相变蓄冷技术的研究现状和发展

相变蓄冷技术的研究现状和发展
相变蓄冷技术的研究现状和发展

水蓄冷方案(DOC)

第一章工程概况简述 1.工程概况及主要工程内容 工程概况:本项目位于广东省清远市清新区太平镇万邦鞋业办公大厦,总建筑面积约:15000m2,空调面积:10000m2,建筑总高15m,其中楼层主要为研发室,办公室、制模室、空调设备房等等。 本项目主要工程内容为:中央空调机房冷源系统,冷冻水管立管、每楼层预留水管到管井口、蓄水槽防水、保温及布水工程等。 2.设计概况 本次设计采用大温差水蓄冷中央空调系统,夏季设计日总尖峰冷负荷为875KW。 冷源配置:整体规划主机选用1台250RT螺杆机及1台114RT螺杆式,该设备为甲方提供.主机夜间水蓄冷,即夜间为蓄冷工况:供回水温度为 4.5℃/12.5℃,白天为空调工况:供回水温度为7℃/12℃,冷却水供回水温度为32℃/37℃。两台主机在夜间可同时蓄冷或单独蓄冷,把一个蓄冷水池蓄满为止. 本项目一个蓄冷水池的总容积 800m3,按容积利用率0.95计算,蓄冷水池的可利用容积大于760m3。 本项目蓄冷工况运行时,水池进/出水温度为 4.5/12.5 ℃;放冷工况运行时,水池进/出水温度为12.5/4.5 ℃,均采用8 ℃温差。 考虑到水池中冷热水间的热传导和斜温层等因素影响,蓄冷水池的完善度一般取0.90~0.95;考虑到保温层传热的影响,冷损失附加率一般取1.01~1.02。因此,本项目实际蓄冷量约为3200kWh(即915RT)。

第二章制冷系统技术方案 1.设计依据 本方案设计依据如下: 业主提供的设计资料 《采暖通风与空气调节设计规范》 (GB 50019-2003) 《蓄冷空调工程技术规程》 (JGJ 158-2008) 《通风与空调工程施工质量验收规范》(GB 50242002) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《全国民用建筑工程设计技术措施——暖通空调?动力》(2003版) 《全国民用建筑工程设计技术措施——给水排水》(2003版) 《蓄冷空调工程实用新技术》方贵银教授编著 2.负荷计算 水蓄冷空调系统的负荷计算采用国家现行《采暖通风与空气调节规范》(GB50019-2003)的有关规定,求得蓄冷—放冷周期内逐时负荷和总负荷,并绘制出负荷曲线图,作为确定系统形式、运行策略和设备容量的依据。采用系数法对逐时冷负荷进行估算。其中设计日各时段冷负荷值如下表:一期设计日尖峰冷负荷为1156RT,采用逐时负荷系数法,设计日逐时冷负荷分布如下: 表设计日各时段负荷值情况

冰蓄冷技术(DOC)

1.技术原理 冰蓄冷空调技术是利用夜间电网谷电运转制冷主机制冷,并以冰的形式储存,在白天用电高峰时将冰融化提供空调用冷,从而避免中央空调争用高峰电力的一项调节负荷、节约能源的技术。 (1)削峰填谷、平衡电力负荷。 (2)改善发电机组效率、减少环境污染。 (3)减小机组装机容量、节省空调用户的电力花费。 (4)改善制冷机组运行效率。 (5)蓄冷空调系统特别适合用于负荷比较集中、变化较大的场合加体育馆、影剧院、音乐厅等。 (6)应用蓄冷空调技术,可扩大空调区域使用面积。 (7)适合于应急设备所处的环境,

计算机房、军事设施、电话机房和易燃易爆物品仓库等。 2.冰蓄冷空调系统组成 冰蓄冷空调系统包括:空调主机、冷水泵、冷却水泵、冷却塔、蓄冷水泵、释冷水泵、换热器、储冰槽等。相对于常规空调系统,冰蓄冷系统增加了储冰槽、换热器等装置 3..工艺流程 冰球式(也称封装式)冰蓄冷工艺流程:在制冰时,通常要求制冷主机蒸发器出口温度为零下5摄氏度,因此冰球外循环的介质通常采用乙二醇溶液,乙二醇溶液在冰球外流动,在制冰循环中,从制冷主机出来的低温乙二醇溶液流过冰球表面,使冰球内的水结冰;在融冰供冷时,乙二醇溶液流过冰球表面,通过换热器与流往空调末端的冷冻水热交换,被

冷却后的冷冻水流向各个房间,通过风机盘管供冷,因此,空调末端的形式可以与常规中央空调相同。 冰盘管冰蓄冷工艺流程: 、 4.适用范围: 商场、饭店、写字楼、体育馆、展览馆、影剧院、宾馆、居民小区等场所;制药、食品加工、啤酒工业、奶制品工业等;需要对现有单班、两班空调系统扩大供冷量的场所,可以不增加主机,改造成冰蓄冷系统。5.冰蓄冷空调系统的适用条件 执行峰谷电价,且差价较大的地区。(峰谷电价比至少要达到4:1,否则无经济性可言)

相变储能材料及其应用

相变储能材料及其应用 物质的存在通常认为有三态,物质从一种状态变到另一种状态叫相变。相变的形式有以下四种:(1)固—液相变;(2)液—汽相变;(3)固—汽(4)固-固相变。相变过程个伴有能量的吸收或释放,我们就可以利用相变过程中有能量的吸收和释放的现象,利用相变材料来存储能量。比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可 )、溶 过冷和析出两大问题。所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。结晶水合盐的代表有芒硝、六水氯化钙、 六水氯化镁、镁硝石等 (2)石蜡:石蜡主要由直链院烃混合而成,可用通式C n H2n+2表示,短链烷烃熔

点较低,但链增长熔点开始增长较快,而后逐渐减慢。随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。在C7H16以上的奇数烷烃和在C20H44以上的偶数烷烃在7℃一22℃范围内会产生两次相变: (1)低温的固-固转变,它是链围绕长轴旋转形成的; -固 3、有机-无机混合物 带有乙酰胺的有机和天机低共熔混合物具有较为优异的特性,而乙酰胺的熔点为80℃,潜热相当大,为251.2KJ/kg,且比较便宜。 此外乙酰胺本身及其与有机酸和盐类的低共熔混合物的化学和动力学性质都很好。乙酰胺的毒性很低。但是乙酰胺对某些塑料具有溶解作用,故在容器选择上应

谨慎小心,最好选用搪瓷或玻璃类容器。此类箱变材料也是在日常生活用品开发中 很有前途的一类。 储热相变材料的遴选原则: 作为贮热(冷)的相变材料,它们灾满足的条件是: (1)合适的相变温度; (2)较大的相变潜热; 储热相变材料的应用涉及面根广,但大致分为以下几个方面:集中空调的相变贮能系统,相变节能建筑材料和构件,相变储热在太阳能领域的应用,热电冷(或热电)联供系统中的相变储能,利出工业废热的相空贮热系统,相变日用品开发。随着相变材料基础和应用研究的不断断深入(包括新的相变材料的涌现),相变材料应用的 深度和广度都将不断拓展。

蓄冷技术

蓄冷技术 随着生活水平的日益提高,空气调节作为控制建筑室内环境质量的重要技术手段得到广泛的应用。但因为耗电量大,且基本处于用电负荷峰值期,这就为蓄冷技术的应用提供了一个重要的应用领域。 一、蓄冷技术的定义 蓄冷技术是一门关于低于环境温度热量的储存和应用技术,是制冷技术的补充和调节。低于环境温度的热量通常称作冷量。人们的生活和生产活动在许多时候要用到冷量,但是,有些场合缺乏制冷设备,有些时段不能使用制冷设备就需要借助蓄冷技术解决用冷需要。简言之,即冷量的贮存。 二、蓄冷的方法 有显热蓄冷和相变潜热蓄冷两大类。如在蓄冷空调中的水蓄冷空调是显热蓄冷,冰蓄冷空调和优态盐水合物(PCM)是相变潜热蓄冷。 三、冰蓄冷系统技术 冰蓄冷是指用水作为蓄冷介质,利用其相变潜热来贮存冷量。 冰蓄冷系统技术类型主要有冰盘管式、完全冻结式、冰球式、滑落式、优态盐式、冰晶式。 1.冰盘管式蓄冷系统 冰盘管式蓄冷系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关。这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。 2.完全冻结式蓄冷系统 该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进入蓄冰槽,流过塑料或金属盘管内,将管外的冰融化,乙二醇水溶液的温度下降,再被抽回到空调负荷端使用。这种蓄冰槽是内融冰式,盘管外可以均匀冻结和融冰,无冻坏的危险。这种方式的制冰率最高,可达IPF=90%以上(指槽中水90%以上冻结成冰)。生产这种蓄冰设备的厂家较多。 3.冰球式蓄冷系统 此种类型目前有多种形式,即冰球,冰板和蕊心褶囊冰球。冰球又分为园形冰球,表面有多处凹涡冰球和齿形冰球。 冰球式以法国CRISTOPIA为代表,蓄冰球外壳有高密度聚合烯烃材料制成,内注以具高凝固---融化潜热的蓄能溶液。其相变温度为0°C,分为直径77mm(S型)和95mm(C型)两种。以外径95mm冰球为例,其换热表面积为28.2ft2/RTH(0.75m2/KWH),每立方米空间可堆放1300个冰球;外径77mm冰球每立方米空间可堆放2550个冰球。冰球结构图见下左图。

冰蓄冷技术及其应用

研 究 生 课 程 论 文 (2008 -2009 学年第二学期) 课程论文题目:冰蓄冷技术及其应用 研究生:欧阳光 学 号 学 院 课程编号 课程名称 学位类别 硕士 任课教师 制冷空调过程的节能新技术 教师评语: 成绩评定: 分 任课教师签名: 年 月 日

冰蓄冷技术及其应用 摘要:本文在介绍了冰蓄冷技术的特点的基础上,论述了冰蓄冷技术对电力调峰、平衡电网及节能减排的意义;并结合工程实际,分析了与冰蓄冷空调相结合的低温送风系统的经济性;并简要介绍了冰蓄冷与热泵组合式空调系统的优势。展望了新型冰蓄冷系统的发展前景。 关键词:冰蓄冷削峰填谷节能低温送风系统 1 引言 改革开放以来,我国经济的高速发展和人民物质生活水平的不断提高,对电力供应不断提出新的挑战。尽管全国发电装机容量不断增大,然而,电力供应仍很紧张,尤其是夏季有些地方不得不采用拉闸限电的办法解燃眉之急。因而,改善电力供应的紧张状况和电力负荷环境已成为一些大中城市的首要任务。长期以来空调系统是能耗大户,而空调系统用电负荷一般集中在电力峰段,因此对城市电网具有很大的“削峰填谷”潜力。基于这种“削峰填谷”的想法,空调系统中出现了冰蓄冷机组,它利用午夜以后的低谷电制冰,储存到白天用电高峰时供冷。而冰蓄冷技术和低温送风空调系统相结合则更能增强它的竞争力,对于电力生产部门和用户都会产生良好的经济效益和社会效益,并可以实现整个能源系统的节能和环保。因而随着国内冰蓄冷技术的成熟,它在我国将有更广阔的发展前景。 2 冰蓄冷空调系统简介 冰蓄冷空调就是利用水或一些有机盐溶液作为蓄冷介质,在夜间电力供应的低谷期(同时也是空调负荷很低的时间)开机制冷,将它们制成冰或冰晶,到白天电力供应的高峰期(同时也是空调负荷高峰时间),利用冰或冰晶融解过程的潜热吸热作用,再将

蓄冷材料相变温度与相变潜热实验研究

第18卷第5期2000年10月 低温与特气L ow T emper ature and Specialty Gases V ol.18,No.5 O ct.,2000 工艺与设备 蓄冷材料相变温度与相变潜热实验研究 X 方贵银 (中国科学技术大学热科学与能源工程系,安徽合肥 230027) 摘要:阐述了自行研制的蓄冷材料相变温度与相变潜热实验装置的特点,并在该实验装置上测试了蓄冷材料的相变温度和相变潜热,获得了较准确的结果。该方法简单易行,可用于工程上测量相变蓄冷材料的热物性。关键词:蓄冷空调;蓄冷材料;相变温度;相变潜热;实验测试 中图分类号:T B64 文献标识码:A 文章编号:1007-7804(2000)05-0019-03 1 前 言 相变蓄冷材料热物性及其工作性能的研究具有重要的意义。材料的热物性及工作性能既是衡量其性能优劣的标尺,又是其应用系统设计及性能评估的依据。 测定相变温度、相变潜热及比热的方法可分为三类: 1.一般卡计法[1,2] ; 2.差热分析法(Differential Thermal Analy sis ,简称DT A )[3]; 3.示差扫描量热计法[4](Differential Scanning Calorimetry,简称DSC),它利用示差扫描量热计, 可以绘制相变材料整个相变过程中的能量-时间曲线。由于实验条件限制,下面采用的实验方法与典型方法不完全相同,可用于工程上进行蓄冷材料的性能测试。 2 蓄冷材料相变温度的测试 2.1 实验装置与实验方法 图1为实验装置图。实验装置主要由XWC-301自动平衡记录仪、铜—康铜热电偶、冰瓶、保温瓶、蓄冷材料(PCM ) 等构成。 图1 测试蓄冷材料相变温度的实验装置 1.保温瓶; 2.高密度聚乙烯塑料球; 3.相变蓄冷材料(PCM ); 4.冰水混合物; 5.铜—康铜热电偶; 6.保温材料; 7.导热油; 8.冰瓶; 9.自动平衡记录仪。 该实验采用冷却的方法测定蓄冷材料的相变凝固温度。它是将热电偶插入相变蓄冷球内,并将相变蓄冷球放入冰水混合物内冷却,由平衡记录仪记录热电偶由于相变蓄冷材料温度变化而引起的热电 势变化,然后由热电势转换成温度,得出蓄冷材料温度变化曲线。2.2 实验结果与分析 图2为某公司生产的蓄冷球内蓄冷材料的冷却 X 收稿日期:2000-08-28

相变储能材料在建筑方面的研究与应用

相变储能材料在建筑方面的研究与应用 摘要:随着建筑行业的向前发展,当前人们对于居住的要求也变得越来越高,对于居住条件的舒适性、安全性成为居民居住的主要考虑因素。正因如此,智能化、生态化已经成为当前建筑材料发展的趋势。相变储能材料作为传统建筑材料与相变材料复合而成的一中新型材料,由于其具有储能密度大、能够近似恒温下的吸放热而发展迅速。另一方面,相变储能材料的应用可以保持环境舒适,节省采暖制冷所需能源而受到建筑界的欢迎。本文将从多个方面对相变储能材料进行具体的分析,为后期的深入研究奠定基础。 关键词:建筑材料;相变材料;储能技术 Energy storage materials research and application of phase change in architecture Abstract:With forward the construction industry, the current requirement for people to live has become increasingly high, the comfort of living conditions, security has become a major consideration residents. For this reason, intelligent, ecological building materials has become the current trend of development. Phase change material as traditional building materials and phase change materials in a composite made of a new material, because of its large energy density, can be approximated under constant heat absorption and rapid development. On the other hand, application of energy storage phase change material can be kept comfortable, energy-saving heating and cooling needed and welcomed by the construction industry. This article from the multiple aspects of the phase change material specific analysis, to lay the foundation for further research later. Key words:construction materials; phase change material; energy storage technology

相变储能材料在建筑节能中的应用

相变储能材料及其在建筑节能中的应用摘要:相变材料具有储能密度大、效率高以及近似恒定温度下吸热与放热等优点。将该材料用于墙体天花板和地板,可提高建筑物热容量,从而可以降低室内温度波动,提高舒适度。本文介绍了相变储能材料的机理及其分类,综述了目前国内外相变节能材料的研究进展,分析了相变材料用于建筑上的应用方面,列举了相变材料在示范性建筑中的使用情况,最后提出相变储能材料的不足之处及应用前景。 关键词:建筑节能,相变,蓄能,建筑材料 Phase Change Materials and Its Application in the Construction of Energy-efficient Ji yongyu (Xi'an University of Architecture and Technology, Xi’an 710055) Abstract: A phase change material having a large energy density, high efficiency, and other advantages approximately constant temperature of the endothermic and exothermic. The materials used for walls ceilings and floors, the building thermal capacity can be increased, which can reduce the indoor temperature fluctuations and improve comfort. This paper describes the mechanism of phase change material and its classification, review the progress of the current domestic and international research phase change energy-saving materials, analysis of phase change materials for applications in buildings, citing the phase change material in an exemplary buildings usage, concludes the phase transition inadequacies energy storage materials and application prospects. Keywords: building energy efficiency, phase transformation, storage, construction materials 0 引言 近年来随着中国的经济快速发展以及人们生活水平的日益提高,人们对室内环境舒适度的要求也越来越高。在影响室内环境舒适度的诸多因素中,室温是一个非常关键的因素,而维持室温在 16.0~28.0°C 是保持室内环境舒适度的关键。为达到这一标准,人们通过利用空调和供暖系统来调节温度,但是相应的会造成能耗大幅度增加和能源消耗过快、环境污染加剧等问题。如何在室内环境舒适度、节能、环保中保持平衡已经成为建筑设计以及节能领域的热点问题 在众多的节能方法中, 近年新出现的相变储能材料, 逐渐走进人们的视野, 成为建筑节能开发的新宠。相变储能材料在很多领域都有应用, 但应用于建材的研究始于1982 年, 由美国能源部太阳能公司发起, 在我国才刚刚起步。相变储能材料的英文全称为Phase Change Material, 简称为PCM。相变储能材料是指随温度变化而改变物理性质并能提供潜热的物质,在一定的温度范围内,利用材料本身相态或结构的变化, 当环境温度升高或降低时, 它可以向环境自动吸收多余热量储存起来或释放储存的热量能起到保温作用。 1 相变储能材料介绍

相变蓄冷

广州赛能冷藏科技有限公司 北京绿浩然环保科技有限公司 广州齐天冷藏技术有限公司 南通昊川工贸有限公司 上海苏振能源科技有限公司 北京优冷科技有限公司 1、北京建筑工程学院环境与能源工程系 《低温相变蓄冷材料蓄冷热力特性实验研究》-本文采用实验方法测试了低温相变蓄冷材料(水合盐A 和B 二元盐溶液)蓄冷过程中温度场的分布, 用间接法测试了相变容器不同半径序列下的浓度值, 对选定的两种相变水合盐体系的相变过程进行了研究, 得出了两种体系给定浓度下的凝固点、过冷度等信息。研究结果对低温相变蓄冷材料的选择具有指导作用。 2、清华大学 《低温相变蓄冷材料蓄冷特性实验研究》-为使蓄冷技术能在医药、食品等行业对环境温度有特殊要求( 低于0 ) 的场所得到应用, 扩大蓄冷技术的应用范围, 对一种相变温度约为- 12的低温相变蓄冷材料TH -12进行了蓄放冷性能的实验研究。结果表明, 该材料具有很好的重复性, 是一种适于工业应用的低温蓄冷材料。 3、顺德职业技术学院机电工程系 《纳米TiO2- BaCl2- H2O 复合低温相变蓄冷材料的制备》-研究了TiO2 纳米颗粒在共晶盐BaCl2 水溶液中的分散行为, 考察了分散剂的种类和浓度以及溶液的pH 值对TiO2 悬浮液的分散性及其稳定性的影响规律。采用TiO2 粒子的体积分数表征纳米TiO2 在共晶盐水溶液中的分散状态,并利用稳定机理对共晶盐水溶液中TiO2 分散稳定性作了解释。最后

获得了一种较好的制备纳米复合蓄冷材料的方法。 《低温相变蓄冷纳米流体粘度特性实验研究》-测量了TiO2-BaCl2-H2O 纳米流体的粘度,分析了粒子体积分数、温度对纳米流体粘度影响的变化规律。结果表明,纳米流体的粘度随TiO2粒子体积分数的增加呈加速上升的趋势,随温度呈反比变化; 体积分数越高的纳米流体,在较低温度下的粘度增幅比高温时大。流变曲线表明,在所配制的体积分数内,TiO2-BaCl2-H2O 纳米流体的粘度不随剪切速率的变化而变化,为典型的牛顿型流体。 《DSC 法测量低温相变蓄冷纳米流体的比热容》-介绍差示扫描量热仪( DSC) 测量液体比热容的原理和方法, 并测量4 种不同体积分数的TiO2-BaCl2-H2O纳米流体比热容。结果表明, 加入纳米粒子后其比热容都有所降低, 并随TiO2 体积分数的增大而逐渐减小。 4、重庆大学刘玉东[7]、何钦波[8-9]把纳米TiO2粉体加入BaCl2共晶盐水溶液中,配制成TiO2-BaCl2-H2O纳米流体相变蓄冷材料,并研究了复合相变蓄冷材料的热物性和蓄/ 释冷特性,其导热系数显著增加,并且能大大降低过冷度。 上海交通大学李金平博士[10]研究了制冷剂气体水合物在纳米流体中的生成过程,表明纳米粒子的加入使得气体水合物快速结晶和生长,通过此方法得到的HCFC141b气体水合物具有生成速度快、水合率高、静态生成过程等特点。 Khanafer[11]等人建立了纳米流体在二维封闭腔内的对流换热模型,模拟结果表明纳米流体具有优良的对流换热性能。 Khodadadi[6]等人利用数值计算和模拟的方法研究了Cu-H2O纳米流体的相变过程,纳米流体显示出较好的蓄/释冷特性,结冰速率比纯水明显加快。 5、华南理工大学传热强化与过程节能教育部重点实验室 《Al2O3-H2O纳米流体相变蓄冷特性研究》-在水介质中悬浮少量的纳米氧化铝颗粒(粒径20nm),通过添加分散剂和超声波振荡,制备成均匀分散的Al2O3-H2O纳米流体。对水和Al2O3-H2O纳米流体的相变蓄冷特性进行了实验比较。结果表明,加入纳米Al2O3可降低水的过冷度,缩短结冰时间;在相同的时间内,纳米流体的蓄冷量要大于纯水。 6、浙江工业大学生环学院

FTC相变蓄能保温材料

一、产品概述 FTC自调温相变节能材料是利用植物临界萃取、真空冷冻析层、蒸馏、皂化等新工艺复合而成,是根据不同温度相变点调节室温的纯天然原创科技新材料。 本材料突破传统保温材料单一热阻性能,具有热熔性和热阻性两大绝热性。通过二元相变原理,相变潜热值大,具有较高蓄热密度,蓄、放热过程近似等温的特点,节能效果明显。经国家建设部科技成果鉴定,专家一致认为“该产品引进了相变蓄能机理,潜热值较大,通过材料相变,熔化吸热,凝结放热使室内温度相对平衡,达到建筑节能,推广后会有较好的社会和经济效益,该项研究成果对相变蓄能在建筑相关应用领域有技术方面的推进,具有国内先进水平。” 二、综合特性 1、潜热节能 利用相变调温机理,通过蓄能介质的相态变化实现对热能储存和释放,从而改善室内热循环质量。当环境温度低于一定值时,相变材料由液态凝结为固态,释放热量;当环境温度高于一定值时,相变材料由固态熔化为液态,吸收热量,使室温相对平衡。 经国家权威部门检测达到节能65%要求。 相变材料可收集多余热量,适时平稳释放,梯度变化小,有效降低损耗量,室温可趋于稳定。 利用相变调温机理,可使电负荷“削峰平谷”,充分利用低谷电价,降低住户用能成本,减少能源浪费,具有可观的社会效益和经济效益。 利用相变调温机理,对建筑分户采暖,具有广泛推动作用,特别是对首层、顶层、边角处居住环境的室温,夏季隔热、冬季保温均可起到平衡作用。 在新楼装饰和旧楼改造中,克服墙面裂缝、结露、发霉、起皮等先天不足弊病。 2、安全可靠 与基底整体粘结,随意性好,无空腔,避免负风压撕裂和脱落。有效克服板材拼接后边肋、阳角外翘变形面砖脱落等问题。 材料中有机物与主墙基底存在的游离酸反应形成化合物,渗入主墙微孔隙中,形成共同体,确保干态粘结性,并改善湿态粘结保值率,具有极好粘结性。

水蓄冷节能方案

水蓄冷改造方案

目录 目录 1项目概述 (1) 2项目背景 (2) 3设计依据 (2) 4设计原则 (4) 5能耗基准 (5) 5.1 电价 (5) 5.2 制冷站能耗 (5) 6项目技术方案 (6) 6.1 系统原理 (6) 6.2 设计参数 (8) 6.3 蓄冷水池 (9) 6.4 控制系统 (9) 6.5 安装工程 (11) 6.6 主要设备清单 (12) 8项目工期 (13) 9节能效益分析 (14) 10项目总结 (16)

1项目概述 项目名称:水蓄冷节能项目。 项目地点: 项目内容:对大厦原400m3消防水池进行改造,以作空调蓄冷之用。并增加必要的设备和切换阀门,将其接入到大厦原制冷站的工艺系 统中。增加自动化运行管理系统,以实现自动化运行。 技术特征:水蓄冷与原空调系统不直接连接,系统安全可靠;水蓄冷空调系统的蓄冷水池与原冷水机组可并联运行,进一步提高空调的 可调节能力;自动化运行,将显著提高大厦制冷站的运行效率, 大大节约运行费用。 项目工期:20天。 合作模式:合同能源管理模式。 经济效益:年降低运行成本25.5万元。

2项目背景 建筑总面积为50000 m2。 A座B座 建筑面积m2 2500025000 总层数 1818 地上层数 1616 地下层数2 2 标准层面积m2 14351435 大厦的A座和B座共用一套空调系统。制冷站主机、辅机设备使用时间长, 设备老化,系统运行效率低。 空调系统每年5月7日开机运行,至9月30日停机。每天提供空调的时 间为早上7:00至晚上19:00。 3设计依据 本水蓄冷改造系统方案设计依据包括: 针对项目现场情况,我们参照和严格执行国家相关规范如下: ●《采暖通风与空气调节设计规范》(GB50019-2003) ●《建筑给水排水设计规范》(GB50015-2003) ●《公共建筑节能设计标准》(GB50189—2005) ●《容积式和离心式冷水(热泵)机组性能试验方法》(GB/T 10870-2001) ●《建筑电气工程施工质量验收规范》(GB50303-2002) ●《民用建筑电气设计规范》(JGJ/T16-92) ●《工业企业通信设计规范》(GBJ42-81) ●《电气装置安装工程施工及验收规范》(CBJ232—92)

FTC自调温相变蓄能材料应用

FTC自调温相变蓄能材料应用 摘要: 针对建筑节能的重要性, 从材料的作用机理、特点、施工工艺、应用范围等方面介绍了FTC 自调温相变蓄能材料,进行了该蓄能材料的效益分析, 总结出该材料具有施工简捷、操作容易、料体质轻、凝固快、综合造价低等特点。 关键词: FTC自调温相变蓄能材料;机理及特点;应用 引言 我国能源匮乏,经济发展越发迅猛,需要更多的能源支撑, 新型建筑节能材料的广泛应用将为社会节能降耗做出重要贡献。FTC自调温相变节能建筑材料是以水镁石纤维等无机材料为原料,合理选用并添加相变材料及其他辅助材料, 经科学配比及特殊工艺复合而成,通过相变介质的相态变化,可在一定范围内调节室内温度等的新型建筑节能材料。传统工艺中的外墙保温节能材料聚苯乙烯泡沫塑料板、胶粉聚苯颗粒等, 在施工操作中直至交付使用过程中,不同程度存在性能折减、操作略繁、渗水、开裂、脱落等问题。而FTC除具备节能效果明显的优点外,在很大程度上克服了上述缺陷, 提供了建筑高效节能的新的可靠途径。 一、FTC自调温相变蓄能材料作用机理 FTC自调温相变蓄能材料(以下简称FTC材料)是以硅质材料等作为骨架材料,经科学配比合理选用并添加相变材料及其他辅助材料,利用植物临界萃取、真空冷冻析层、蒸馏、皂化等工艺复合而成,是根据不同温度相变点调节室温的原创科技新材料,具有隔声、防火、保温、隔热等功能。它突破传统保温材料单一热阻性能,具有热融性和热阻性两大绝热性。利用相变调温机理,通过蓄能介质的相态变化实现对热能的储存,改善室内热循环质量,当环境温度低于一定值时,相变材料由液态凝结为固态,释放热量;当环境温度高于一定值时,相变材料由固态融化为液态,吸收热量,使室温相对平衡,可在一定范围内调节室内温度,FTC是一种新型建筑节能材料。 二、FTC自调温相变蓄能材料的特点分析 经实践证明FTC自调温相变节能材料38 mm 厚材料优于50 mm 挤塑板保温性能, 达到节能65%的要求。FTC 材料与传统施工方法比较, 其先进性和新颖性体现在如下几方面: 1、工期: FTC 材料按施工工序手工抹制, 方便快捷, 材料容重为358 kg/ m3, 在操作工作面随拌随抹, 托灰板每次托料质量很轻, FTC 材料自身及与基层材料粘合力好, 塑料及木板抹子每次涂抹面积大。第一层压实厚度控制在10 mm 以内, 初凝后,涂抹第二遍厚度不超过20 mm( 顶棚为15 mm) , 施工速度快, 单位时间完成实物量大。另一特点, 构件基层处理方便快捷、简单,仅对混凝土结构表面抹3 mm-5 mm 厚界面剂, 而加气混凝土砌块、陶粒、空心砖及粉煤灰砖等填充墙体表面只要清除浮尘, 用水湿润即可施工, 无需其他处理。传统工艺中聚苯

水蓄冷技术的优势分析

水蓄冷技术的优势分析 内容摘要:随着社会的发展,能源越来越紧缺,而建筑的能耗占能源消耗的很大一部分,我国近些年来一直倡导建筑节能,水蓄冷技术作为新发展的一项技术也被广泛应用。本文主要根据工程实际情况,介绍水蓄冷技术和它的一些优势。 abstract: with the development of the society, energyincrease and building energy consumption accounts for a large part of the energy consumption. in recent years, china has been advocating the building energy efficiency, water storage technology as a new development of a technology is aslo widely used. this article is mainly based on the actual situation of the project to introduce the water storage technology and some of its advantages. 关键词:节能水蓄冷削峰填谷节省 中图分类号:tv743文献标识码: a 文章编号: 一、水蓄冷技术发展的必要性 环境污染和能源危机已成为当今社会的两大难题,如何合理的利用能源为人类创造现代生活已经成为当今社会的共识。在人类共同警视的时期,蓄能空调应运而生。随着社会的发展电力工业作为国民经济的基础产业,以取得了长足的发展。但是,电力的增长仍然满足不了国民经济的快速发展和人民生活用电的急剧增长的需要,全国缺电情况仍未得到根本的改变。目前电力供应紧张表现在

蓄冷空调新型相变蓄能材料热性能研究讲解

蓄冷空调新型相变蓄能材料热性能研究 方贵银, 徐锡斌 (南京大学物理系低温教研室, 江苏南京210093 摘要:通过实验分析了空调蓄冷材料的凝固点、融点、融解热和相变过程中的热稳定性等热学性能。在热分 析中, 用示差扫描量热仪(DSC 来测定蓄冷材料的融解热, 温度传感器用来测定蓄冷材料的凝固点和融解点。通过热分析寻找到了一种新型蓄冷材料, 其测试结果表明:该蓄冷材料是蓄冷空调系统中一种高效的蓄冷材料。 关键词:热学性能; 相变蓄能材料; 蓄冷空调 中图分类号:O552. 4+; TM925. 12文献标识码:A 文章编号:1006-7086(2002 03-0140-04 STUDY ON THERMAL PROPERTIES OF NEW PHASE CH ANGE MATERIAL FOR COOL STORAGE AIR CONDITIONING SYSTEM F AN G Gui -yin , XU Xi -bin (Depar tment of Physics , Nanj ing Univer sit y , Nanjing 210093, China Abstr act :The therma l pr oper ties include fr eezing point, melting point , the heat of fusion and ther mal stabilit y dur ing the phase cha nge pr ocess ar e investigated . In t he analysis , the Differ ential Sca nning Calor imenter (DSC was used t o determine t he heat of fusion of the cool storage mater ials. The temper ature sensor was used to deter -mine t he freezing point and melting point of the cool st or age mater ials . T he new cool stor age mat eria l

相变蓄能材料

相变储能材料 相变过程一般是等温或近似等温过程,相变过程中伴有能量的吸收或释放,这部分能量称为相变潜热 ,利用相变过程的这一特点开发了许多相变储能材料。与显热储能材料相比,潜热储能材料不仅能量密度较高 ,而且所用装置简单、体积小、设计灵活、使用方便且易于管理。另外 ,它还有一个很大的优点,即这类材料在相变储能过程中,材料近似恒温,可以以此来控制体系的温度。利用储能材料储能是提高能源利用效率和保护环境的重要手段之一 ,可用于解决热能供给与需求失配的矛盾 ,在能源、航天、军事农业、建筑、化工、冶金等领域展示出十分广泛和重要的应用前景,储热材料的研究目前已成为世界范围内的研究热点。相变储能材料的相变形式一般可分为四类 :固—固相变、固—液相变、液—气相变和固—气相变。由于后两种相变过程中有大量气体,相变物质的体积变化很大,因此,尽管这两类相变过程中的相变潜热很大,但在实际应用中很少被选用。与此相反 ,固—固相变由于体积变化小,对容器要求低(容器密封性、强度无需很高) ,往往是实际应用中希望采用的相变类型。有时为了应用需要 ,几种相变类型可同时采用。 相变储能材料按相变温度的范围分为高温(大于 250 ℃) 中温 ( 100~250 ℃ )和低温 ( 小于100 ℃) 储能材料; 按材料的组成成分又可分为无机类、有机类 (包括高分子类 ) 及无机、有机复合相变储能材料。相变材料是由多成份构成的,包括主储热剂、相变点调整剂、防过冷剂、防相分离剂、相变促进剂等组成。 1、相变储能材料的机理 相变材料从液态向固态转变时,要经历物理状态的变化。在这两种相变过程中,材料要从环境中吸热,反之,向环境放热。在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中时,产生了一个宽的温度平台。该温度平台的出现,体了恒温时间的延长,并可与显热和绝缘材料区分开(绝缘材料只提供热温度变化梯度)。相变材料在热循环时,储存或释放显热。 相变材料在熔化或凝固过程中虽然温度不变,但吸收或释放的潜热却相当大。以冰一水相变的过程为例,对相变材料在相变时所吸收的潜以及普通加热条件下所吸收的热量作一比较:当冰熔解时,吸收335j/g的潜热,当水进一步加热,温度每升高1℃,它只吸收大约4j/g 的能量。因此,由冰到水的相变过程中所吸收的潜热几乎比相变温度范围外加热过程的热吸收高80多倍。除冰水之外,已知的天然和合成的相变材料超过50种,且这些材

相变储能材料和相变储能技术

相变储能材料和相变储 能技术 Document number:BGCG-0857-BTDO-0089-2022

相变储能材料及其应用 物质的存在通常认为有三态,物质从一种状态变到另一种状态叫相 变。相变的形式有以下四种:(1)固—液相变;(2)液—汽相变;(3)固— 汽(4)固-固相变。相变过程个伴有能量的吸收或释放,我们就可以利 用相变过程中有能量的吸收和释放的现象,利用相变材料来存储能量。 比如用冰贮冷,冬天,在寒冷的地区,人们从湖面、河面冻结的厚冰层 中获取冰块,贮存于“冰屋”中,利月锯末隔热、冰块可存放到夏季结 束。这是冰块就可以起到现在冰箱的效果了。 储能想变成材料 一般而言,储热相变材料可以这么进行分类 下面我们对相变储能材料进行逐一分析: 1、固-液相变材料: (1)结晶水合盐:结晶水合盐种类繁多,其熔点也从几度到几百度 可供选择,其通式可以表达为AB?nH 2O 。结晶水合盐通常是中、低温贮能 相变材料中重要的一类,其特点是:使用范围广,价格较便宜、导热系 结晶水合盐(如Na 2 SO 4?10H 2O ) 熔融盐 金属(包括合金) 其他无机类相变材料(如水) 无机物 有机物 石蜡 酯酸类 其他有机混合类 有机类与无机类相变材料的混合 相变材料

数较大(与有机类相变材料相比)、溶解热较大、密度较大、体积贮热密度较大、一般呈中性。但此类相变材料通常存在过冷和析出两大问题。所谓过冷是指当液态物质冷却到“凝固点”时并不结晶,而须冷却到“凝固点”以下一定温度时方开始结晶;而析出现象指在加热过程中,结晶水融化,此时盐溶解在水中形成溶液。结晶水合盐的代表有芒硝、六水氯化钙、六水氯化镁、镁硝石等 (2)石蜡:石蜡主要由直链院烃混合而成,可用通式C n H 2n +2表示, 短链烷烃熔点较低,但链增长熔点开始增长较快,而后逐渐减慢。随着链的增长,烷烃的熔解热也增大,由于空间的影响,奇数和偶数碳原子的烷烃有所不同,偶数碳原子烷烃的同系物有较高的熔解热,链更长时熔解热趋于相等。在C 7H 16以上的奇数烷烃和在C 20H 44以上的偶数烷烃在 7℃一22℃范围内会产生两次相变: (1)低温的固-固转变,它是链围绕长轴旋转形成的; (2)高温的固-液相变,总潜热接近溶解热,它被看作贮热中可利用的热能。 这样就会使石蜡具有较高的相变潜热。 石蜡作为贮热相变材料的优点是:无过冷及析出现象,性能稳定,无毒,无腐浊性,价格便宜。缺点是导热系数小,密度小,单位体积贮热能力差。 (3)酯酸类 酯酸类也是一种有机贮热相变材料,其分子通式为CnH 2nOn ,其性能 特点与石蜡相似。 2、固-固相变材料 典型的固一液相变贮热材料是水合盐及其低共熔物,它们虽有不少优点,但通常也有易发生相分层,过冷较严重、贮热性能衰退和容器价格高等缺点,但是固-固相变材料因有较高的固一固转变热、固-固转变不生成液态(故不会泄漏)、转变时体积变化小、过冷程度轻、无腐蚀、

水蓄冷技术

水蓄冷、蓄热知识总结 一、所属行业:空调 二、技术名称:水蓄冷技术 三、适用范围: 具有分时电价地区的医院、宾馆、商场、办公楼、住宅小区、工矿企业等空调系统和工艺用冷领域 四、技术内容: 1.技术原理 水蓄冷中央空调系统是用水为介质,将夜间电网多余的谷段电力(低电价时)与水的显热相结合来蓄冷,以低温冷冻水形式储存冷量,并在用电高峰时段(高电价时)使用储存的低温冷冻水来作为冷源的空调系统 2.关键技术 蓄冷水箱的结构形式应能防止所蓄冷水和回流热水的混合,提高蓄冷水箱的蓄冷效率,增加蓄村冷水可用能量,因此如何降低冷温水界面间斜温层的厚度是技术的关键。 3.工艺流程

五、主要技术指标: 斜温层厚度控制在0.9米内,水箱完善度达95%以上 六、技术应用现状: 国内已经建成的水蓄冷空调项目超过50个,广西、北京、湖北等地的项目较多,其中由XX承建的ZZ的水蓄冷空调项目已被列为XX省研究级示范工程。 七、典型用户: XX精密陶瓷有限公司(电子行业),用于空调制冷。改造前,两台制冷量100万kcal/h冷水机组白天12小时适时供冷,改造后,增加一台容积960立方的蓄冷槽,投资额85万元,夜间电力低谷期8小时开动两台冷水机组对蓄冷罐充冷,白天12小时以蓄冷罐对外供冷,冷水机组不运行。运行效果:1、企业空调节电:12%;2、日运行费用节省:5608kWh×0.75元/kWh - 4908×0.3元= 2734元/天; 3、年运行费用节省: 42万元。投资回收期二年。 XX药业,用于区域供冷。改造前空调总建筑面积30000平米,设计日最大冷负荷3208kW,扩建后空调总建筑面积45000平米,设计日最大冷负荷5197kW,增设1800立方蓄冷水槽,不增加冷水机组。运行效果:水蓄冷改扩建与常规空调扩建比较,年运行费用节约34万元,投资增加43万元,不到二年即可回收多余投资。 八、推广前景和节能潜力: 中国政府部门实行了电力供应峰谷不同电价政策,采用需求侧管理(DSM)的水蓄冷技术来达到削峰填谷,是缓解电力建设和新增用电矛盾的有效的解决途径之一。各地区也出台了各项有关促进蓄冷空调工程发展的政策,推动了蓄冷空调技术的发展和应用。水蓄冷技术不但适用于新建项目,也适合应用于改造项目。可以使用常规冷水机组,适用于常规供冷系统的扩容和改造。并且能够实现蓄冷和蓄热的双重用途。 我国水蓄冷空调工程载冷体工作温差由原来的5℃提高到10℃,甚至更大,使蓄冷密度由原来的5.8KW/M3(5,000大卡/ M3)提高到11.6KW/M3 (10,000大卡/ M3)或更大,由此使蓄冷水槽的容积大大减少,工程造价降低、传热损耗乃至载冷体输送功耗也随之减小,当蓄冷量大于7000kW.h(603万kcal),或蓄冷容积大于760m3时,在各种蓄冷方式中水蓄冷最为经济,尤其在建筑物附近有空地可建蓄冷水罐(槽)或已有的消防水池可利用时,更有其推广使用的价值。夜间气温降低,制冷效率随之可提高6-8%,系统满负荷运转时间大幅度增加,从而使空调系统的总节电率达10%-22%。

相关文档
最新文档