无机化学实验五 二氧化碳相对分子质量的测定

无机化学实验五 二氧化碳相对分子质量的测定
无机化学实验五 二氧化碳相对分子质量的测定

实验五二氧化碳相对分子质量得测定

一、实验目得

1.学习气体相对密度法测定分子量得原理与方法,加深理解理想气体状态方程式与阿佛加德罗定

律;

2.学会大气压力计得使用;

3.巩固分析天平得使用;

4.了解启普发生器得构造与原理,掌握其使用方法,熟悉洗涤、干燥气体得装置。

二、实验原理

阿佛加德罗定律:同T、P,同V得气体物质得量相等

理想气体状态方程式:PV=nRT =mRT/M

对同T、P,同V得空气(air)与二氧化碳(CO2)有:

式中,m,M分别为空气(二氧化碳)得质量与相对分子质量

则,

[教学重点]

分析天平得使用

启普发生器得使用

分子量得测定与计算

[教学难点]

分析天平得称量操作

启普发生器得使用

[实验用品]

仪器:台秤(电子称)、分析天平、启普发生器、洗气瓶、锥形瓶、干燥管

药品:石灰石、无水CaCl2、6mol·L-1HCl、1mol·L-1NaHCO3、1mol·L-1CuSO4

材料:玻璃棒、玻璃导管、橡皮塞(3、6、8~12号)、玻璃棉

[基本操作]

一、大气压力计得使用方法

1.首先观察附属温度计,记录温度;

2.调节水银槽中得水银面。旋转调节螺旋使槽内水银面升高,这时利用水银槽后面白磁片得反光,可以瞧到水银面与象牙针得间隙,再调节螺旋至间隙恰好消失为止;

3.调节游标。转动控制游标得螺旋,使游标得底部恰与水银柱凸面顶端相切;

4.读数方法。读数标尺上得刻度单位为hPa。整数部分得读法:先瞧游标得零线在刻度标尺上得位置,如恰与标尺上某一刻度相吻合,则该刻度即为气压计读数。例如,游标零线与标尺上1160相吻合,气压读数即为1161、0 hPa,如果游标零线在1161与1162之间,则气压计读数得整数部分即为1161,再由游标确定小数部分。小数部分得读法:从游标上找出一根与标尺上某一刻度相吻合得刻度线,此游标读数即为小数部分,如1161、5hPa;

5.读数后转动气压计底部得调节螺旋,使水银面下降到与象牙针完全脱离;

6.做仪器误差、温度、海拔高度与纬度等项校正。

二、电子天平得使用

1.电子天平得使用精确度0、1mg (最大载荷200g)

(1)使用前观察天平仪就是否水平,如不水平,用水平脚调整水平;

(2)接通电源,预热20~30min以获得稳定得工作温度;

(3)让秤盘空载并轻按“On”键,天平显示自检(所有字段闪现等),当天平回零时,就可以称量了;

(4)简单称量:打开天平侧门,将样品放在秤盘上,关闭侧门,等到稳定指示符“。”消失,读取称量

结果;

(5)去皮称量:将空容器放在秤盘上,显示其重量值。轻按“→O/T←”键去皮。向空容器中加料,并

显示净重值(如将容器从天平上移去,去皮重量值会以负值显示,此值将一直保留到再次按“→O/T←”键或关机。);

(6)称完,取下被称物,按一下OFF键,拔下电源插头,盖上防尘罩。

2.电子天平得使用规则与维护

(1)天平室应避免阳光照射,保持干燥,防止腐蚀性气体得侵袭。天平应放在牢固得台上避免震

动;

(2)天平箱内应保持清洁,要定期放置与更换吸湿变色干燥剂(硅胶),以保持干燥;

(3)称量物体不得超过天平得载荷;

(4)不得在天平上称量热得或散发腐蚀性气体得物质;

(5)开关天平要轻缓,以免震动损坏天平得刀口。在天平开启(全开)状态严禁加减砝码与物体; (6)使用电光分析天平加减砝码时,必须用镊子夹取,取下得砝码应放在砝码盒内得固定位置上,不能乱放,也不能够用其它天平得砝码;

(7)称量得样品,必须放在适当得容器中,不得直接放在天平盘上;

(8)称量完毕应将各部件恢复原位,关好天平门,罩上天平罩,切断电源。并检查盒内砝码就是否完整无缺与清洁,最后在天平使用登记本上写清使用情况。

三、启普发生器得构造与使用

构造:葫芦状容器,球形漏斗,旋塞导管,塞子。

实验室中常常利用启普发生器制备H2、CO2、H2S等气体。启普发生器不能受热,装在发生器内得固体必须就是颗粒较大或块状得。移动时,应用两手握住球体下部,切勿只握住球形漏斗,以免葫芦状容器落下而打碎。

使用:

1.装配:在球形漏斗与玻璃旋塞磨口处涂一薄层凡士林油,插好球形漏斗与玻璃旋塞,转动几次,使其严密。

2.检查气密性:开启旋塞,从球形漏斗口注水至充满半球体时,关闭旋塞。继续加水,待水从漏斗管上升到漏斗球体内,停止加水。在水面做记号,静置片刻,如水面不下降,证明不漏气,可以使用。

3.加试剂:从导气管口加入固体试剂,从球形漏斗加入酸。

4.发生气体:打开旋塞,固液接触产生气体;关闭旋塞,由于气体得压力使液体与固体分离,反应停止。

5.添加或更换试剂:从下口排出废液,从从漏斗口添加液体;从导气管口加入固体。

6.结束后处理:关闭旋塞,使反应停止,将废液倒入废液桶,固体倒出洗净回收,磨口部分垫上纸

条。

三、实验内容

(一)CO2得制备及称量

1.按图搭好制取CO2得装置,检查气密性;

2.称量:锥形瓶+橡皮塞+空气(用笔在皮塞上做记号)得质量,台秤粗称,分析天平准确称量(称

准至0、1mg),记为m1;

3.制备CO2气体并收集,检验就是否收满(3~5 min);

4.称量:锥形瓶+橡皮塞+CO2得质量,分析天平准确称量,记为m2(重复两次取平均值);

5.称量:锥形瓶+橡皮塞+H2O得质量,台秤粗称(称准至0、1 g),记为m3。

(二)数据记录与处理

室温T= K气压P =Pa

m1(空气+瓶+塞子)= g

第一次称m2(CO2+瓶+塞子) =g

第二次称m2(CO2+瓶+塞子) = g

平均m2 = g

m3(H2O+瓶+塞)=g

瓶子体积V = m3–m1/1、00 = mL =m3

(这一步为近似计算,忽略了空气质量、)

瓶内空气得质量

m air== g

(瓶+塞)m4= m1-m空气= g

m CO2= m2- m4= g

M CO2=×29、0=

(三)计算误差

绝对误差(E)=测定值(x) -真实值(xT) =

相对误差= ×100% =

误差越小(大),准确度越高(低);结果偏高(低),正(负)误差。

四、注意事项

1.气压计得正确读数;

2.电子天平得正确使用;

2.启普发生器中酸不可多装,以防酸过多把导气管口淹没;

3.碳酸钙不要加太多,占球体得1/3即可;

4.保持塞子塞入瓶中得体积相同。

五、问题讨论

1.为什么二氧化碳气体、瓶、塞得总质量要在分析天平上称量,而水+瓶+塞得质量可在台秤上

称量?两者得要求有何不同?

2.为什么橡皮塞塞入得位置要用笔做记号?

3.分析误差产生得原因?

4.哪些物质可用此法测定相对分子质量?哪些不可以?为什么?

CO2相对分子质量的测定

实验五二氧化碳相对分子质量得测定 一、实验目得 1。学习气体相对密度法测定分子量得原理与方法,加深理解理想气体状态方程式与阿佛加德罗定律; 2。学会大气压力计得使用; 3.巩固分析天平得使用; 4。了解启普发生器得构造与原理,掌握其使用方法,熟悉洗涤、干燥气体得装置。 二、实验原理 阿佛加德罗定律:同T、P,同V得气体物质得量相等 理想气体状态方程式:PV=nRT=mRT/M 对同T、P,同V得空气(air)与二氧化碳(CO2)有: = 式中,m,M分别为空气(二氧化碳)得质量与相对分子质量 则, [教学重点] 分析天平得使用 启普发生器得使用 分子量得测定与计算 [教学难点] 分析天平得称量操作 启普发生器得使用 [实验用品] 仪器:台秤(电子称)、分析天平、启普发生器、洗气瓶、锥形瓶、干燥管 药品:石灰石、无水CaCl2、6mol·L-1HCl、1mol·L-1NaHCO3、1mol·L-1CuSO4 材料:玻璃棒、玻璃导管、橡皮塞(3、6、8~12号)、玻璃棉 [基本操作] 一、大气压力计得使用方法 1.首先观察附属温度计,记录温度; 2.调节水银槽中得水银面。旋转调节螺旋使槽内水银面升高,这时利用水银槽后面白磁片得反光,可以瞧到水银面与象牙针得间隙,再调节螺旋至间隙恰好消失为止; 3。调节游标。转动控制游标得螺旋,使游标得底部恰与水银柱凸面顶端相切; 4.读数方法。读数标尺上得刻度单位为hPa.整数部分得读法:先瞧游标得零线在刻度标尺上得 位置,如恰与标尺上某一刻度相吻合,则该刻度即为气压计读数.例如,游标零线与标尺上1160相吻合,气压读数即为1161、0hPa,如果游标零线在1161与1162之间,则气压计读数得整数部分即为1161,再由游标确定小数部分.小数部分得读法:从游标上找出一根与标尺上某一刻度相吻合得刻度线,此游标读数即为小数部分,如1161、5 hPa; 5.读数后转动气压计底部得调节螺旋,使水银面下降到与象牙针完全脱离; 6.做仪器误差、温度、海拔高度与纬度等项校正. 二、电子天平得使用 1.电子天平得使用精确度0、1 mg (最大载荷200 g) (1)使用前观察天平仪就是否水平,如不水平,用水平脚调整水平; (2)接通电源,预热20~30 min以获得稳定得工作温度; (3)让秤盘空载并轻按“On”键,天平显示自检(所有字段闪现等),当天平回零时,就可以称量了;

九年级化学上册 有关相对分子质量的计算(教案)

第3课时有关相对分子质量的计算 【教学目标】 1.知识与技能 (1)了解相对分子质量的意义。会根据化学式计算物质的相对分子质量,各元素间的质量比、某元素的质量分数。 (2)能看懂商品标签或说明书上标示的物质成分和含量。 2.过程与方法 通过讨论交流、活动探究,培养学生利用知识解决实际问题的能力和基本计算能力。 3.情感、态度与价值观 通过活动探究,发展学生善于合作、勤于思考、勇于实践的精神。 【教学重点】 会利用化学式进行相关计算。 【教学难点】 物质质量与元素质量的互求。 一、导入新课 1.四氧化三铁的化学式为Fe 3O 4 ,据此你能知道关于Fe 3 O 4 的哪些信息?铁元 素的化合价是多少? 2.下列粒子各表示什么意义? (1)2H;(2)H 2O;(3)2CO 2 。 3.什么是相对原子质量? 二、推进新课 1.相对分子质量 [设问]分子是由原子构成的,原子具有相对原子质量,那么分子有相对分子质量吗? [讲解](1)相对分子质量是化学式中各原子的相对原子质量总和。它的

符号是Mr,单位是一,一般省略不写。 [模仿练习]计算下列物质的相对分子质量或相对分子质量总和,请三位同学板演。 (1)氢氧化钙[Ca(OH) 2];(2)CuSO 4 ·5H 2 O;(3)5P 2 O 5 。 [讨论交流]计算相对分子质量的要点:①“×”和“+”的应用。同种元素质量=相对原子质量×原子个数,不同元素之间应该用“+”相连接。②化学式中如果有括号(即含有多个原子团),不要忘记乘括号外的数字(即先算出一个原子团的相对原子质量的总和,再乘以原子团的个数)。 [设问]从化学式MnO 2 中你可获得哪些信息? [讨论得出](1)组成的元素;(2)原子间的个数比;(3)原子的总个数。 [设问]MnO 2 中锰元素与氧元素的质量比是多少? [指导自学]阅读教科书 2.计算物质组成元素的质量比,了解元素间质量比的表示方法。 [模仿练习]计算下列物质组成元素的质量比,请三位同学板演。 水(H 2O);硝酸铵(NH 4 NO 3 );碱式碳酸铜[ Cu 2 (OH) 2 CO 3 ]。 [讨论交流]计算物质组成各元素质量比:化合物中各元素的质量比等于各元素原子的相对原子质量总和之比。①元素只讲种类,不讲个数。如在计算硝酸铵(NH4NO3)中各元素的质量比时,不能写成2N∶4H∶3O或N2∶H4∶O3,要写成m(N)∶m(H)∶m(O)=(14×2)∶(4×1)∶(16×3)=7∶1∶12。②查对各元素的原子个数。如在计算Cu2(OH)2CO3中各元素的质量比时,不能写成m(Cu)∶m(O)∶m(H)∶m(C)∶m(O)=(64×2)∶(16×2)∶(1×2)∶(12×1)∶(16×3)=64∶16∶1∶6∶24(没把氧元素的原子个数合在一起)。正确计算方法为m(Cu)∶m(O)∶m(H)∶m(C)=(64×2)∶(16×5)∶(1×2)∶(12×1)=64∶40∶1∶6。 [设问]知道元素间的质量比的表示方法,我们还能知道某元素的质量分数吗? [模仿练习]已知铁锈的主要成分是氧化铁,其化学式为Fe 2O 3 ,试计算:(1) 氧化铁的相对分子质量;(2)氧化铁中铁、氧两元素的质量比;(3)氧化铁中铁

相对原子质量计算题

1、下列氮肥中,氮元素的质量分数最大的是 A.CO(NH2)2 B.(NH4)2SO4 C.NH4NO3 D.KNO3 2、在氧化亚铁(),氧化铁()和四氧化三铁()这三种铁的氧化物中,铁的质量分数由大到小的顺序是() A.B. C.D. 3、X和Y两种元素组成的化合物甲和乙,甲的化学式为XY2,其中Y元素的质量分数为50%,乙中Y元素的质量分数为60%,则乙的化学式为 A. XY B. XY3 C. X2Y3 D. X3Y 4、下列反应前后元素的化合价有改变的是 ( ) A. CaO+H2O=Ca(OH)2 B. H2O+CO2=H2CO3 C. CaCO3CaO+CO2 D. 2CO+O22CO2 5、A、B两元素相对原子质量之比为7∶2,在化合物中两元素的质量比为 21∶8,则化合物的化学式为 A. A3B4 B. A2B3 C. A3B2 D. AB 6、世界卫生组织将某氧化物RO2列为A级高效安全灭菌消毒剂,它在食品保鲜、饮用水消毒等方面有着广泛应用。实验测得该氧化物中R与O的质量比为71:64,则RO2的化学式为 A、CO2 B、ClO2 C、SO2 D、NO2 7、常温下,某气体可能是由SO2、CO、N2中的一种或几种组成,测得气体中氧元素的质量分数为50%,则该气体可能为下列组成中的 ( ) ①SO2②SO2、CO ③SO2、N2④CO、N2⑤SO2、CO、N2 A.①②③ B.②③⑤ C.①②⑤ D.①④⑤ 8、某硝酸铵[NH4NO3]样品中含有一种杂质,经分析样品中的氮元素的质量分数为36%,该样品中所含杂质可能是()

A.(NH4)2SO4 B.CO(NH2)2 C.NH4HCO3 D.NaCl 9、某元素R的氧化物的化学式为,其式量为M,R的相对原子质量是()。 A.B.C.D. 10、某不纯的二氧化锰粉末中只含有一种杂质,经测定该不纯的二氧化锰中含氧元素质量分数为35.8%,则其中的杂质可能是下列物质中的( ) A.Al2O3 B.MgO C.SiO2 D.CuO 11、根据高锰酸钾的化学式KMnO4计算: ⑴组成各元素的质量比 ⑵高锰酸钾中氧元素的质量分数 ⑶多少克高锰酸钾与71g硫酸钠(Na2SO4)所含的氧元素质量相等?(3分) 1、A 2、B 3、B 4、D 5、A 6、B 7、D 8、B 9、C

相对分子质量计算 教学案

S %= 第四单元课题4有关相对分子质量的计算 主备人 陈玉玺 审核人 使用人 备课时间 2009.10.29 上课时间 一、预习导学 1、 化学式H 2O 表示的意义:表示一个水分子中含有 那么H 的相对原子质量是1,O 的相对原子质量是16,化学式中各原子的相对原子质量之和就是相对分子质量。例如H 2O 的相对分子质量=1×2+16=18 练习:计算下列物质的相对分子质量 SO 2 Fe 2O 3 CO 2 P 2O 5 KClO 3 CaCO 3 2、化学式H 2O 表示的意义:表示水是由 两种元素组成的,那么水中H ,O 两种元素的质量比如何计算? 化学式中各元素的质量比=相对原子质量乘以个数之比。例如H 2O 中H :O=1×2:16×1 =1:8 计算下列各元素质量比 SO 2 Fe 2O 3 CO 2 P 2O 5 SO 3 MgO 3、SO 2是由 组成的,在SO 2中S 的质量分数是多少? × 元素的质量分数=该元素的相对原子质量×个数比上相对分子质量, 即元素的质量分数= 相对原子质量×该原子个数 ×100% 相对分子质量 例如SO 2中, S SO 2 =32 练习计算下列物质氧元素的质量分数 Fe 2O 3 SO 3 CaCO 3 MgO 二、预习检测

1、抗震救灾,众志成城。用于汶川震后防疫的众多消毒剂中,有一种高效消毒剂的主要成分为三氯异氰尿酸(C3O3N3Cl3),又称高氯精。下列有关高氯精的说法不正确的是 ( ) A.高氯精由4种元素组成 B.高氯精中 C.O、N、Cl的原子个数比为1∶1∶1∶1 C.高氯精中C.N两种元索的质量比为12∶14 D.高氯精中氯元素的质量分数为25% 2、珍爱生命,拒绝毒品”是每个公民的责任,但是在某些娱乐场所,还有人服用俗称摇头丸的毒品。该毒品能使人手舞足蹈,呈癫狂状态,严重危害人的身心健康和社会稳定,有一种“摇头丸”的化学式为C12H x O2N,相对分子质量为209。 试回答下列问题: (1)该物质由种元素组成,它属于(填“纯净物”、或“混合物”)。(2)该物质的一个分子中,含氢原子个,氮元素所占的质量分数为。 (3)该物质中碳元素与氧元素的质量比为。(最简整数比) 三、学习探究 1、计算CuSO4·5H2O的相对分子质量 2、计算NH4NO3中氮元素与氧元素的质量比 3、计算18克水中含氧元素的质量 4、根据高锰酸钾的化学式KMnO4计算:多少克高锰酸钾与71 g硫酸钠(Na2SO4)所含的氧元素质量相等? 5、相同质量的SO2和SO3中,所含氧元素的质量之比为,分子个数相同的H2O与H2SO4之间氧元素的质量比是。

高分子相对分子量的测定

高分子分子量的主要测定方法 用途 高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。 表征方法及原理 1.粘度法测相对分子量(粘均分子量Mη) 用乌式粘度计,测高分子稀释溶液的特性粘数[η],根据Mark-Houwink公式[η]=kMα,从文献或有关手册查出k、α值,计算出高分子的分子量。其中,k、α值因所用溶剂的不同及实验温度的不同而具有不同数值。 2.小角激光光散射法测重均分子量(Mw) 当入射光电磁波通过介质时,使介质中的小粒子(如高分子)中的电子产生强迫振动,从而产生二次波源向各方向发射与振荡电场(入射光电磁波)同样频率的散射光波。这种散射波的强弱和小粒子(高分子)中的偶极子数量相关,即和该高分子的质量或摩尔质量有关。根据上述原理,使用激光光散射仪对高分子稀溶液测定和入射光呈小角度(2℃-7℃)时的散射光强度,从而计算出稀溶液中高分子的绝对重均分子量(MW)值。采用动态光散射的测定可以测定粒子(高分子)的流体力学半径的分布,进而计算得到高分子分子量的分布曲线。 3.体积排除色谱法(SES)(也称凝胶渗透色谱法(GPC)) 当高分子溶液通过填充有特种多孔性填料的柱子时,溶液中高分子因其分子量的不同,而呈现不同大小的流体力学体积。柱子的填充料表面和内部存在着各种大小不同的孔洞和通道,当被检测的高分子溶液随着淋洗液引入柱子后,高分子溶质即向填料内部孔洞渗透,渗透的程度和高分子体积的大小有关。大于填料孔洞直径的高分子只能穿行于填料的颗粒之间,因此将首先被淋洗液带出柱子,而其他分子体积小于填料孔洞的高分子,则可以在填料孔洞内滞留,分子体积越小,则在填料内可滞留的孔洞越多,因此被淋洗出来的时间越长。按此原理,用相关凝胶渗透色谱仪,可以得到聚合物中分子量分布曲线。配合不同组分高分子的质谱分析,可得到不同组分高分子的绝对分子量。用已知分子量的高分子对上述分子量分布曲线进行分子量标定,可得到各组分的相对分子量。由于不同高分子在溶剂中的溶解温度不同,有时需在较高温度下才能制成高分子溶液,这时GPC柱子需在较高温度下工作。 4.质谱法 质谱法是精确测定物质分子量的一种方法,质谱测定的分子量给出的是分子质量m对电荷数Z之比,即质荷比(m/Z)过去的质谱难于测定高分子的分子量,但近20余年由于我的离子化技术的发展,使得质谱可用于测定分子量高达百万的高分子化合物。这些新的离子化技术包括场解吸技术(FD),快离子或原子轰击技术(FIB或FAB),基质辅助激光解吸技术(MALDI-TOF MS)和电喷雾离子化技术(ESI-MS)。由激光解吸电离技术和离子化飞行时间质谱相结合而构成的仪器称为“基质辅助激光解吸-离子化飞行时间质谱”(MALDI-TOF MS 激光质谱)可测量分子量分布比较窄的高分子的重均分子量(Mw)。由电喷雾电离技术和离子阱质谱相结合而构成的仪器称为“电喷雾离子阱质谱”(ESI- ITMS 电喷雾质谱)。可测量高分子的重均分子量(Mw)。

初中常用相对分子质量及计算公式

氢 气 H 2 2 五氧化二磷 P 2O 5 142 氧 气 O 2 32 氢氧化钙(熟石灰) Ca(OH)2 74 氯 气 Cl 2 71 氢氧化铜 Cu(OH)2 98 氨 气 NH 3 17 氢氧化钠 NaOH 40 氮 气 N 2 28 过氧化氢(双氧水) H 2O 2 34 一氧化碳 CO 28 碱式碳酸铜(绿) Cu 2(OH)2CO 3 222 二氧化碳 CO 2 44 盐酸(氯化氢) HCl 36.5 一氧化硫 SO 48 氯化钙 CaCl 2 111 二氧化硫 SO 2 64 氯化钾 KCl 74.5 三氧化硫 SO 3 80 氯化铁(淡黄溶) FeCl 3 162.5 二氧化锰 MnO 2 87 氯酸钾 KClO 3 122.5 碳 酸 H 2CO 3 62 高锰酸钾(灰锰氧) KMnO 4 158 碳酸钙 CaCO 3 100 硫酸铜(白固 蓝溶) CuSO 4 160 碳酸氢铵 NH 4HCO 3 79 硫酸钠 Na 2SO 4 142 硝 酸 HNO 3 63 硝酸铵 NH 4NO 3 80 硫 酸 H 2SO 4 98 甲 烷 CH 4 16 亚硫酸 H 2SO 3 82 尿 素 CO(NH 2)2 60 磷 酸 H 3PO 4 98 甲 醇 CH 3OH 32 水 H 2O 18 乙醇(酒精) C 2H 5OH 46

氧化铜(黑)CuO 80 乙炔C H226 2 氧化镁(白)MgO 40 乙酸(醋酸)CH COOH 60 3 氧化钙(白)CaO 56 四氧化三铁(黑)Fe O4232 3 氧化铁(红)Fe O3160 2 氧化亚铁(黑)FeO 72 硫酸亚铁(淡绿)FeSO 152 4 硫酸锌(白/无)ZnSO 161 4 初中化学常用计算公式 一. 常用计算公式: (1)相对原子质量= 某元素一个原子的质量/ 一个 碳原子质量的1/12 (2)设某化合物化学式为AmBn ①它的相对分子质量=A的相对原子质量×m+B的相 对原子质量×n ②A元素与B元素的质量比=A的相对原子质量×m: B的相对原子质量×n

相对分子质量计算

化学式计算的典型题(2010年中考题精选) 1、求下列物质的相对分子质量 (1)KHCO3;(2)Cu2(OH)2CO3; (3)CuSO4·5H2O;(4)KAl(SO4)2·12H2O (5)2H2O;(6)4CO(NH2)2;(7)3Mg2+(8)5SO42-。 2、求下列物质的各元素质量比 (1)CuSO4;(2)C2H5OH;(3)Fe2(SO4)3; 3、三硝基甲苯是TNT黄色炸药的主要成分,它的化学式为C6H5CH3(NO2)3,求三硝基甲苯中碳元素和氢元素的质量比是_____________。 4、求下列常见氮肥中的氮元素质量分数。 (1)尿素[CO(NH2)2];(2)硝酸铵[NH4NO3];(3)碳酸氢铵[NH4HCO3]; (4)硫酸铵[(NH4)2SO4];(5)氯化铵[NH4Cl] 5、3.6g水中含有的氢元素质量是多少g? 6、25g碳酸钙[CaCO3]含有的钙元素是多少g? 7、6kg尿素[CO(NH2)2]所含的氮元素是多少kg? 8、多少g水中含有的氢元素质量是1g? 9、人们常采用吃含碳酸钙药物的方法补钙,若要补钙4mg,需要食用多少mg的碳酸钙? 10、多少g水所含氢元素的质量与1.7g氨气[NH3]所含氢元素的质量相等? 11、多少g硝酸铵所含氮元素与12g尿素所含氮元素质量相当? 12、多少g四氧化三铁所含铁元素质量是16g三氧化二铁质量的两倍? 13、农民用尿素给耕地的玉米施加氮肥,刚好需要120kg尿素,若改施用碳酸氢铵[NH4HCO3]达到相同的肥效,则需要碳酸氢铵的质量是多少?

14、醋酸的化学式为CH3COOH,则碳、氢、氧原子个数比是__________; 15、尿素[CO(NH2)2]中碳、氢、氧、氮四种原子个数比是__________; 16、相同分子数的水分子和二氧化碳分子中,两者氧原子个数比是__________; 17、3个氧气分子和2个臭氧分子中,两者氧原子个数比是__________; 18、各取n个二氧化硫分子和m个三氧化硫分子,两者的氧原子个数比是____________。 19、如果水和二氧化碳所含的氧原子个数相同,则水分子和二氧化碳的分子个数比是__________; 20、二氧化硫和三氧化硫所含氧原子个数相同,则二氧化硫分子和三氧化硫分子个数比是__________; 21、氧气和臭氧所含的氧原子个数比是4:3,则氧气和臭氧的分子个数比是___________。 22、等质量的二氧化碳和一氧化碳,则两者所含氧元素的质量比是_____________; 23、取相同质量的二氧化硫和三氧化硫,则二氧化硫分子和三氧化硫所含的氧元素质量比是______; 24、当二氧化硫和三氧化硫的质量比是8:5时,二氧化硫和三氧化硫所含氧元素的质量比是_____。 25、二氧化碳和一氧化碳的氧元素的质量相等,则两种化合物的质量比是_________; 26、若要使二氧化硫和三氧化硫中含有相同质量的氧元素,则二氧化硫和三氧化硫的质量比是______; 27、二氧化硫和三氧化硫的硫元素的质量比是2:1,则二氧化硫和三氧化硫的质量比________。 28、将氯化钠粉末放在水中完全溶解,测定得知氯化钠的质量分数为25%,则钠元素在盐水中的质量分数是多少? 29、某地赤铁矿中氧化铁[Fe2O3]的质量分数是50%,杂质不含铁元素,则赤铁矿中铁元素质量分数是多少? 30、某不纯的硝酸铵[NH4NO3]化肥样品中硝酸铵的质量分数是90%,杂质不含氮元素,则

二氧化碳相对分子质量的测定

实验4 二氧化碳相对分子质量的测定 1.实验目的 (1)了解气体密度法测定气体相对分子质量的原理的方法; (2)了解气体的净化和干燥的原理和方法; (3)熟练掌握启普发生器的使用; (4)进一步掌握天平的使用。 2.实验原理 根据阿伏伽德罗定律,同温同压下,同体积的任何气体含有相同数目的分子。因此,在同温同压下,同体积的两种气体的质量之比等于它们的相对分子质量之比,即 M1/M2=W1/W2=d 其中:M1和W1代表第一种气体的相对分子质量和质量;M2和W2代表第二种气体的相对分子质量和质量;d(=W1/W2) 叫做第一种气体对第二种的相对密度。 本实验是把同体积的二氧化碳气体与空气(其平均相对分子质量为29.0)相比。这样二氧化碳的相对分子质量可按下式计算: M co2=Wco2×M空气/W空气=d空气×29.0 式中一定体积(V)的二氧化碳气体质量Wco2可直接从天平上称出。根据实验时的大气压(p)和温度(t),利用理想气体状态方程式,可计算出同体积的空气的质量: W空气=pV×29.0/RT 这样就求得了二氧化碳气体对空气的相对密度,从而测定二氧化碳气体的相对分子质量。 3.实验仪器与试剂 启普发生器,洗气瓶(2只),250mL锥形瓶,台秤,天平,温度计,气压计,橡皮管,橡皮塞等。 HCl (工业用,6mol·L-1),H2SO4 (工业用),饱和NaHCO3溶液,无水CaCl2,大理石等。 4.实验步骤 按图连接好二氧化碳气体的发生和净化装置。

图6.3.1 二氧化碳的发生和净化装置 1—大理石+稀盐酸;2—饱和NaHCO3;3—浓H2SO4; 4—无水CaCl2;5—收集器 取一个洁净而干燥的锥形瓶,选一个合适的橡皮塞塞入瓶口,在塞子上作一个记号,以固定塞子塞入瓶口的位置。在天平上称出(空气+瓶+塞子)的质量。 从启普发生器产生的二氧化碳气体,通过饱和NaHCO3溶液、浓硫酸、无水氯化钙,经过净化和干燥后,导入锥形瓶内。因为二氧化碳气体的相对密度大于空气,所以必须把导气管插入瓶底,才能把瓶内的空气赶尽。2~3分钟后,用燃着的火柴在瓶口检查CO2已充满后,再慢慢取出导气管用塞子塞住瓶口(应注意塞子是否在原来塞入瓶口的位置上)。在天平上称出(二氧化碳气体+瓶+塞子)的质量,重复通入二氧化碳气体和称量的操作,直到前后两次(二氧化碳气体+瓶+塞子)的质量相符为止(两次质量相差不超过1~2mg)。这样做是为了保证瓶内的空气已完全被排出并充满了二氧化碳气体。 最后在瓶内装满水,塞好塞子(注意塞子的位置),在台秤上称重,精确至0.1g。记下室温和大气压。 5.数据记录和结果处理 室温t(℃)____,T(K) ____ 气压p(Pa) ____ (空气+瓶+塞子)的质量A ____ g (二氧化碳气体+瓶+塞子)的质量B____g (水+瓶+塞子)的质量C____g 瓶的容积V=(C-A)/1.00____ ml ____ g 瓶内空气的质量W 空气 ____ g 瓶和塞子的质量D=A-W 空气

有关相对相对分子质量的计算

有关相对相对分子质量的计算 陈永禄 教学目标: 1.知识目标:(1)了解相对分子质量的概念 (2)掌握相对分子质量的有关计算 2.能力目标:通过学习,学生要学会有关相对分子质量的有关计算 3.情感目标:通过学习,学生可以将这部分知识运用于实际生活中去 重点:相对分子质量的有关计算 难点:相对分子质量的有关计算 教学过程: 引言:前面我们学习了相对原子质量,这一节课我们将学习相对分子质量 相对分子质量:化学式中各原子的相对原子质量的总和.下面我们主要学习相对分子质量的有关计算 1.相对分子质量的计算 例:计算二氧化碳CO2的相对相对分子质量. 解:CO2的相对相对分子质量=12ⅹ1+16ⅹ2 =44 练习:计算下列物质的相对分子质量. 四氧化三铁[Fe3O4] 五氧化二磷[P2O5] 碳酸钠[Na2CO3] 碳酸氢钠[NaHCO3] 尿素[CO(NH2)2] 硫酸铵[(NH4)2SO4] 例:计算胆矾[CuSO4?5H2O]的相对分子质量 解:[CuSO4?5H2O]的相对分子质量=64ⅹ1+32ⅹ1+16ⅹ4+5ⅹ(1ⅹ2+16ⅹ1) =160+90 =250 练习:计算下列物质的相对分子质量 明矾[KAlSO412H2O] 绿矾[ZnSO47H2O] 2.计算物质中各元素的质量比。 例:计算水中元素的质量比 解:[H2O]中H:O的质量比=1ⅹ2:16 =1:8 练习:计算下列物质中各元素的质量比. 二氧化碳四氧化三铁 硝酸铵[NH4NO3] 碳酸氢铵[NH4HCO3] 胆矾[CuSO4?5H2O] 3.计算物质中某元素的质量分数. 例:计算硝酸铵[NH4NO3]中N的质量分数

高聚物相对分子量测定方法

高聚物相对分子量测定方法 高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。科标分析实验室科研团队集成多名资深行业专家,拥有博士、硕士等高学历人才数名,提供专业分子量测定服务,为客户提供检测数据,检测方法,检测图谱等论文需要的资料。 (1)端基分析法(end-group analysis,简称EA) 如果线形高分子的化学结构明确而且链端带有可以用化学方法(如滴定)或物理方法(如放射性同位素测定)分析的基团,那么测定一定重量高聚物中端基的数目,即可用下式求得试样的数均相对分子质量。 式中:m-试样质量;Z-每条链上待测端基的数目;n-被测端基的摩尔数。 如果用其他方法测得,反过来可求出Z,对于支化高分子,支链数目应为Z-1。 (2)沸点升高和冰点降低法(boiling-point elevation,freezing-point depression) 利用稀溶液的依数性测定溶质相对分子质量的方法是经典的物理化学方法。对于高分子稀溶液,只有在无限稀的情况下才符合理想溶液的规律,因而必须在多个浓度下测ΔT b(沸点升高值)或ΔT f(冰点下降值),然后以ΔT/C对C作图,外推到c->0时的值来计算相对分子质量。 式中:A2称第二维里系数。 (3)膜渗透压法(osmometry,简称OS)

当高分子溶液与纯溶剂倍半透膜隔开时,由于膜两边的化学位不等,发生了纯溶剂向高分子溶液的渗透。当渗透达到平衡时,纯溶剂的化学位应与溶液中溶剂的化学位相等,即 或 由Floy-Huggins理论,从Δμ1的表达式可以得到 由于C2项很小,可忽略, 式中:χ) A2表征了高分子与溶剂相互作用程度的大小。 对于良溶剂,χ1; 对于θ溶剂,χ1; 对于非溶剂,χ1

《有关相对分子质量的计算》教案

《有关相对分子质量的计算》教案教学目标 1、学会求物质的相对分子质量; 2、学会求物质中各元素的质量比; 3、会用相关知识解决一些化学问题 4、培养学生的自学能力、交流与合作能力。 教学重点 关于相对分子质量的计算 教学难点 从微观到宏观,理解关于相对分子质量计算的依据 教学方法 学、议、练 教学过程 一、复习引入 1、出示下列四种物质的化学式: 氯气Cl 2二氧化硫SO 2 尿素CO(NH 2 ) 2 碳酸氢铵NH 4 HCO 3 说出上述物质由哪几种元素组成?一个分子是由几个什么原子构成? 2、原子的质量很小,所以在化学中使用相对原子质量。分子质量也很小, 分子由原子构成,那么在化学中怎样表示分子的质量呢?(点题) 二、阅读学习目标(见学案) 1、学会求物质的相对分子质量; 2、学会求物质中各元素的质量比; 3、会用相关知识解决一些化学问题 4、培养学生的自学能力、交流与合作能力。 三、自学指导(1) 计算物质的相对分子质量 阅读教材84—85页内容: 1、什么是相对分子质量? 2、“总和”意味着用什么运算方法? 3、自学例题,并当堂训练:求Cl 2 、SO 2 、CO(NH 2 ) 2 、NH 4 HCO 3 的相对分子质量 (与学生一起纠错、点拔:CO(NH2)2的相对分子质量=12+16+14×2+1×4=60 或=12+16+(14+1×2)×2=60 交流、讨论、纠错学会第一种计算,学会交流与合作) 4、强化训练:再求Ca(OH)2的相对分子质量 5、迁移发散: (1)求分子个数相等的水和二氧化碳的质量比。 (2)求等质量的水和二氧化碳中的分子个数比。 自学指导(2): 计算物质中各元素的质量比 阅读教材85页内容 1、从字面上如何理解“物质中各元素的质量比”?以二氧化碳为例说明 2、物质是由分子构成的,那么物质中各元素的质量比就等于构成物质的分子中各原子的相对原子质量之比。□即用化学式也可以计算物质中各元素的质量比。 3、自学例题,并当堂训练:求SO2、Ca(OH)2、NH4HCO3中各元素的质量比 (与学生一起纠错、点拔:“二氧化碳中碳元素和氧元素的质量比=12:(16×2)=3:8”能否写成“=16×2:12=8:3”,为什么?注意前面所列元素的顺序与后面的计算顺序要一致。交流、讨论、纠错学会第二种计算,学会交流与合作) 4、强化训练:再求CO(NH2)2中各元素的质量比 5、迁移发散: 已知氮的氧化物中氮氧元素质量比为7:4,求其化学式。 四、归纳小结 本节课你学到了什么? 五、课外作业

_二氧化碳相对分子质量的测定

实验四二氧化碳相对分子质量的测定 一、实验目的 1.学习气体相对密度法测定分子量的原理和方法,加深理解理想气体状态方程式和阿佛加德罗定律;2.学会大气压力计的使用; 3.巩固分析天平的使用; 4.了解启普发生器的构造和原理,掌握其使用方法,熟悉洗涤、干燥气体的装置。 二、实验原理 阿佛加德罗定律:同T、P,同V的气体物质的量相等 理想气体状态方程式:PV= nRT = m RT/M 对同T、P,同V的空气(air)和二氧化碳(CO2)有: = 式中,m,M分别为空气(二氧化碳)的质量和相对分子质量 则, [教学重点] 分析天平的使用 启普发生器的使用 分子量的测定和计算 [教学难点] 分析天平的称量操作 启普发生器的使用 [实验用品] 仪器:台秤(电子称)、分析天平、启普发生器、洗气瓶、锥形瓶、干燥管 药品:石灰石、无水CaCl2、6mol·L-1HCl、1mol·L-1NaHCO3、1mol·L-1CuSO4 材料:玻璃棒、玻璃导管、橡皮塞(3、6、8~12号)、玻璃棉 [基本操作] 一、大气压力计的使用方法 1.首先观察附属温度计,记录温度; 2.调节水银槽中的水银面。旋转调节螺旋使槽内水银面升高,这时利用水银槽后面白磁片的反光,可以看到水银面与象牙针的间隙,再调节螺旋至间隙恰好消失为止; 3.调节游标。转动控制游标的螺旋,使游标的底部恰与水银柱凸面顶端相切; 4.读数方法。读数标尺上的刻度单位为hPa。整数部分的读法:先看游标的零线在刻度标尺上的位置,如恰与标尺上某一刻度相吻合,则该刻度即为气压计读数。例如,游标零线与标尺上1160相吻合,气压读数即为1161.0 hPa,如果游标零线在1161与1162之间,则气压计读数的整数部分即为1161,再由游标确定小数部分。小数部分的读法:从游标上找出一根与标尺上某一刻度相吻合的刻度线,此游标读数即为小数部分,如1161.5 hPa; 5.读数后转动气压计底部的调节螺旋,使水银面下降到与象牙针完全脱离; 6.做仪器误差、温度、海拔高度和纬度等项校正。 二、电子天平的使用 1.电子天平的使用精确度0.1 mg (最大载荷200 g)

相对分子质量

相对分子质量目录

编辑本段计算题 一、求相对分子质量 格式为: 解: XXX的相对分子质量=各元素数量*各元素相对原子质量=结果 初三考生要注意这里一律以元素为单位分开计算,不能以原子团为单位整体计算,否则是没有分的。 例题 例1:计算H2O的相对分子质量。 解:H2O的相对分子质量=1×2+16×1=18 注意这里与摩尔质量不同,不可写为M(H2O) 例2:计算H2SO4的相对分子质量。 解:H2SO4的相对分子质量=1×2+32+16×4=98 二、计算组成物质的各元素的质量比 格式为: XXX中X元素与X元素质量比=(X原子个数*X相对原子质量):(X原子个数*X相对原子质量) 例1:求二氧化碳碳氧元素质量比 CO2中碳元素和氧元素的质量比=12:(16×2)=3:8 三、计算物质中某元素的质量分数 格式为:某元素的质量分数=(该元素分子的相对原子质量×原子个数)/(相对分子质量)×100% 这里要注意写上100%,否则公式错误,考试时公式分扣除。 例:有MgO与MgSO4两种物质的混合物,已知镁的质量分数为33%,求氧化镁质量分数 解:设MgO质量分数X ( X·Mg + ( 1 - X )·Mg ) / ( X·MgO + ( 1 - X )·MgSO4 )=33% 解出X即为氧化镁质量分数 编辑本段计量 原子的质量计量一样,分子的质量计量也先后存在3个量名称:相对分子质量、分子质量和分子量。众所周知,分子的质量为组成分子的各原子的质量之和。在日常专业工作中,不论是单质还是化合物,它们的分子

质量都是根据各元素原子的个数和各元素的“相对原子质量”(由元素周期表上查到)计算得到。既然元素的相对原子质量是一个单位为“1”的相对质量,那么由此计算得到的分子质量必然也是一个单位为“1”的相对质量。对于某些结构复杂的生物大分子,往往都是通过电泳、离心或色谱分析等方法测得其近似分子质量,因而更是一个相对概念的量值。所以,我们过去长期习惯使用着的“分子量”实际上都是相对的分子质量。因此,国标指出“以前称为分子量”的即是“相对分子质 量”(relativemolecularmass),并将后者定义为“物质的分子或特定单元的平均质量与核素12C原子质量的1/12之比”。相对分子质量是两个质量之比,也在计算表达形式上进一步明确了“相对”的含义。对于定义中的“特定单元”,主要是指空气等组成成分基本不变的特殊混合物,它们的相对质量可根据其组成成分(N2,O2,CO2,Ar等)的相对分子质量和其在空气中的体积分数计算其平均质量,然后与12C原子质量的1/12相比即可获得。相对分子质量的量符号为Mr.,单位为“1”。 常用的相对分子质量 参考元素周期表 元素周期表 编辑本段1 .酸类 盐酸HCl = 1+ 硝酸HNO3 63 = 1+14+16*3 碳酸H2CO3 62 硫酸H2SO4 98 磷酸H3PO4 98 编辑本段2

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量 一、前言 聚丙烯酰胺凝胶电泳 聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。催化聚合的常用方法有两种:化学聚合法和光聚合法。化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。 PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。不连续体系由电极缓冲液、浓缩胶及分离胶所组成。浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。 SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。 浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。当样品液和浓缩胶选TRIS/HCl缓冲液,电极液选TRIS/甘氨酸。电泳开始后,HCl解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成一稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。 此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。

《有关相对分子质量的计算》教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

《有关相对分子质量的计算》教案教学目标 1、学会求物质的相对分子质量; 2、学会求物质中各元素的质量比; 3、会用相关知识解决一些化学问题 4、培养学生的自学能力、交流与合作能力。 教学重点 关于相对分子质量的计算 教学难点 从微观到宏观,理解关于相对分子质量计算的依据 教学方法 学、议、练 教学过程 一、复习引入 1、出示下列四种物质的化学式: 氯气Cl 2二氧化硫SO 2 尿素CO(NH 2 ) 2 碳酸氢铵NH 4 HCO 3 说出上述物质由哪几种元素组成?一个分子是由几个什么原子构成? 2、原子的质量很小,所以在化学中使用相对原子质量。分子质量也很小, 分子由原子构成,那么在化学中怎样表示分子的质量呢?(点题) 二、阅读学习目标(见学案) 1、学会求物质的相对分子质量; 2、学会求物质中各元素的质量比; 3、会用相关知识解决一些化学问题 4、培养学生的自学能力、交流与合作能力。 三、自学指导(1) 计算物质的相对分子质量 阅读教材84—85页内容: 1、什么是相对分子质量? 2、“总和”意味着用什么运算方法? 3、自学例题,并当堂训练:求Cl 2、SO 2 、CO(NH 2 ) 2 、NH 4 HCO 3 的相对 分子质量 (与学生一起纠错、点拔:CO(NH2)2的相对分子质量=12+16+14×2+1×4=60 或=12+16+(14+1×2)×2=60 交流、讨论、纠错学会第一种计算,学会交流与合作)

《有关相对分子质量的计算》教学设计

一、教学设计思路 人教版初中化学教材第四单元《物质构成的奥秘》,课题4《化学式与化合价》 第三部分,“有关相对分子质量的计算”涵盖了五种基本的计算,即:(1)求物质的 相对分子质量;(2)求物质中各元素的质量比;(3)求物质中某元素的质量分数;(4)已知物质的质量求元素的质量;(5)已知元素的质量求物质的质量。这些内容 是初中学生应掌握的基本计算,也是教学中的重点,这些计算必须建立在对化学式涵 义的透彻理解基础之上,而且远离学生的生活实际,因此也是教学中的难点。 在教学中主要采用以下三个策略,以求突出重点,突破难点。 一是在课前复习中重点复习化学式的涵义。要求学生能熟练根据化学式确定物质 由哪几种元素组成,知道物质的一个分子由几种什么原子构成,并且能正确数出每种 原子的个数。所列举的化学式就是本节课要用到的化学式,使学生不因化学式的涵义 不清而影响本节课的学习,以达到分散难点,限制难点个数的作用。 二是在引入课题时,列举学生身边的实例。且让这个实例贯穿本课题学习的始终,让学生感受到有关相对分子质量的计算不是虚无缥缈的,而是实实在在的,是有用的,从而激发学生的求知欲,让学生感受到化学就在身边,起到学以致用的作用。 三是采用“学、议、练”的学习方式。就数学角度来看计算,本课题是比较简单的,教材中有例题,只要引导得当,学法指导到位,学生容易学会。设计合适的练习题,学生也容易暴露自学中的问题,通过“议”,这些问题又能及时得到解决。通过练,让学生比较熟练地学会有关相对分子质量的计算。分析学情,我们的学生长期习 惯于“教师讲,学生听”的学习方式,所以要让想学生完全自学,需要一个过程,作 为教师在本节课中将在指导学生自学上狠下功夫。 教学目标 知识目标:学会以下五种计算(1)求物质的相对分子质量;(2)求物质中各元 素的质量比;(3)求物质中某元素的质量分数;(4)已知物质的质量求元素的质量;(5)已知元素的质量求物质的质量。 能力目标:培养学生的自学能力、交流与合作能力。

相对分子质量的计算练习题

相对分子质量的计算练习题 1.计算物质的相对分子质量 (1)计算水H2O的相对分子质量 (2)计算氯酸钾KClO3的相对分子质量 (3)计算氢氧化钙Ca(OH)2的相对分子质量 (4)计算硫酸铁Fe2(SO4)3的相对分子质量 ※(5)已知R2(SO4)3的相对分子质量为342,则R(NO3)3的相对分子质量为 2.计算组成物质的各元素的质量比 (1)计算水H2O中氢和氧元素的质量比。 (2)计算氧化铁Fe2O3中铁元素和氧元素的质量比。 (3)计算硝酸铵NH4NO3中各元素的质量比。 3.计算物质中某一元素的质量分数 (1)计算水H2O中氢元素的质量分数。 (2)计算硝酸铵(NH4NO3)中氮元素、氧元素的质量分数。4.练习: 根据尿素的化学式CO(NH2)2计算: (1)相对分子质量 (2)各元素的质量比 (3)氮元素的质量分数 5.已知元素质量分数与元素质量之间的关系 (1)计算36g水中氢和氧元素的质量。 (2)50kg硝酸铵NH4NO3中含有多少kg的氮元素? (3)多少g尿素CO(NH2)2中含有70g的氮元素? (4)多少g硝酸铰与12g的尿素中所含氮元素的质量相等? (5)尿素的化学式为CO(NH2)2,计算: ①尿素的相对分子质量? ②尿素中氮元素的质量分数是多少? ③多少克尿素中含氮元素28克? ④30克尿素中含有氮元素多少克? 6.290t铁矿石(含四氧化三铁Fe3O4 80%,杂质中不含铁) 中含有铁的质量为多少t? ※7.已知某硝酸铵(NH4NO3)样品中含NH4NO3为90%(杂 质不含氮),求样品中氮元素的质量分数。 ※8.已知某硝酸铵(NH4NO3)样品中含氮元素的质量分数 为30%(杂质不含氮),求样品中硝酸铵的质量分数。

蛋白质相对分子质量的测定(SDS法)

蛋白质相对分子质量的测定 (SDS-聚丙烯酰胺凝胶电泳法) 一、实验原理 蛋白质在十二烷基硫酸钠(SDS)和巯基乙醇的作用下,分子中的二硫键还原,氢键等打开,形成按1.4gSDS/1g蛋白质比例的SDS-蛋白质多肽复合物,该复合物带负电,故可在聚丙烯酰胺凝胶电泳中向正极迁移,且主要由于凝胶的分子筛作用,迁移速率与蛋白质的分子量大小有关,因此可以浓缩和分离蛋白质多肽。 聚丙烯酰凝胶电泳分离蛋白质多数采用一种不连续的缓冲系统,主要分为较低浓度的成层胶和较高浓度的分离胶,配制凝胶的缓冲液,其pH值和离子强度也相应不同,故电泳时,样品中的SDS-多肽复合物沿移动的界面移动,在分离胶表面形成了一个极薄的层面,大大浓缩了样品的体积,即SDS-聚丙烯酰胺凝胶电泳的浓缩效应。 二、仪器及器材 垂直电泳槽及附件、直流稳压稳流电泳仪、移液器等。 三、试剂 1、凝胶贮备液:称取30g 丙烯酰胺(Acr)和0.8g 甲叉-双丙烯酰胺(Bis),蒸馏水溶解后定容至100mL,滤纸过滤贮存。 2、10% SDS:称取SDS 10g 加蒸馏水至100ml。 3、10%过硫酸胺(AP),用时现配。 4、N,N,N’,N’四甲基乙二胺(TEMED)。 5、电极缓冲液:3.03g Tris、14.14g甘氨酸、1.0g SDS溶于水,混匀后用HCL调节pH至8.3,加蒸馏水至1 000ml。 6、样品溶解(缓冲)液:0.6gTris、5mL甘油(丙三醇)1.0g SDS溶于水,混匀后用HCL调节pH至8.0,再加0.1g溴酚蓝、2.5mL巯基乙醇,定容至100mL。 7、下层胶(分离胶)缓冲液:18.17g Tris、0.4gSDS溶于水,混匀后用1mol/L HCL 调节pH至8.8,加蒸馏水至100ml。 8、上层胶(浓缩胶)缓冲液:6.06g Tris、0.4gSDS溶于水,混匀后用1mol/L HCL 调节pH至6.8,加蒸馏水至100ml。 9、固定液:25%异丙醇,10%乙酸。 10、染色液:0.125g考马斯亮蓝R-250加固定液250ml。 11、脱色液:冰乙酸75ml、甲醇50ml,加水定容至1000ml。

相关文档
最新文档