变压器的负载损耗

变压器的负载损耗
变压器的负载损耗

负载损耗

目录

基本概念

详细介绍

计算方法

测试仪介绍

无负载损耗

相关资料

基本概念

负载损耗即可变损失。与通过的电流的平方成正比。

详细介绍

负载损耗是额定电流下与参与温度下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是A级绝缘材料,其参考温度是根据传统概念加以规定的,都是75℃。而干式变压器的参考温度都按公式算出,参考温度等于允许温升加20℃,其物理概念是绝缘材料的年平均温度。A级绝缘材料的参考温度为60℃加20℃等于80℃,它与油浸式(同为A级绝缘材料)的参考温度75℃差5℃。干式变压器的E级绝缘材料参考温度为95℃,B级为100℃,F级为120℃,H级145℃,C级为170℃。负载损耗只是衡量产品损耗水平的一个参数,或者说是考核产品合格与否的一参数,而不是运行中的实际损耗值。运行中温度是变量,负载电流也是变量,所以运行中负载损耗不是变压器名牌上标定的负载损耗值,主要是运行温度不等到于参考温度。

另外,对比产品损耗水平时,尤其干式变压器,一定要在规定参考温度下对比。反过来,如B级与H级干式变压器有相同负载损耗,因为参考温度是在温升限值的基础上加以规定的,在实际运行中如都是额定负载,实际负载也接近相同。

在温度换算时应注意,电阻损耗与温度成正比,负载损耗中附加损耗与温度成反比。所以应将负载损耗分解成二部分后再换算。在温度换算时,对铜导线而言,参考温度应按规定35加规定参考温度值计算,测量负载损耗时温度也应加班费35后再换算。

低损耗变压器的负载损耗的功率因数较低,所以测量系统与测量设备与仪表的选取用与以前提到的测量空载损耗的要求相同。

负载损耗的计算值、标准值、保证值与实测的概念也与空载损耗相同。但是在实际测量中,所加电流不能低于50%额定电流。这是新标准的要求,否则实测值不能换算,即使换算也无效。负载损耗的评价值比空载损耗要

低些,但负载损耗的绝对值大,如超出同样的百分数,或同样的测量误差,其z绝对值还是大的。

空载损耗与温度基本无关,而负载损耗是温度的函数。

这里还要强调一下,如果产品要进行型式试验,空载损耗是指冲击试验后的实测值,如果硅钢片的漆膜质量不好,冲击试验后空载损耗会增加。测负载损耗时,绕组温度应接近外围温度,在干燥出炉后不久,或注油的油温比室温高时不宜立即测量负载损耗,因为负载损耗是温度的函数。另外,测负载损耗的时间要短,时间一长,绕组温度会变。用作短接绕组的短路工具要有足够的导电截面,短接大电流绕组时必须用螺栓拧紧。否则短路工具联接不好时会在联接处产生局部过热,这部分热量倒涌入绕组时会影响测量精度。

对有载调压变压器而言,在新标准里还有新的要求,除保证额定电流下,即主分接位置下的负载损耗外,还要保证最大与最小分接位置的负载损耗。对最大或最小分接位置的负载损耗,应通相应的分接电流。如最小分接位置不能保证满容量而要降容量时,应取得用户同意,或向用户说明是按哪个标准或技术条件执行。

附机的损耗,不包括在空载损耗与负载损耗中。这种损耗如风扇电机、潜油泵、有载分接开关操动机构中的电机等。这种损耗虽不加考核,但应尽量的低。如强油风冷却器的风机与泵的损耗一般应在散热功率的5%以下。即100kW以下。

对多绕组变压器而言,负载损耗的保证值是指具有最大负载损耗的一对绕组在运行或绕组复合运行时的最大负载损耗。复合运行的绕组必须在技术条件上规定,即哪些绕组对哪些绕组供电。

大容量变压器应计及横向漏磁引起的涡流损耗,故导线不宜过宽,螺旋式绕组的也不宜在均匀间隔内换位,绕组两端的换位间应略大些。

计算方法

当变压器二次绕组短路(稳态),一次绕组流通额定电流时所消耗的有功功率称为负载损耗。算法如下:

负载损耗=最大的一对绕组的电阻损耗+附加损耗

附加损耗=绕组涡流损耗+并绕导线的环流损耗+杂散损耗+引线损耗

阻抗电压:当变压器二次绕组短路(稳态),一次绕组流通额定电流而施加的电压称阻抗电压Uz。通常Uz以额定电压的百分数表示,即uz=(U z/U1n)*100%

匝电势:

u=4.44*f*B*At,V

其中:B—铁心中的磁密,T

At—铁心有效截面积,平方米

可以转化为变压器设计计算常用的公式:

当f=50Hz时:u=B*At/450*10^5,V

当f=60Hz时:u=B*At/375*10^5,V

如果已知道相电压和匝数,匝电势等于相电压除以匝数。

测试仪介绍

变压器空负载损耗测试仪

1 、本仪器通过空载损耗负载损耗及阻抗电压的测试数据对照仪器内部存储的国标进行变压器容量。

2 、可测量变压器空载损耗、空载电流负载损耗、阻抗电压及短路阻抗等参数.同时测量三相电压、电流真有效值和有功功率值。

3 、可不接调压器直接取用市电三相电源 (400V) 现场测试.并自动归算出 10/0.4kV 各种型号的电力变压器在额定条件下的空载损耗、空载电流、负载损耗、阻抗电压及短路阻抗等参数.防止不合格变压器进入电网运行.节能降损。

4 、在现场缺乏三相电源时.可采用单相法进行轮相试验.仪器自动将试验结果归算到三相标准条件下.方便现场使用。试验后保留测试原始数据.以备对测试过程及测试时的各种相关条件进行查询.验证测试结果的准确性。

5 、本仪器采用超小型结构设计.标准型塑壳机箱.体积小.重量轻.便携式.测量范围宽.精度高.抗干扰能力强.性价比高。

6 、根据变压器不同的接线组别选择不同的接线.可进行三相三表法三相两表法和单相法试验。

仪器有十种测量方式供试验时选择.显示与试验的对应关系如下所述:

1) 单相变压器(互感器)或三相变压器的单相法(分析)空载及负载试验。

2) 三相变压器加压侧接线为丫 n 连接组.采用三表法测量方式进行变压器空载及负载试验。

3) 三相变压器加压侧接线为 Y/ 0 连接组采用二表法测量方式进行

变压器空载及负载试验。

4) 三相变压器加压侧接线为丫域 Yn 连接组别.使用单相电源进行轮相试验后规算至三相标准下的空载及负载试验。

5) 三相变压器加压侧接线为△连接组.采用单相电源进行轮相试验后规算至三相标准下的空载及负载试验。

7 、仪器具有量程自动切换和完善的自动保护功能并可外接 CT, PT 进行大容量变压器的测试.所有测量数据显示直读值。

8 、 DK-45R 测试仪采用大屏幕液晶显示功能菜单全部汉化、操作简单、显示直观。

9、内部具有大功率的锂电池作为仪器工作电源,纯净的电源带来更稳定、更精确的测量数据,同时方便开展现场检定工作。

10、采用 640 × 480 高分辨率大屏幕液晶显示,具有人性化的界面及操作设计,使用触摸屏辅助操作,使操作变的更加方便、快捷。

11、采用精准的软件算法,测量数据的准确性进一步提高。

12、大规模存贮器可存储现场测试数据多达 1000 条。

13、采用工程塑料模具机箱防震、防压,保障现场操作人员的安全和设备安全。无负载损耗

无负载损耗也叫空载电流,是指车载电源在无负载的情况下,自身消耗的最小电流,目前车载电源的空载电流一般小于0.5安培。这个参数描述了车载电源在没有接任何用电器时自身消耗能量的大小,这个数值越小越好。需要说明的是,当车载电源连接了用电器,并且给用电器提供电能时自身消耗的电能可能比无负载损耗大的多,此时车载电源自身消耗能量的程度取决于车载电源的转换效率。

相关资料

变压器的负载损耗与箱式变电站的箱壳级别

变压器的负载损耗随其运行温度的升高而增加。在同一负载条件下,运行温度每升高10℃,负载损耗增加约3.93%(对于铜质绕组)或4.23%(对于铝质绕组)。这是因为负载损耗与绕组的电阻成正比,而绕组的电阻随着温度的升高而增加。例如铜的电阻温度系数为0.003 93℃,铝为0. 00423℃。

箱式变电站(又称欧变)的箱壳分为10级,20级,30级,其定义为:变压器在外壳内部的温升超过同一变压器在外壳外部测的温升的差值,不应大丁二外壳级别规定的数值,例如10k,20k,30 k(引自GBT l7467—1 998《高压低压预装式变电站》)。其物理含义为:一台变压器在同一负载条件下,当其在欧变箱壳内运行时,运行温度将被抬高10℃、20℃、或30℃。其负载损耗将分别增加约3.93%、7.86%或11.79%(对于铜质绕组)。这是一个多么惊人的数字!

值得注意的是,目前我国电网中正在挂网运行着几万台10级、20级、30级箱壳的欧式箱变。这些箱变不但造成大量的电能浪费,而且存在着变压器寿命降低的潜在危险。因为随着运行温度的升高,变压器的绝缘材料将迅速老化,变压器的使用寿命降低。特别是当温度超过所允许的最高热点温度和最高油面温度时,变压器寿命将以温度每上升6℃,变压器寿命降低一倍的速度而急剧下降。

如何避免欧式箱变所带来的上述弊病呢?

对于干式变压器,要尽量提高箱体的散热性能,必要时配置风机,尽量降低箱体内部温度。

对于油浸式变压器,最佳方案是选用“零级箱壳”,如附图所示,“零级箱壳”将变压器的散热片直接暴露在大气中,如同柱上变压器一样,变压器在最佳的散热条件下运行,恢复了最初设计的负荷系数、负载损耗和使用寿命,是变压器经济运行的必要条件。

箱式变电站是20世80年代我国从欧盟国家引进的,故又名“欧式箱变”,简称“欧变”。那么,欧盟国家是如何解决以上问题的昵?

任何引进的东西都有一个根据国情消耗吸收的过程,这里有几个问题没有解决好:

其一,欧盟国家大力推广“无油化”,鼓励尽可能选用干式变压器,少用或不选用油浸式变压器。而干式变压器必须在壳体内运行,J{要壳体的散热级别足够高既可。对丁少数配置油变的箱变,则用提高箱体散热级别和变压器“降荷运行”的措施来控制变压器的运行温度,而我国目前仍然大量选用油浸式变压器。

其二,箱壳散热级别问题。生产欧变的国外大公司(例如施耐德、西门子等),他们的欧变箱壳散热性能较好,可达到10级。他们根据传导、辐射和对流的热力学原理,对箱壳的材料和结构做科学设计,以达到最佳的散热效果。欧变引入我国后,一些生产厂家以为箱壳“简单”,以为箱壳就是给变压器做个“房子”,而且这个“房子”还需要“隔热保温”!片面地追求“外表美观”、“园林化”,错误地选用夹层彩钢板、石棉夹层钢(铝)板及所谓“非金属材料”作为箱壳及门的材料,与辐射和传导的散热原理背道而驰。气体对流散热方面又缺乏科学的结构设计。这些厂家生产的箱变大都为20级,不少甚至是30级。在江南最热季节,不少箱变闻变压器室内温度过高而不得不打开双门,在室外另设大功率风机吹风散热。

其三,欧盟国家以“变压器降荷运行”的措施来弥补箱壳造成的温升,而我国在实际运行中,并没有完全做到“变压器降荷运行”。

国家标准GBffl7467——1998《高压低压预装式变电站》附录D中规定:与预装式变电站额定最大容量对应的变压器,对于小同的外壳级别和周围温度,能够带不同的负荷。也就是说,如果变压器被配置在个壳体内运行,则变压器应该降荷选用。外壳中油浸式变压器的负载系数如附表所示。

在实际应用中,欧变箱壳中的变压器并未做到“降荷选用”。这是因为变压器容量每增大一级,电站设备成本将随之增加许多。不仅是变压器本身价格增加,系统其他费用也要增大。变压器容量增大后,回路短路电流增大,回路中相关电器的性能参数随之增大,工程成本随之增加。此外,变压器容量偏大会造成负荷率下降,变压器运行在经济运行范围之外(负载率60%~70%范围内,变压器运行最经济),无载损耗(铁损)增加。这样,在实际工程设计中,查表后如果不足以增大一级,则变压器容量并不按照“增大一级”选用。此外,我国正处于经济迅速发展时期。随着负

载需求的迅速需求,变压器的实际负荷在短期内迅速超过最初设计负荷,这就造成了变压器“未降荷运行”的客观事实,造成高出正常温度20~30℃运行的现状,造成不应发生的极大的电网损耗及变压器寿命的降低。

油浸式变压器进入箱壳以后,其运行条件(环境温度)变的异常恶劣了。目前有几万台油变在网上负重工作,忍受着高温的煎熬。应该尽快地将它们“解放”出来,尽快地将它们从20级、30级箱壳中“回归自然”,为节约型社会做出应有的贡献。

变压器损耗计算公式

变压器损耗计算公式 简介: 负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器. 将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比. 关键字:变压器 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比. UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示. 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比. 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比. PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损.其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示). 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗. 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率. 3、变压器节能技术推广 1) 推广使用低损耗变压器; (1)铁芯损耗的控制

变压器损耗计算公式分析

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗, 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1)(2)无功损耗:ΔQ=Q0+KTβ2QK -------(2)(3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3)Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取

系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。

(完整版)变压器空载损耗与负载损耗的计算方法及公式

变压器空载损耗与负载损耗的计算方法及公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β ——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;

(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损https://www.360docs.net/doc/ef16855293.html,/耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时)

变压器损耗估算1

变压器损耗估算315kVA 项目新上S13-315/10/0.4变压器1台。由变压器型号查得下列参数: 表*-*-* 变压器参数表 有功功率损耗: △P= P0+β2P K=0.48+0.772×3.65=2.64kW 变压器空载时的无功功率损耗: Q0= I0S N×10-2 =0.3×315×10-2=0.95kVar 变压器额定负载时的无功功率: Q k = U K S N×10-2=4.0×315×10-2=12.6 kVar 变压器总的无功功率: △Q= Q0+β2 Q k =0.95+0.772×12.6=8.42 kVar 变压器综合有功功率损耗: △PZ=△P+K Q△Q =2.64+0.1×8.42=3.48kW 注:K Q为无功经济当量,取0.1;β为负载系数,取0.77。 变压器年工作日为365天,每天24小时,则变压器全年投入运行小时数T=8760h。1台S13-315/10变压器的年电能损耗为:3.48×8760×1=3.05万kWh 变压器损耗估算100kVA 项目新上S13-100/10/0.4变压器1台。由变压器型号查得下列参数:

有功功率损耗: △P= P0+β2P K=0.2+0.772×1.5=1.09kW 变压器空载时的无功功率损耗: Q0= I0S N×10-2 =0.3×100×10-2=0.3kVar 变压器额定负载时的无功功率: Q k = U K S N×10-2=4.0×100×10-2=4.00 kVar 变压器总的无功功率: △Q= Q0+β2 Q k =0.3+0.772×4.00=2.67 kVar 变压器综合有功功率损耗: △PZ=△P+K Q△Q =1.09+0.1×2.67=1.36kW 注:K Q为无功经济当量,取0.1;β为负载系数,取0.77。 变压器年工作日为365天,每天24小时,则变压器全年投入运行小时数T=8760h。1台S13-100/10变压器的年电能损耗为:1.36×8760×1=1.19万kWh

变压器行业kVSSS系列变压器损耗参数对照表

变压器行业10kV级S9、S11、S13系列变压器损耗参数对照表 S13-M型全密封电力变压器主要技术参数

负载损耗:即可变损失。与通过的电流的平方成正比。负载损耗是额定电流下与参考温度下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是A级绝缘材料,其参考温度是根据传统概念加以规定的,都是75℃。 1 变压器损耗大致为两项:铁损和线损。其中铁损主要为变压器铁芯在工作时的磁滞损耗所造成的,其大小与电压相关较大,变压器空载还是带负载对于铁损影响不大; 2 负载电流流过变压器线圈,由于线圈本身的电阻,将有一部分功率损耗在线圈中,这部分损耗为“线损”,电流越大,损耗越大,所以负荷越大,线损也越大; 3 空载时,只有励磁电流流过变压器,所以线损很小; 4 上述“铁损”和“线损”之和就是变压器的大部分损耗,负载时的线损与铁损之和就是变压器的负载损耗,而空载损耗意义也是如此。 相关知识:1)推广使用低损耗变压器 (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生磁滞及涡流而带来的损耗。 最早用于变压器铁芯的材料是易于磁化和退磁的软熟铁,为了克服磁回路中由周期性磁化所产生的磁阻损失和铁芯由于受交变磁通切割而产生的涡流,变压器铁芯是由铁线束制成,而不是由整块铁构成。 1900年左右,经研究发现在铁中加入少量的硅或铝可大大降低磁路损耗,增大导磁率,且使电阻率增大,涡流损耗降低。经多次改进,用0.35mm厚的硅钢片来代替铁线制作变压器铁芯。 1903来世界各国都在积极研究生产节能材料,变压器的铁芯材料已发展到现在最新的节能材料——非晶态磁性材料如2605S2,非晶合金铁芯变压器便应运而生。使用2605S2制作的变压器,其铁损仅为硅钢变压器的1/5,铁损大幅度降低。 (2)变压器系列的节能效果 上述非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为常规产品的1/5,且全密封免维护,运行费用极低。 我国S7系列变压器是1980年后推出的变压器,其效率较SJ、SJL、SL、SL1系列的变压器高,其负载损耗也较高。 80年代中期又设计生产出S9系列变压器,其价格较S7系列平均高出20%,空载损耗较S7系列平均降低8%,负载损耗平均降低24%,并且国家已明令在1998年底前淘汰S7、SL7系列,推广应用S9系列。 S11是推广应用的低损耗变压器。S11型变压器卷铁心改变了传统的叠片式铁心结构。硅钢片连续卷制,铁心无接缝,大大减少了磁阻,空载电流减少了60~80,提高了功率因数,降低了电网线损,改善了电网的供电品质。连续卷绕充分利用了硅钢片的取向性,空载损耗降低20~35。运行时的噪音水平降低到30~45dB,保护了环境。 非晶合金铁心的S11系列配电变压器系列的空载损耗较S9系列降低75%左右,但其价格仅比S9系列平均高出30%,其负载损耗与S9系列变压器相等。

110KV系统损耗计算

110KV电压供电系统与35KV电压供电系统损耗比较 一、110KV电压供电系统损耗计算 (一)110KV电压供电线路损耗 相关参数:线路长3公里,LGJ120导线,电阻0.2422欧姆/公里,功率因数cosф取0.90,平均电压115KV 1、△P=3I2R=( P )2*R u cosф =( 5810 )2*0.2422*3 115*0.9 =2.29KW 2、平均负荷利用小时数t t= 3226*104 =5552.5 5810 3、年运行线路损耗电能 △W =△P*t=2.29*5552.5 =12715.125=1.27万KWh (二)110KV供电变电器损耗 -8000/110变压器,变压器空载损耗△Po=14KW,变压器负载损耗△查表S 7 Psc=50KW 变压器运行损耗功率: △P △P=△Po+△Psc( St )2 =14+50*( 5810 )2 Sn 8000*0.9 =46.56KW 变压器年运行损耗电能 △W=△P*t =46.56*5552.5=258524.4KWh =25.85万KWh (三)线路损耗和变压器损耗总和 25.85+1.27=27.12万KWh (四)110KV供电年损耗电费: 271200*0.523=141837.6元 二、35KV系统损耗计算 (一)35KV电压供电线路损耗 相关参数:线路长5公里,LGJ150导线,电阻0.198欧姆/公里,功率因数cosф取0.90,平均电压37KV。 1、P=3I2R=( P )2*R u cosф =( 5810 )2*0.2422*3 37*0.9

=30.14KW 2、平均负荷利用小时数t t= 3226*104 =5552.5 5810 3、年运行线路损耗电能 △W =△P*t=30.14*5552.5 =167352.35=16.7万KWh (二)35KV供电变压器损耗 查表S -8000/110变压器,变压器空载损耗△Po=11.5KW,变压器负载损耗 7 △Psc=45KW 变压器运行损耗功率: △P △P=△Po+△Psc( St )2 =11.5+45*( 5810 )2 Sn 8000*0.9 =40.8KW 变压器年运行损耗电能 △W=△P*t =40.8*5552.5=226542KWh =22.7万KWh (三)线路损耗和变压器损耗总和 22.7+16.7=39.4万KWh (四)35KV供电年损耗电费: 394000*0.537=211578元 三、35KV供电比110KV供电年损耗增加量: 211578-141837.6=69740.4元 四、35KV供电比110KV供电年电费增加量: 32260000*(0.537-0.523)+69740.4=521380.4元 注:缺SZ10-8000/110变压器相关技术参数。 现依S7-8000/35和S7-8000/110变压器技术参数计算。 按2004年电费单价标准。 35KV:0.537元/KWh 110KV:0.523元/KWh

变压器的使用年限参考

变压器的使用年限参考 电力变压器产品可按容量大小分为大型变压器(容量大于或等于8000kV A)和中小型变压器(容量小于或等于6300kV A);也可按电压等级分为6kV、10kV、35kV、60kV、110kV、220kV、330kV和500kV等。作为电压变换设备,变压器被广泛应用于输电和配电领域,特别是10kV和35kV 电压等级的变压器,在电力、工业和商业配电系统中被普遍使用,且数量巨大。1999年,我国年产变压器约33.8万台,其中10kV和35kV级约31.3万台,占92.6%。据估计,目前在电网上运行的10kV和35kV级变压器约有10亿kV A以上。由于使用量大,运行时间长,变压器在选择和使用上存在着巨大的节能潜力,特别是量大面广的10kV和35kV级变压器。选择高效节能产品,不但对节约能源具有重要意义,同时还可以大大降低变压器的运营成本,是企业改善经济效益的重要途径。我国10kV和35kV级变压器绝大多数为标准设计,其产品标准经历?quot;64”标准、”73”标准、”86”标准到90年代中期的”95”标准的不断进步,产品由原来的高损耗型(SJ,SJL…S7)发展到了现行的较低损耗型(S9型等)。截至1998年底,S7型变压器及以前的产品已由国家先后公布淘汰,停止其生产和销售。随着计划经济向市场经济的转变,

以及社会对节能和环保的需求,我国变压器的效率水平将呈现出多样化的趋势。目前市场上已出现了比S9系列更节能的产品,如S10、S11系列等。 在电网使用的变压器中,役龄超过20年的老旧变压器仍约占10%以上。这些变压器是按照60和70年代当时”64”和”73”标准设计的产品,损耗非常高。与当前的S9系列相比,平均损耗高100%以上,节能潜力巨大。对于企业来说,如何从长远的经济效益出发,确定适当的变压器效率水平以及是否应该用节能变压器替换高耗能变压器,是变压器选购和管理中亟待解决的问题之一。 国际上有许多评价变压器能效的方法,所有的方法都要求比较变压器价格及其损耗费用。美国在70年代后期,由于能源价格的攀升,许多电力公司开始要求所设计的变压器应能具有较低的服务年限费用,这样就产生了总拥有费用(TOC)法。TOC法在美国于1981年发展成为工业标准。按照TOC标准购置变压器一直沿用至今,TOC方法是总和了变压器的初始费用和等价现值的损耗费用,表达所购变压器全面的综合费用。我们用TOC法曾评述过配电变压器S9型与S7型的经济效益,比较结果说明了S9变压器价格虽高于S7约20%,但损耗指标比S7低约21%,S9所多支村的资金可以在2~3年内从节约的损耗电费中收回。同样,用S9变压器更换80年前的老变压器产品进行效益比较的结果说明,

变压器损耗的计算公式及方法

变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗, 实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1 、变压器损耗计算公式 ⑴有功损耗:△ P=PO+KT B 2PK --------- ⑴ ⑵无功损耗:△ Q=QO+K"T 2QK——(2) ⑶综合功率损耗:△ PZ=A P+KQX Q ----(3) QO IO%SN Q? UK%SN 式中:Q0 ----- 空载无功损耗(kvar) P0――空载损耗(kW) PK额定负载损耗(kW) SN变压器额定容量(kVA) 10%――变压器空载电流百分比。 UK%短路电压百分比 3 ――平均负载系数 KT――负载波动损耗系数 QK额定负载漏磁功率(kvar) KQ无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; ⑵对城市电网和工业企业电网的6kV?10kV降压变压器取系统最小负荷时,其无功当量 KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取3 =20%;对于工业企业,实行三班制,可取 3 =75%; ⑷变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK 10%、UK%见产品资料所示。 2、变压器损耗的特征 P0――空载损耗,主要是铁损,包括磁滞损耗和涡流损耗;

磁滞损耗与频率成正比; 与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 P 负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而 变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组 外的金属部分产生杂散损耗。 变压器的全损耗△ P=PO+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ △ P),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计 算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)x供电时间(小时) 配变的空载损耗(铁损),由附表查得,供电时间为变压器的实际运行时间,按以下原则确定: (1)对连续供电的用户,全月按720 小时计算。 (2)由于电网原因间断供电或限电拉路,按变电站向用户实际供电小时数计算,不得以难计算为由,仍按全月运行计算,变压器停电后,自坠熔丝管交供电站的时间,在计算铁损时应予扣除。 (3)变压器低压侧装有积时钟的用户,按积时钟累计的供电时间计算。 2、铜损电量的计算:当负载率为40%及以下时,按全月用电量(以电能表读数)的2%计收,计算公式:铜损电量(千瓦时)=月用电量(千瓦时)X 2% 因为铜损与负荷电流(电量)大小有关,当配变的月平均负载率超过40%时,铜损电量应按月用电量的3%计收。负载率为40%时的月用电量,由附表查的。负载率的计算公式为:负载率=抄见电量/ 式中:S――配变的额定容量(千伏安);T ――全月日历时间、取720小时; COSZ――功率因数,取0.80。 电力变压器的变损可分为铜损和铁损。铜损一般在0.5%。铁损一般在5~7%。干式变压器的变损比油侵式要小。合计变损:0.5+6=6.5 计算方法:1000KVA X 6.5%=65KVA 65KV/X 24 小时X 365 天=568400KWT度) 变压器上的标牌都有具体的数据。 变压器空载损耗空载损耗指变压器二次侧开路,一次侧加额率与额定电压的正弦波电压时变压器所吸取的功率。一般

变压器损耗原理及计算方法

变压器损耗原理及计算方法 变压器的损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1、变压器损耗计算公式(1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是:

变压器损耗定义(精)

变压器的损耗包含两部分,空载损耗与负载损耗。 1.变压器的空载损耗 变压器的空载损耗又称铁耗,它属于励磁损耗与负载无关。 1.1空载损耗的组成 通常变压器的空载损耗包括铁芯材料的磁滞损耗、涡流损耗以及附加损耗几部分。 1.1.1磁滞损耗 磁滞损耗是铁磁材料在反复磁化过程中由于磁滞现象所产生的损耗。磁滞损耗的大小与磁滞回线的面积成正比。微观地来看,磁滞损耗与硅钢片内部的结晶方位、结晶纯度、内部晶粒的畸变等因素都有关系。由于磁滞回线的面积又与最大磁密B m 的平方成正比,因此磁滞损耗约和最大磁密B m 的平方成正比。此外,磁滞损耗是由交变磁化所产生,所以它的大小还和交变频率f 有关。具体来说磁滞损耗P c 的大小可用下式计算 21c m P C B f V =?? (1-1) 式中,C 1——由硅钢片材料特性所决定的系数(与铁芯磁导率、密度等有关); B m ——交变磁通的最大磁密; f ——频率; V ——铁磁材料总体积。 注:在日本东京制铁株式出版社的《新日本制铁电磁钢板》中提到有的硅钢片厂家认为,磁滞损耗的大小与B m 的1.6次方成正比。 1.1.2涡流损耗 由于铁芯本身为金属导体,所以由于电磁感应现象所感生的电动势将在铁芯内产生环流,即为涡流。由于铁芯中有涡流流过,而铁芯本身又存在电阻,故引起了涡流损耗。具体来说,经典的涡流损耗P w 的大小可用下式计算 2222m w B f t P C ρ??= (1-2) 式中,C 2——决定于硅钢片材料性质的系数; t ——硅钢片的厚度; ρ——硅钢片的电阻率。 1.1.3异常涡流损耗 在上文的标注所提到的文献中,提出了“异常涡流损耗”的概念,也有的把它作为附加铁损的一部分来看待,一般认为它的大小与硅钢片内部磁区的大小(结晶粒的大小)以及硅钢片表面涂层的弹性张力等有关,并可以用下式来进行估算 223s f B v t P C ρ??= (1-3)

电力变压器常用计算公式

电力变压器常用计算公式 1、变压器空载损耗计算: 00%100 rT I Q S ≈ 0Q -变压器在空载时的无功损耗,kvar ; 0%I -变压器空载电流百分数; rT S -变压器额定容量,kVA 。 2、变压器负载损耗计算 %100 K rT u Q S ≈ K Q -变压器在额定负载时的无功功率,kvar ; %u -变压器额定短路阻抗电压百分数; rT S -变压器额定容量,kVA 。 3、变压器功率损失 20K P P P β?=+ P ?-变压器功率损失,kW ; 0P -变压器的空载损耗,kW ; β-变压器负载率; K P -变压器短路损耗,kW ; 4、变压器无功功率损失 20K Q Q Q β?=+ Q ?-变压器无功功率损失,kVar ; 0Q -变压器在空载时的无功损耗,kvar ; β-变压器负载率; K Q -变压器在额定负载时的无功功率,kvar ;

5、变压器的损失率 2021 20%100%cos K N K P P P P P S P P ββφβ+??==?++ %P ?-变压器的损失率; P ?-变压器功率损失,kW ; 1P -变压器电源侧输入功率,kW ; 0P -变压器的空载损耗,kW ; β-变压器负载率; K P -变压器短路损耗,kW ; N S -变压器额定容量,kVA ; 2cos φ-变压器负载功率因数; 6、变压器的无功损失率 2011 %100%100%K Q Q Q Q P P β+??=?=? %Q ?-变压器的无功损失率 Q ?-变压器无功功率损失,kVar ; 1P -变压器电源侧输入功率,kW ; 0Q -变压器在空载时的无功损耗,kvar ; β-变压器负载率; K Q -变压器在额定负载时的无功功率,kvar ; 7、变压器负载率 22 cos N P S βφ= β-变压器负载率; 2P -变压器电源侧输入功率,kW ;

变压器损耗计算公式

1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量 KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制, 可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0 PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 3、变压器节能技术推广 1)推广使用低损耗变压器; (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生

变压器负载率计算公式

变压器: 变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。 变压器负载率: 变压器的平均负载率定义为:一定时间内,变压器平均输出的视在功率与变压器额定容量之比。将负载曲线的平均负载系数乘以一个大于1的倍数,负载曲线的平均负载系数越高。 损耗特征: P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0 PC 变压器的损耗比=PC/P0

变压器的效率=PZ/(PZ ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 损耗计算: (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05 (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar

变压器 -- 负载损耗

变压器-- 负载损耗 负载损耗是指额定电流下与参与温下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是 A 级绝缘材料,其参考温度是根据传统概念加以规定的,都是75 ℃。而干式变压器的参考温度都按公式算出,参考温度等于允许温升加20 ℃,其物理概念是绝缘材料的年平均温度。A 级绝缘材料的参考温度为60 ℃加20 ℃等于80 ℃,它与油浸式(同为 A 级绝缘材料)的参考温度75 ℃差5 ℃。干式变压器的E 级绝缘材料参考温度为95 ℃,B 级为 100 ℃,F 级为120 ℃,H 级145 ℃,C 级为170 ℃。负载损耗只是衡量产品损耗水平的一个参数,或者说是考核产品合格与否的一参数,而不是运行中的实际损耗值。运行中温度是变量,负载电流也是变量,所以运行中负载损耗不是变压器名牌上标定的负载损耗值,主要是运行温度不等到于参考温度。 另外,对比产品损耗水平时,尤其干式变压器,一定要在规定参考温度下对比。反过来,如B 级与H 级干式变压器有相同负载损耗,因为参考温度是在温升限值的基础上加以规定的,在实际运行中如都是额定负载,实际负载也接近相同。 在温度换算时应注意,电阻损耗与温度成正比,负载损耗中附加损耗与温度成反比。所以应将负载损耗分解成二部分后再换算。在温度换

算时,对铜导线而言,参考温度应按规定35 加规定参考温度值计算,测量负载损耗时温度也应加班费35 后再换算。 低损耗变压器的负载损耗的功率因数较低,所以测量系统与测量设备与仪表的选取用与以前提到的测量空载损耗的要求相同。 负载损耗的计算值、标准值、保证值与实测的概念也与空载损耗相同。但是在实际测量中,所加电流不能低于50% 额定电流。这是新标准的要求,否则实测值不能换算,即使换算也无效。负载损耗的评价值比空载损耗要低些,但负载损耗的绝对值大,如超出同样的百分数,或同样的测量误差,其z 绝对值还是大的。 空载损耗与温度基本无关,而负载损耗是温度的函数。 这里还要强调一下,如果产品要进行型式试验,空载损耗是指冲击试验后的实测值,如果硅钢片的漆膜质量不好,冲击试验后空载损耗会增加。测负载损耗时,绕组温度应接近外围温度,在干燥出炉后不久,或注油的油温比室温高时不宜立即测量负载损耗,因为负载损耗是温度的函数。另外,测负载损耗的时间要短,时间一长,绕组温度会变。用作短接绕组的短路工具要有足够的导电截面,短接大电流绕组时必须用螺栓拧紧。否则短路工具联接不好时会在联接处产生局部过热,这部分热量倒涌入绕组时会影响测量精度。 对有载调压变压器而言,在新标准里还有新的要求,除保证额定电流下,即主分接位置下的负载损耗外,还要保证最大与最小分接位置的

电力变压器空载损耗与负载损耗的计算方法及计算公式

电力变压器空载损耗与负载损耗的计算方法及计算公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β ——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业, 实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换 算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生 涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。

变压器供电线路功率损耗的计算

变压器供电线路功率损 耗的计算 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

变压器、供电线路功率损耗的计算 1.变压器功率损耗的计算 变压器的功率损耗,包括有功功率损耗ΔPT和无功功率损耗ΔQT。有功损耗又分为空载损耗和负载损耗两部分。空载损耗又称铁损,它是变压器主磁通在铁芯中产生的有功功率损耗,因为主磁通只与外加电压和频率有关,当外加电压U和频率f为恒定时,铁损也为常数,与负荷大小无关。负载损耗又称铜损,它是变压器负荷电流在一次、二次绕组的电阻中产生的有功功率损耗,其值与负载电流平方成正比。同样无功功率损耗也由两部分组成,一部分是变压器空载时,由产生主磁通的励磁电流所造成的无功功率损耗,另一部分是由变压器负载电流在一、二次绕组电抗上产生的无功功率损耗。 ΔPs、ΔQs是通过短路试验测得,ΔP0、ΔQ0是由空载试验测得,由制造厂提供。 (4-9) 式中ΔPT、ΔQT——变压器的有功功率损耗(kW)、无功功率损耗(kvar);ΔP0、ΔQ0——变压器的空载有功功率损耗(kW)、空载无功功率损耗(kvar); ΔPs、ΔQs——变压器负载有功功率(kW)、负载无功功率(kvar),即变压器的短路有功功率损耗和无功功率损耗。 Sca ——计算视在功率(KVA); SN·T ——变压器的额定容量(KVA)。

变压器的功率损耗可用下式概略计算。 (4-10) 式中I0%——变压器空载电流占额定电流的百分数; Uz%——变压器阻抗电压占额定电压的百分数。 ΔPT——变压器的有功功率损耗(kW); ΔQT——变压器的无功功率损耗(kvar)。 2.供电线路功率损耗的计算 供电线路的有功功率损耗、无功功率损耗可安下式计算: (4-11) 式中△Pl、△Ql——线路的有功功率损耗(kW),无功功率损耗(kvar);R、X——每组线路电阻、电抗。 R、X可按下式计算: (4-12) 式中 r0、x0——线路单位长度的交流电阻和电抗;(Ω/km); l——线路计算长度(km)。 变压器容量和台数的选择 变压器的容量和台数,应根据地区供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。

变压器损耗计算(经典)

变压器损耗计算(经典) 变压器损耗计算 简介: 变压器经济运行与否,是由所带负荷大小、本身能耗的功率以及变压器在磁化过程中引起的空载无功损耗、绕组电抗中的短路无功损耗等因素决定的。 关键字:电力变压器,损耗,经济运行 ( 前言电力变压器作为电力系统电压变换的主要设备,被广泛应用于输电和配电领域,变压器容量的选择直接影响到电网的运行和投资。对供电部门的公用变压器而言,会使低压网络变大造成过多地消耗有色金属; 选择容量过大的变压器会很快满载,甚至过载,将会限制负荷的发展。变压器经济运行与否,是由所带负荷大小、本身能耗的功率以及变压器在磁化过程中引起的空载无功损耗、绕组电抗中的短路无功损耗等因素决定的。 变压器在变换电压及传递功率的过程中,自身将会产生有功功率损耗和无功功率损耗。变压器的有功功率和无功功率损耗又与变压器的技术特性有关,同时又随着负载的变化而产生非线性的变化。因此,必须根据变压器的有关技术参数,通过合理地选择运行方式,加强变压器的运行管理,充分利用现有的设备条件,以达到节约电能的目的。2( 变压器的负载与损耗的关系 电力变压器的有功功率损耗包含变压器空载损耗和变压器负载损耗两部分,在一定的负载下,变压器的有功功率损耗可用下式表示: P=Pn+Pl (2,1) P-- 总的有功功率损耗;Pn-- 空载有功功率损耗;Pl-- 在一定负载下的负载有功功率损耗 Pn=Pt+KQt=Pt+K(I0%Se/100) (2,2) Pl=Pf+KQf=Pf+K(Ud%Se/100) (2,3)

Pt 为变压器额定空载有功损耗即变压器铁耗。 Qt 为变压器变压器额定励磁功率 10%为变压器空载电流 Pf 为变压器额定负载有功损耗即变压器铜损 Ud%为变压器阻抗电压 K为无功经济当量,按变压器在电网中的位置取值,一般可取k=0.1kW/kvar Se变压器额定容量 空载损耗Pt 是只与变压器铁芯相关的常数,它不随变压器负载的变化而变 化。而负载损耗Pf则为变压器绕组中的铜线圈电流损耗,根据P=I2R故Pf与负载电流的平方成正比。I0%、Ud%为变压器一个固定参数,它们由变压器铭牌或变压器技术参数说明书提供,故变压器损耗主要受负荷变化影响的铜耗决定。 由此根据公式2,2、2,3可以计算出一台30KVA和一台100KVA变压器的有功功率损耗如下:

变压器损耗计算公式规范样本

工作行为规范系列 变压器损耗计算公式规范(标准、完整、实用、可修改)

编号:FS-QG-50169变压器损耗计算公式规范 Transformer loss calculation formula specification 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 变压器损耗计算公式 变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗, 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0――空载无功损耗(kvar) P0――空载损耗(kW) PK――额定负载损耗(kW) SN――变压器额定容量(kVA)

I0%――变压器空载电流百分比。 UK%――短路电压百分比 β――平均负载系数 KT――负载波动损耗系数 QK――额定负载漏磁功率(kvar) KQ――无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0――空载损耗,主要是铁损,包括磁滞损耗和涡流损

相关文档
最新文档