(sup lim x x n n A n n A χχ= 证明:(i ))(inf lim n n m N n n n A A x ≥∈??=∈?,N ∈?0n ,0n m ≥?时,m A x ∈. 所以1)(=x m A χ,所以1)(inf =≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A n m N b A n χχ

实变函数试题库 及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A U U 2.设n E R ?,如果E 满足0E E =(其中0E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数 a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设{}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果.()() ()a e n f x f x x E →∈,则()()n f x f x ? x E ∈ (是否成立) 二、选择题 1、设E 是1R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C =I U I U I (B )(\)A B A =?I

(C )(\)B A A =?I (D )A B A B ?U I 3. 若() n E R ?是闭集,则 ( ) (A )0E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点 2.若()E R ?的外测度为0,则( ) (A )E 是可测集 (B )0mE = (C )E 一定是可数集 (D )E 一定不是可数集 3.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()n f x f x x E ?∈,则下列哪些结果不一定成立( ) (A )()E f x dx ?存在 (B )()f x 在E 上L -可积 (C ).()()()a e n f x f x x E →∈ (D )lim ()()n E E n f x dx f x dx →∞=?? 4.若可测集E 上的可测函数()f x 在E 上有L 积分值,则( ) (A )()()f x L E +∈与()()f x L E - ∈至少有一个成立 (B )()()f x L E +∈且()()f x L E - ∈ (C )|()|f x 在E 上也有L -积分值 (D )|()|()f x L E ∈

第三版实变函数论课后答案

1. 证明:()B A A B -=的充要条件是A B ?. 证明:若() B A A B -=,则()A B A A B ?-?,故A B ?成立. 反之,若A B ?,则()()B A A B A B B -?-?,又x B ?∈,若x A ∈, 则 ()x B A A ∈-,若x A ?,则()x B A B A A ∈-?-.总有 () x B A A ∈-.故 ()B B A A ?-,从而有()B A A B -=。 证毕 2. 证明c A B A B -=. 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?. 另一方面, c x A B ?∈,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-. 综合上两个包含式得c A B A B -=. 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理 9. 证明:定理4中的(3):若A B λλ?(λ∈∧),则 A B λλλλ∈∧ ∈∧ ? . 证:若x A λλ∈∧ ∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(?λ∈∧) 成立 知x A B λλ∈?,故x B λλ∈∧ ∈,这说明 A B λλλλ∈∧ ∈∧ ? . 定理4中的(4): ()()( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 证:若 () x A B λ λλ∈∧ ∈ , 则 有 'λ∈∧ ,使 ''()( )()x A B A B λλλλλλ∈∧ ∈∧ ∈?. 反过来,若()( )x A B λλλλ∈∧ ∈∧ ∈则x A λλ∈∧ ∈或者x B λλ∈∧ ∈ . 不妨设x A λλ∈∧ ∈,则有'λ∈∧使'' '()x A A B A B λλλλλλ∈∧ ∈?? . 故( )()()A B A B λλλ λλλλ∈∧ ∈∧ ∈∧ ? . 综上所述有 ()( )( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 定理6中第二式()c c A A λλλλ∈∧ ∈∧ = . 证:( )c x A λλ∈∧ ?∈,则x A λλ∈∧ ? ,故存在'λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ?? 从而有( )c c A A λλλλ∈∧ ∈∧ ? . 反过来,若c x A λλ∈∧ ∈ ,则'λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴? ,从而()c x A λλ∈∧ ∈

实变函数论习题选解

《实变函数论》习题选解 一、集合与基数 1.证明集合关系式: (1))()()()(B D C A D C B A --?---Y ; (2))()()()(D B C A D C B A Y I I -=--; (3)C B A C B A Y )()(-?--; (4)问)()(C B A C B A --=-Y 成立的充要条件是什么? 证 (1)∵c B A B A I =-,c c c B A B A Y I =)((对偶律), )()()(C A B A C B A I Y I Y I =(交对并的分配律) , ∴)()( )()()()(D C B A D C B A D C B A c c c c c Y I I I I I ==---第二个用 对偶律 )()()()()()(B D C A D B C A D B A C B A c c c c c --=?=Y I Y I I I Y I I 交对并 分配律 . (2))()() ()()()(c c c c D B C A D C B A D C B A I I I I I I I ==--交换律 结合律 )()()()(D B C A D B C A c Y I Y I I -== 第二个用对偶律 . (3))()() ()()(C A B A C B A C B A C B A c c c c I Y I Y I I I = ==--分配律 C B A C B A c Y Y I )()(-=?. (4)A C C B A C B A ??--=-)()(Y . 证 必要性(左推右,用反证法): 若A C ?,则C x ∈? 但A x ?,从而D ?,)(D A x -?,于是)(C B A x --?; 但C B A x Y )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上, ∵A C ?,∴C C A =I ,如图所示: 故)()(C B A C B A --=-Y . 2.设}1 ,0{=A ,试证一切排列 A a a a a n n ∈ ),,,,,(21ΛΛ 所成之集的势(基数)为c . 证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n ΛΛ为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ΛΛ,令ΛΛn a a a a f 21.0)(=,特别, ]1 ,0[0000.0)0(∈==ΛΛf ,]1 ,0[1111.0)1(∈==ΛΛf , 即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ΛΛn a a a ,则f 是一一对

实变函数与泛函分析基础(第三版)

主要内容 本章讨论的点集理论,不仅是以后学习测度理论和新积分理论的基础,也为一般的抽象空间的研究提供了具体的模型. 学习本章时应注意以下几点. 1、本章的基本概念较多,且有些概念(如内点、聚点、边界点等)相互联系,形式上也常有类似之处,因而容易混淆. 学习这些概念时要细心认真,注意准确牢固地掌握每一个概念的实质,学习时可同其类似的概念对照,注意区别概念间的异同点. 尤其要注意的是,本章对有些概念(如聚点),给出了多种等价(充要)条件,这将有利于理解概念的本质,特别是在讨论某些具体问题时,如能恰当地选用某种条件,常常会给问题的解决带来方便. 所以对等价条件必须深刻理解,熟练灵活地运用. 2、在开集、闭集和完备集的性质的讨论中,开集是基础,因为闭集是开集的补集,完备集是一种特殊的闭集,所以弄清了开集的性质,闭集和完备集的性质也就自然得到了. 3、本章中定理亦较多,对定理的学习,要注意弄清下述三点:一是定理的条件和要证的结论;二是定理的证明方法和推理过程;三是定理的意义和作用. 要特别注意论证思路和方法,这样才能逐步提高分问题和解决问题的能力. 同是定理, 然它们的意义和作用也会不尽相同.本章有些定理,如有限覆盖定理(定理),聚点存在定理(定理)以及直线上开集的结构定理(定理)等都是本章中的重要定理,在今后的学习中常有应用. 4、康托集是本章给出的一个重要例子. 对它的一些特殊性质,在直观上是难以想象的,比如它既是不包含任何区间的完备集,同时它还具有连续基数 ,下章中我们还将证明它的测度为零. 正是因为它的这些“奇怪”性质,使得它在许多问题的讨论中起着重要作用. 复习题 一、判断题 1、设P ,n Q R ∈,则(,)0P Q ρ=?P Q =。(× ) 2、设P ,n Q R ∈,则(,)0P Q ρ>。(× ) 3、设123,,n P P P R ∈,则121323(,)(,)(,)P P P P P P ρρρ≥+。 (× ) 4、设点P 为点集E 的内点,则P E ∈。(√ )

实变函数和泛函分析还是很重要的

实变函数和泛函分析还是很重要的 实变函数和泛函分析在经济学中的用处非常大。首先,实变函数是研究L 积分理论的,这种L积分使积分理论得以应用的函数范围大大推广了,实际上除了数学家刻意构造出来的奇异函数,一般的函数,特别是我们在分析实际问题时遇到的函数,都是L可积的。因此L积分的理论可以用于我们分析实际问题时遇到的所有函数。 L积分的理论中哪些内容是极其重要的呢?从应用的角度来讲,最有价值的就是测度理论和积分的三个相互等价控制收敛定理。测度论使的概率论变得更加威力强大,可以解决很多以前被认为是古怪的无法分析的问题。也使很多概率理论变得更加严格。比如无限可分事件的概率以及用西格玛域来阐述的条件概率等等。没有测度论就无法分析连续鞅等等。 另外,积分收敛定理解决了积分运算与极限运算互换的问题,使得很多极限问题变得可以计算。所以支持大样本统计理论的概率极限理论就建立起来了。如果搞懂了实变函数,你对统计,计量,金融工程等问题的研究就可以一枪刺到底,从基本概念的学习开始可以一路畅通的达到对前沿理论的深刻理解。没有实变函数的基础,学计量,统计和金融工程就是隔靴挠痒。 再看泛函分析,泛函分析是建立在实变函数的基础上的。为什么这么说呢?其实就分析的问题的思路来讲,泛函和实变还是有很大差别的,但是泛函研究的是函数空间,研究函数空间中的收敛和连续等拓扑概念必须依赖范数的定义,而函数空间的范数的定义依赖于积分理论,所以实变函数就成了泛函的基础。所以一般都是先学实变,再学泛函。当然,也有先学直接学泛函的,这时就只能直接的接受积分定义的范数概念,或者干脆只从抽象范数的角度来研究,不去管范数的具体形式。从理解泛函本身的理论来讲并没有什么不妥,只是在用泛函解决实际问题时就有麻烦,因为研究实际问题就要给出具体的范数定义,没有实变函数的积分理论就不行了。所以,纯粹学习泛函,而不讲究实用,可以直接学泛函,大不了在学习时补充一点范数的具体形式就可以了。泛函分析有什么用呢?无非是泛函可以让我们在更广义的层次上分析最优化问题。泛函分析不仅给出的是最优路径,而不是微积分中的最优点。当然,你也可以说最优路径就是函数空间中的最优点。一般在运筹学中用处很多。那在博弈论中有什么应用呢?我们说,理性经纪人的行为就是给定约束和目标下的最优路径。所以分析经济行为当然离不开泛函分析了。但是想把泛函分析理论用来解决经济学中的优化问题并不容易。即因为首先你要把研究的问题数学模型化,然后在定义一个恰当的函数空间,一般是线性空间,然后在这个空间中定义出恰当的范数。然后把你的优化问题转化

第三版实变函数论课后答案

1. 证明:()B A A B -=U 的充要条件就是A B ?、 证明:若()B A A B -=U ,则()A B A A B ?-?U ,故A B ?成立、 反之,若A B ?,则()()B A A B A B B -?-?U U ,又x B ?∈,若x A ∈,则 ()x B A A ∈-U ,若x A ?,则()x B A B A A ∈-?-U 、总有()x B A A ∈-U 、故 ()B B A A ?-U ,从而有()B A A B -=U 。 证毕 2. 证明c A B A B -=I 、 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?I 、 另一方面,c x A B ?∈I ,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-I 、 综合上两个包含式得c A B A B -=I 、 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式与定理9、 证明:定理4中的(3):若A B λλ?(λ∈∧),则A B λλλλ∈∧ ∈∧ ?I I 、 证:若x A λλ∈∧ ∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(? λ∈∧)成立 知x A B λλ∈?,故x B λλ∈∧ ∈I ,这说明A B λλλλ∈∧∈∧ ?I I 、 定理4中的(4):()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 证:若()x A B λλλ∈∧ ∈U U ,则有' λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧ ∈?U U U U 、 反过来,若()()x A B λλλλ∈∧ ∈∧ ∈U U U 则x A λλ∈∧ ∈U 或者x B λλ∈∧ ∈U 、 不妨设x A λλ∈∧ ∈U ,则有' λ∈∧使'''()x A A B A B λλλλλλ∈∧ ∈??U U U 、 故()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ ?U U U U U 、 综上所述有()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 定理6中第二式()c c A A λλλλ∈∧∈∧ =I U 、 证:() c x A λλ∈∧ ?∈I ,则x A λλ∈∧ ?I ,故存在' λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ??U 从而有()c c A A λλλλ∈∧∈∧ ?I U 、 反过来,若c x A λλ∈∧ ∈U ,则' λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴?I ,从而()c x A λλ∈∧ ∈I ()c c A A λλλλ∈∧ ∈∧ ∴?I U 、 证毕 定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +?(相应地1n n A A +?)对一切n 都成立,则 1 lim n n n A ∞ →∞ ==U (相应地)1 lim n n n A ∞ →∞ ==I 、 证明:若1n n A A +?对n N ?∈成立,则i m i m A A ∞ ==I 、故从定理8知

相关文档
最新文档