(完整word版)飞行性能复习资料

(完整word版)飞行性能复习资料
(完整word版)飞行性能复习资料

1.限制飞机起飞重量主要因素①场道条件②起飞航道Ⅱ的爬升梯度③轮胎速度限制④最大刹车能量限制⑤障碍物限制⑥最大着陆重量对最大起飞重量限制⑦航路最低安全高度限制

⑧飞机结构强度限制

2.滑水分类①粘性滑水:道面与轮胎仍有接触的滑水,机轮转速下降。②动态滑水:轮胎与道面完全脱离的滑水,即机轮转速大大下降,甚至停转和反转。③橡胶还原滑水:轮胎停转时,摩擦产生的高温使橡胶变软发粘而还原,积水层受热产生的蒸汽将轮胎抬离道面的滑水。

3.假设温度法减推力起飞在使用灵活温度推力起飞时,通过一个比机场外界高的假设温度来确定需要的推力,用此推力和实际的起飞重量能够满足场地条件、爬升梯度、越障、轮胎速度、刹车能量及最小操纵速度的限制要求,这种确定推力的方法称为假设温度法,所确定的较实际温度高的温度称假设温度或灵活温度。减推力最大值不得超过25%①假设温度:把实际起飞重量看作最大起飞重量所对应的气温。②假设温度法减推力起飞:把实际起飞重量对应的温度来设定推力,而以实际温度起飞的方法。把与假设温度相对应的最大起飞推力设置值作为减推力起飞的起飞推力设置值。若以假设温度起飞,使用起飞推力,则实际起飞重量恰好为最大起飞重量,符合场道和航道爬升要求。

4.起飞航道阶段有哪些①起飞航道Ⅰ段:自基准零点开始,结束于起落架完全收上(收起落架动作可以开始于起飞航道Ⅰ段之前)。在该段襟翼处于起飞位置,发动机处于起飞工作状态(T O/G A),速度保持在V2到V2+20kt之间(根据发动机工作情况,以下同)。②起飞航道Ⅱ段:为等表速爬升段。从起落架完全收上到高度不低于400ft,发动机处于起飞工作状态(T O/G A),保持起飞襟翼,速度保持在V2到V2+20kt之间上升。如果在航道上有障碍物,则应该越过障碍物后才能进入航道Ⅲ段。③起飞航道Ⅲ段:减小上升角或改平使飞机增速,(空客绿点速度)根据规定的收襟翼速度分几次将襟翼全部收起,同时增速到襟翼全收的速度。在该段,考虑到发动机起飞工作状态的使用时间限制,这段通常使用最大上升工作状态(MCL)或最大连续工作状态(MCT)(该状态常用于一台发动机停车后的爬升)

5.优化起飞性能的方法(1)选择合适的起飞襟翼(2)改进爬升

1.三个航程范围①第一距离范围(最大商载):飞行距离小于或等于经济航程范围。该范围内,要增加航程,只需增燃油,不需减商载②第二距离范围(最大燃油):指距离大于经济航程,而且可以保持最大起飞重量的距离范围。该范围内,要增航程,只能减商载以增燃油。不能用CI 确定M 经济,一般用MRC 巡航③第三距离范围(转场航程):该范围内,要增航程,只能减商载以减起飞重量④结论:在第一、二距离范围内,随着航程增加,商载先保持不变,再减小;载油量一直增大,起飞总重量先增后减。航班飞行应在飞机经济航程以内进行。经济航程以内,可以用成本指数来确定经济马赫数大小。经济航程以外,选择MRC。(2到5问题)

2.飞机为什么要阶梯爬升:为了降低油耗,保持飞行性能,缓解发动机工作,飞得更远。增加上升梯度,增加最大起飞重量

3.一发失效的应对措施①立即把油门增加到最大连续状态②保持最有利的飘降速度改平。

4.什么叫经济马赫数:使直接营运费用(DOC)最小,即DOC曲线最低点对应的速度。

5.简述航路越障要求①高于障碍物2000英尺②改平点至少高于障碍物1000英尺。

1.刹车,反推对着陆距离有无影响①刹车是着陆中基本制动手段,尤其在低速滑跑时,它可以提供近70 %减速力。不仅能有效地减轻机组在着陆阶段工作负荷,还可缩短刹车启动延迟时间进而缩短着陆距离。延迟时间短,着陆距离缩短(手动,自动刹车启用时间间隔1.46 秒)②反推最佳减速效果是在高速滑跑阶段,随着滑跑速度减小,其减速作用也相应下降,一般要求在速度达到60kt 以下时解除反推。

2.快速过站飞行:相邻两次飞行间有短时间停留的连续短程飞行。在相邻两次航班任务之间有短时间的过站停留。特点:刹车使用频繁,且冷却不足,易导致过热;

3. 影响着陆距离的因素(1)进场速度和高度偏差的影响(2)着陆技术偏差的影响(3)制动系统的使用情况

(1-2)1.国际航线燃油规定:(对有备降场的情况,所加油量包括:)①航程燃油TF- -lTrip Fuel:飞到并在目的地机场着陆②应急燃油CF- -l Contingency Fuel:有两种规定,一种是

由飞行时间因子计算应急油,继续飞行从起飞到着陆在目的地机场所需时间10 %(用巡航终点时飞行重量在巡航高度以LRC 巡航速度继续飞一段时间的燃油消耗量,这段时间为飞行时间的10 %),这是FAR 规则确定应急油,所以这种飞行剖面又称为FAR 国际航线规则,另一种则是按燃油因子计算应急油,规定应急油为飞行任务中飞行燃油量的 5 5%.③备降燃油AF- -l Alternate Fuel:从目的地机场飞往最远备降场的燃油.④等待燃油HF- -l Holding Fuel:在备降场上空1500ft以等待空速在国际标准大气条件下飞行30 分钟2. 国内航线燃油规定:(同上)①航程燃油TF- -l Trip Fuel:飞到预定的目的地机场;②备降燃油AF- -l Alternate Fuel:飞到并能在距目的地机场最远的备降场着陆;③45分钟等待燃油:以正常燃油消耗量飞行45 分钟的燃油。

3.二次放行:二次放行的主要思想就是如何合理地利用国际航线燃油规定中的10%飞行时间的应急燃油。(1)实施的基本方法①在起飞机场A 的起飞油量按最初目的机场C和相应的备降场D计算而加装( 按国际航线燃油政策)。②在去机场C的下降点或稍前一点R 检查油量,如所剩油量足以保证由R飞到机场B,则继续飞行到机场B;如所剩燃油量不足,则在机场C着陆,补充燃油后再飞到机场B。

(2)基本思想和意义:设法利用一般不会被消耗的10% 航程时间的应急燃油作为由二次放行点到最终目的地机场的所需燃油。因此,二次放行仅适于国际航线。采用二次放行的方法起飞油量可以减小, , 这可增加商载或减小起飞重量。(3)影响二次放行效益的因素:二次放行所能增加的商载和能节省的燃油与二次放行点的选择以及初始目的地机场和备降场的位置有关。(4)二次放行点的最佳位置为:从二次放行点到最终目的机场所需的全部燃油等于从该点到最初目的机场所需的燃油。理论证明:当出发点到开始下降点的距离为到最终目的机场航程的89%左右的下降点是最佳的二次放行点。继续飞到最初目的地所需燃油+ + 到最初目的地所需备降燃油= 继续飞行到最终目的地所需燃油+ + 根据再次放行到最终目的地的备用燃油

4.延程飞行(1)延长航程飞行的条件①飞机应具有延长航程飞行的能力②发动机的可靠性发动机的可靠性对延长航程飞行至关重要③航空公司应具有使用延长航程飞行的能力(2)延程飞行的好处①开辟直达航线②开辟过去无法飞的航线③有更多的备降机场可供选择④可以选择飞行时间最短的航路飞行⑤可以选择更有利风向的航路飞行⑥使飞行员和签派员有更大的灵活性选择航线(3)延程飞行的燃油计划为了确定油量,ETOPS1 飞行要求另一个关于额外油的条件,以便考虑以下关键情况:①在关键点,增压故障。②在关键点,增压和发动机故障。(4)提出的背景1953 年通过的FAR121.161 规定,不论何种双发飞机,其所飞行的航路上的任何一点距离备降场的距离不能超过60 分钟的单发飞行距离,即60 分钟备降距离规则

5.打开后掠翼的目的提高临界马赫数

5.什么叫临界马赫数飞机飞行时,当随飞行速度增大,上翼面压力最低点的速度等于此点上的音速时的飞机飞行马赫数称为临界马赫数.当来流以亚声速度v∞(相应的流动马赫数Ma∞,比如小于0.6)流过翼型时,上翼面的最大速度点c的vc>v∞,因为有可压缩性的影响,点c处的温度最低,该点处的声速也最小,故点c的局部马赫数Mac是流场中最大的,比如说现在Mac<1.0。这时全流场都是亚声速流动。随着来流速度v∞或来流马赫数Ma∞的增加,Mac也会跟着增加。当Mac=1.0相应此时的来流马赫数Ma∞就称为该翼型的临界马赫数,用符号Macr表示

起飞航道性能:所谓起飞航道是指从飞机离地35ft开始到飞机高度不小于1500ft,速度增加不小于1.25倍VS,爬升梯度满足法规规定的最小梯度要求,并完成收起落架、襟翼的阶段。简述起飞航道四个阶段的划分起止点。1段:基准零点-起落架全收;2段:1段末-高度不低于400英尺;3段:2段末-襟翼全收;4段:3段末-高度不低于1500英尺。简述假设温度法减推力起飞的原理。减推力起飞使用时机(实际起飞重量小于最大起飞重量,选择减推力起飞。),最大起飞重量和发动机推力随温度的变化关系,假设温度的确定,(假设温度:把实际起飞重量看作最大起飞重量,对应的气温。)由假设温度确定减推力调定值把与假设温度相对应的最大起飞推力设置值作为减推力起飞的起飞推力设置值。相同EPR(N1)下,由于假设温度比实际温度高,实际温度对应的推力大,相同表速下,由于假设温度比实际温度高,实际温度的真速小假设温度的物理含义,减推力设置值的确定。

飞机飞行性能-稳定和操纵

2.4 飞机的飞行性能、稳定与操纵 2.4.1 机体坐标轴系 研究飞机的飞行性能、稳定与操纵原理的时候,为了描述飞机的空间位置、速度、加速度、力和力矩等向量时,须采用相应的坐标系。常用的坐标系有:地面坐标轴系、机体坐标轴系、气流坐标轴系、航迹坐标轴系、半机体坐标轴系、稳定坐标轴系等。这些坐标系都是三维正交右手系。为研究问题的方便,在讨论飞机的操稳特性时,我们选用机体坐标轴系作为参考坐标系。 图 2.4.1 机体 坐标轴系 机体坐标轴系(Oxyz)是固定在飞机上的坐标轴系,其原点O位于飞机的质心,纵轴x位于飞机参考面(对称面)内指向前方且平行于机身轴线(或翼根弦线),横轴y垂直于飞机参考面指向右方,竖轴z在飞机参考面内垂直于纵轴指向下方,如图2.4.1所示。 飞机绕机体横轴oy的转动(称为俯仰运动)以及沿纵轴ox和竖轴oz的移动,是发生在飞机对称面内的运动,通常称为纵向运动;而飞机绕机体纵轴ox 的转动(称为滚转运动)和沿横轴oy的移动,是发生在飞机横截面内的运动,称为横向运动;飞机绕竖轴oz的转动(称为偏航运动)称为方向运动。

2.4.2飞机的飞行性能和机动飞行 讨论飞机的飞行性能时,将飞机作为一个质点,其上所受到的力有:重力G、动力装置的推力T、升力L和阻力D,如图2.4.2所示。在等速直线飞行时,这些力是平衡的。图中为航迹速度与水平面的夹角,称为爬升角。当航迹速度 位于过原点的水平面之上时,为正。为发动安装角,为飞行迎角。发动安装角通常很小,近似认为=0。 飞机等速直线飞行的轨迹不外有3种情况:等速直线爬升(>0)、等速直线平飞(=0)和等速直线下滑(<0)。这3种典型等速直线运动的飞行性能分别称为爬升(或上升)性能、平飞性能和下滑性能。 图2.4.2 作用在飞机上的力图2.4.3 爬升率 飞机有各种飞行状态(如起飞/着陆、等速上升/下降、上升/下降转弯、巡航、机动飞行等),概括起来可将飞机的飞行性能分为类:(1) 等速直线飞行性能(基本飞行性能),(2) 续航性能,(3) 起飞着陆性能,(4) 机动飞行性能。下面分别予以简要介绍。 等速直线飞行性能 在等速直线飞行时,飞行迎角较小,近似认为=0。 水平等速直线飞行性能保持飞机等速直线平飞的条件是:动力装置提供的推力等于飞机的迎面阻力,飞机的升力等于飞机的重量。这其中认为发动机安装角及迎角α都很小。在图2.4.2中令=0,则有

飞行性能考试选择题库

1. 已知压力高度3000英尺处的温度偏差为ISA+10℃,则该高度的实际气温为()。 A:5.5 B:19 C:25 D:30 正确答案: 2 2. 国际标准大气ISA规定,海平面温度为()℃,海平面压力()mbar。 A:15,1003 B:59,1003 C:15,1013 D:59,1013 正确答案: C 3. 低速飞行常用飞机的________来衡量飞机气动性能的好坏,高速飞行常用________来衡量飞机气动性能的好坏。 A:升阻比,马赫数 B:最大升阻比,气动效率 C:阻力系数,升阻比 D:阻力系数,最大升阻比 正确答案: B 1. 飞机起飞场道结束时和着陆过跑道头时的高度分别是___ (ft) A:15,35 B:35,15 C:50,35 D:35,50 正确答案: D 2. 飞机一发故障,在V1时决定继续起飞,在跑道头上空35ft处速度不小于___。 A:V2 B:V2+5 C:V2+10 D:V2+15 正确答案: A 3. 在平衡跑道条件下起飞,_____。 A:从起飞加速到V1的距离,等于从V1停下来的距离 B:起飞性能最好

C:C. 加速到V1之前1秒一台发动机失效,使飞机停下来的距离,等于继续起飞到高度35ft,速度达到V2的距离 D:起飞距离与着陆距离相等 正确答案: C 4. 若起飞中只计入净空道,和不计净空道相比____。 A:最大起飞重量增大且相应的V1降低 B:最大起飞重量减小且相应的V1降低 C:最大起飞重量增大且相应的V1增大 D:最大起飞重量减小且相应的V1增大 正确答案: C 5. 适当增大起飞襟翼角度,可导致____。 A:较短的滑跑距离 B:较大的离地速度VLOF C:上升性能改进 D:减小飞机阻力 正确答案: A 6. 最大轮胎速度是指()。 A:地速 B:空速 C:表速 D:VMBE 正确答案: A 7. FAA规定,用假设温度法减推力起飞,减推力的最大值不得超过______ ,假设温度比实际温度______。 A:25,高 B:30,高 C:25,低 D:30,低 正确答案: A 8. FAR对飞机起飞净航迹与障碍物之间的高度规定是飞机净航迹()。 A:至少高于障碍物35英尺 B:高于障碍物50英尺 C:高于障碍物30英尺 D:根据具体情况而定

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

无机材料物理性能试题

无机材料物理性能试题及答案

无机材料物理性能试题及答案 一、填空题(每题2分,共36分) 1、电子电导时,载流子的主要散射机构有中性杂质的散射、位错散射、电离杂质的散射、晶格振动的散射。 2、无机材料的热容与材料结构的关系不大,CaO和SiO2的混合物与CaSiO3 的 热容-温度曲线基本一致。 3、离子晶体中的电导主要为离子电导。可以分为两类:固有离子电导(本征 电导)和杂质电导。在高温下本征电导特别显著,在低温下杂质电导最为显著。 4、固体材料质点间结合力越强,热膨胀系数越小。 5、电流吸收现象主要发生在离子电导为主的陶瓷材料中。电子电导为主的陶瓷材料,因 电子迁移率很高,所以不存在空间电荷和吸收电流现象。 6、导电材料中载流子是离子、电子和空位。 7. 电子电导具有霍尔效应,离子电导具有电解效应,从而可以通过这两种效应检查材料 中载流子的类型。 8. 非晶体的导热率(不考虑光子导热的贡献)在所有温度下都比晶体的 小。在高温下,二者的导热率比较接近。 9. 固体材料的热膨胀的本质为:点阵结构中的质点间平均距离随着温度升高而增 大。 10. 电导率的一般表达式为 ∑ = ∑ = i i i i i q nμ σ σ 。其各参数n i、q i和μi的含义分别 是载流子的浓度、载流子的电荷量、载流子的迁移率。 11. 晶体结构愈复杂,晶格振动的非线性程度愈大。格波受到的 散射大,因此声子的平均自由程小,热导率低。 12、波矢和频率之间的关系为色散关系。 13、对于热射线高度透明的材料,它们的光子传导效应较大,但是在有微小气孔存在时,由于气孔与固体间折射率有很大的差异,使这些微气孔形成了散射中心,导致透明度强烈降低。 14、大多数烧结陶瓷材料的光子传导率要比单晶和玻璃小1~3数量级,其原因是前者有微量的气孔存在,从而显著地降低射线的传播,导致光子自由程显著减小。 15、当光照射到光滑材料表面时,发生镜面反射;当光照射到粗糙的材料表面时,发生漫反射。 16、作为乳浊剂必须满足:具有与基体显著不同的折射率,能够形成小颗粒。 用高反射率,厚釉层和高的散射系数,可以得到良好的乳浊效果。 17、材料的折射随着入射光的频率的减少(或波长的增加)而减少的性质,称为折射率的色散。

飞行原理重点知识

1. 请解释下列术语:(1)相对厚度(厚弦比)(2)相对弯度(中弧曲度)(3)展弦比(4)后掠角 (1)翼型最大厚度与弦长的比值,用百分比表示;(2)最大弧高与翼弦的比值,用百分比表示;(3)机翼翼展与平均弦长的比值;(4)机翼四分之一弦线与机身纵轴垂直线之间的夹角。 2. 请叙述国际标准大气规定。 国际标准大气(International Standard Atmosphere),简称ISA,就是人为地规定一个不变的大气环境,包括大气压温度、密度、气压等随高度变化的关系,得出统一的数据,作为计算和试验飞机的统一标准。国际标准大气由国际民航组织ICAO制定,它是以北半球中纬度地区大气物理特性的平均值为依据,加以适当修订而建立的。 3. 实际大气与国际标准大气如何换算 确定实际大气与国际标准大气的温度偏差,即ISA偏差,ISA偏差是指确定地点的实际温度与该处ISA标准温度的差值,常用于飞行活动中确定飞机性能的基本已知条件。 1. 解释迎角的含义 相对气流方向与翼弦之间的夹角,称为迎角。 2. 说明流线、流管、流线谱的特点。 流线的特点:该曲线上每一点的流体微团速度与曲线在该点的切线重合。流线每点上的流体微团只有一个运动方向。流线不可能相交,不可能分叉。流管的特点:流管表面是由流线所围成,因此流体不能穿出或穿入流管表面。这样,流管好像刚体管壁一样把流体运动局限在流管之内或流管之外。流线谱的特点:流线谱的形状与流动速度无关。物体形状不同,空气流过物体的流线谱不同。物体与相对气流的相对位置(迎角)不同,空气流过物体的流线谱不同。气流受阻,流管扩张变粗,气流流过物体外凸处或受挤压,流管收缩变细。气流流过物体时,在物体的后部都要形成涡流区。 3. 利用连续性定理说明流管截面积变化与气流速度变化的关系。 当流体流过流管时,在同一时间流过流管任意截面的流体质量始终相等。因此,当流管横截面积减小时,流管收缩,流速增大;当流管横截面积增大时,流管扩张,流速增大。 4. 说明伯努利方程中各项参数的物理意义。并利用伯努利定理说明气流速度变化与气流压强变化的关系。 动压,单位体积空气所具有的动能。这是一种附加的压力,是空气在流动中受阻,流速降低时产生的压力。静压,单位体积空气所具有的压力能。在静止的空气中,静压等于当时当地的大气压。总压(全压),它是动压和静压之和。总压可以理解为,气流速度减小到零之点的静压。气流速度增加,动压增加,为了保持总压不变,气流压强即静压必需减小。 5. 解释下列术语(1)升力系数(2)压力中心 (1)升力系数与机翼形状、机翼压力分布有关,它综合的表达了机翼形状、迎角等对飞机升力的影响。(2)机翼升力的着力点,称为压力中心。 6.机翼的升力是如何产生的利用翼型的压力分布图说明翼型各部分对升力的贡献。 在机翼上表面的压强低于大气压,对机翼产生吸力;在机翼下表面的压强高于大气压,对机翼产生压力。由上下表面的压力差,产生了垂直于(远前方)相对气流方向的分量,就是升力。机翼升力的产生主要是靠机翼上表面吸力的作用,尤其是上表面的前段,而不是主要靠下表面正压的作用。 7. 写出飞机的升力公式,并说明公式各个参数的物理意义。 飞机的升力系数,飞机的飞行动压,机翼的面积。

飞行性能分析技术(飞行原理)-习题课一

1绝对温度的零度是: -273℉-273K -273℃32℉ 2 空气的组成为 A 78%氮,20%氢和2%其他气体 B 90%氧,6%氮和4%其他气体 C78%氮,21%氧和1%其他气体 D 21%氮,78%氧和1%其他气体 3 流体的粘性系数与温度之间的关系是? A液体的粘性系数随温度的升高而增大。 B气体的粘性系数随温度的升高而增大。 C液体的粘性系数与温度无关。 D气体的粘性系数随温度的升高而降低。 4 在大气层内,大气密度: A在同温层内随高度增加保持不变。B随高度增加而增加。 C随高度增加而减小。D随高度增加可能增加,也可能减小。 5 在大气层内,大气压强: A随高度增加而增加。B随高度增加而减小。 C在同温层内随高度增加保持不变。C随高度增加可能增加,也可能减小。 6 影响空气粘性力的主要因素 A空气清洁度B速度梯度C空气温度D相对湿度 7 对于空气密度如下说法正确的是 A空气密度正比于压力和绝对温度B空气密度正比于压力,反比于绝对温度 C空气密度反比于压力,正比于绝对温度D空气密度反比于压力和绝对温度 8 “对于音速.如下说法正确的是” A只要空气密度大,音速就大”B“只要空气压力大,音速就大“ C”只要空气温度高.音速就大”D“只要空气密度小.音速就大” 9 假设其他条件不变,空气湿度大: A空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长 C空气密度大,起飞滑跑距离短D空气密度小,起飞滑跑距离短 10 一定体积的容器中。空气压力 A与空气密度和空气温度乘积成正比B与空气密度和空气温度乘积成反比 C与空气密度和空气绝对湿度乘积成反比D与空气密度和空气绝对温度乘积成正比11 一定体积的容器中.空气压力 A与空气密度和摄氏温度乘积成正比B与空气密度和华氏温度乘积成反比 C与空气密度和空气摄氏温度乘积成反比D与空气密度和空气绝对温度乘积成正比12 对于露点温度如下说法正确的是 A“温度升高,露点温度也升高”B相对湿度达到100%时的温度是露点温度 C“露点温度下降,绝对湿度下降”D露点温度下降,绝对湿度升高“ 13”对于音速,如下说法正确的是” A音速是空气可压缩性的标志B空气音速高,粘性就越大 C音速是空气压力大小的标志D空气速度是空气可压缩性的标志 14国际标准大气的物理参数的相互关系是: A温度不变时,压力与体积成正比B体积不变时,压力和温度成正比 C压力不变时,体积和温度成反比D密度不变时.压力和温度成反比 15国际标准大气规定海平面的大气参数是: A. P=1013 psi T=15℃ρ=1.225kg/m3 B. P=1013 hPT=15℃ρ=1.225 kg/m3

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

无人机飞行原理与性能解答练习题II无问题详解

1. 关于动压和静压的方向,以下哪一个是 正确的() A.动压和静压的方向都是与运动的方向一致 B.动压和静压都作用在任意方向 C.动压作用在流体的流动方向,静压作用在任意方向 2.流体的伯努利定理() A.适用于不可压缩的理想流体 B.适用于粘性的理想流体 C.适用于不可压缩的粘性流体 3.伯努利方程适用于() A.低速气流 B.高速气流 C.适用于各种速度的气流 4.下列关于动压的哪种说法是正确的()A.总压与静压之和B.总压与静压之差C.动压和速度成正比 5.测量机翼的翼弦是从() A.左翼尖到右翼尖 B.机身中心线到翼尖 C. 机翼前缘到后缘 6.测量机翼的翼展是从() A.左翼尖到右翼尖 B.机身中心线到翼尖 C.机翼前缘到后缘 7.机翼的安装角是() A.翼弦与相对气流速度的夹角 B.翼弦与机身纵轴之间所夹锐角 C.翼弦与水平面之间所夹的锐角 8.机翼的展弦比是() A.展长与机翼最大厚度之比 B.展长与翼尖弦长之比 C.展长与平均几何弦长之比 9.机翼1/4弦线与垂直机身中心线的直线之间的夹角称为机翼的() A.安装角 B.上反角 C.后掠角 10.翼型的最大厚度与弦长的比值称为() A.相对弯度 B.相对厚度 C. 最大弯度11. 翼型的最大弯度与弦长的比值 称为() A.相对弯度 B.相对厚度 C.最大厚度 12. 影响翼型性能的最主要的参数 是() A.前缘和后缘 B.翼型的厚度和弯度 C.弯度和前缘 13.具有后掠角的飞机有侧滑角时,会产生() A.滚转力矩 B.俯仰力矩 C.不产生任何力矩 14.具有上反角的飞机有侧滑角时,会产生() A.偏航力矩 B.俯仰力矩 C.不产生任何力矩 15.机翼空气动力受力最大的是() A.机翼上表面压力 B.机翼下表面压力 C. 机翼上表面负压 16.当迎角达到临界迎角时() A.升力突然大大增加,而阻力迅速减 小 B.升力突然大大降低,而阻力迅速增加 C.升力和阻力同时大大增加 17.对于非对称翼型的零升迎角是() A.一个小的正迎角 B.一个小的负迎角 C.失速迎角 18.飞机飞行中,机翼升力等于零时的迎角称为()A.零升迎角B.失速迎角C零迎角 19.失速”指的是() A.飞机失去速度 B.飞机速度太快 C.飞机以大于临界迎角飞行 20.“失速迎角”就是“临界迎角”,指的是() A.飞机飞的最高时的迎角 B.飞机飞的最快时的迎角

《飞行性能与计划》习题汇总

《飞行性能与计划》 题型:1、名词解释2、单选题3、多选题4、判断题5、简答题6、查图计算题 第一章 一、名词解释 气动效率-飞行马赫数与飞机升阻比的乘积,高速飞行时,常常使用气动效率来衡量飞机气动性能的好坏。低速时常用升阻比。 二、掌握以下结论 2、国际标准大气海平面标准温度和平流层的标准温度分别为多少? 国际标准大气海平面标准温度为15℃,气压高度37000英尺处的标准温度为-56.5℃。 3、非标准大气如何表示成ISA偏差的形式? 场气压高度1500ft,气温30℃,则温度可以表示为ISA+18℃。气压高度3000英尺处的气温为20℃,则该大气温度可表示为ISA+ ? 11℃。 第二章 一、名词解释 1、中断起飞距离(教材P29):是指飞机从0开始加速滑跑到一台发动机停车,飞行员判断并采用相应的制动程序使飞机完全停下来所需的距离 2、空中最小操纵速度(教材P18):指在飞行中在该速度关键发动机突然停车和继续保持停车的情况下,使用正常的操纵技能,能保持向可工作发动机一侧的坡度不大于5度的直线飞行,为保持操纵的方向舵蹬力不超过150磅,也不得用减小工作发动机推力的方法来维持方向控制。 3、起飞平衡速度(教材P36):在同一起飞重量下的中断起飞所需距离与继续起飞所需距离的两条曲线的交点所对应的速度,在此速度下,中断起飞距离与继续起飞距离相等。 4、继续起飞最小速度(教材P35):是指如果发动机在此速度上停车,飞行员采用继续起飞标准程序,可以使飞机在净空道外侧完成起飞场道阶段的最小速度。 5、起飞决断速度(教材P19):指飞机在此速度上被判定关键发动机停车等故障时,飞行员可以安全地继续起飞或中断起飞,中断起飞的距离和继续起飞的距离都不会超过可用的起飞距离。 6、净空道(教材P22):是指在跑道头的一段宽度不小于500尺,其中心线是跑道中心延长线,并受机场相关管制的区域。 7、污染道面(教材P65):湿滑道面或跑道上有积水积冰积雪以及其他沉积物的跑道统称污染道面 二、掌握以下结论 11)中断起飞中,开始执行中断程序的最迟速度为V1。 2)使用假设温度法减推力起飞,假设温度与当前实际温度的关系是前者比后者高

《无机材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 解: 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: 以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。如采用四元件模型来表示线性高聚物的蠕变过程等。 ). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0 1 2 3 4 5 0.0 0.20.40.60.81.0 σ(t )/σ(0) t/τ 应力松弛曲线 012345 0.0 0.2 0.4 0.6 0.8 1.0 ε (t )/ε(∞) t/τ 应变蠕变曲线 )(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82 332min 2MPa Pa N F F f =?=? ? ??=?=? ???=?? ?? = πσπ τπτ:此拉力下的法向应力为为: 系统的剪切强度可表示由题意得图示方向滑移

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

《飞行性能与计划》综合复习提纲

《飞行性能与计划》复习要点 题型:1、名词解释2、单选题3、多选题4、判断题5、简答题6、查图计算题 第一章 一、名词解释 气动效率-飞行马赫数与飞机升阻比的乘积,高速飞行时,常常使用气动效率来衡量飞机气动性能的好坏。低速时常用升阻比。 二、掌握以下结论 2、国际标准大气海平面标准温度和平流层的标准温度分别为多少? 国际标准大气海平面标准温度为15℃,气压高度37000英尺处的标准温度为-56.5℃。 3、非标准大气如何表示成ISA偏差的形式? 场气压高度1500ft,气温30℃,则温度可以表示为ISA+18℃。气压高度3000英尺处的气温为20℃,则该大气温度可表示为ISA+ ? 11℃。 第二章 一、名词解释 1、中断起飞距离(教材P29):是指飞机从0开始加速滑跑到一台发动机停车,飞行员判断并采用相应的制动程序使飞机完全停下来所需的距离 2、空中最小操纵速度(教材P18):指在飞行中在该速度关键发动机突然停车和继续保持停车的情况下,使用正常的操纵技能,能保持向可工作发动机一侧的坡度不大于5度的直线飞行,为保持操纵的方向舵蹬力不超过150磅,也不得用减小工作发动机推力的方法来维持方向控制。 3、起飞平衡速度(教材P36):在同一起飞重量下的中断起飞所需距离与继续起飞所需距离的两条曲线的交点所对应的速度,在此速度下,中断起飞距离与继续起飞距离相等。 4、继续起飞最小速度(教材P35):是指如果发动机在此速度上停车,飞行员采用继续起飞标准程序,可以使飞机在净空道外侧完成起飞场道阶段的最小速度。 5、起飞决断速度(教材P19):指飞机在此速度上被判定关键发动机停车等故障时,飞行员可以安全地继续起飞或中断起飞,中断起飞的距离和继续起飞的距离都不会超过可用的起飞距离。 6、净空道(教材P22):是指在跑道头的一段宽度不小于500尺,其中心线是跑道中心延长线,并受机场相关管制的区域。 7、污染道面(教材P65):湿滑道面或跑道上有积水积冰积雪以及其他沉积物的跑道统称污染道面 二、掌握以下结论 11)中断起飞中,开始执行中断程序的最迟速度为V1。 2)使用假设温度法减推力起飞,假设温度与当前实际温度的关系是前者比后者高 3)在起飞航道阶段,FAR要求起飞净航迹需高于障碍物35英尺。

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

飞行原理和飞行性能基础教材

VERSION 0.1

飞行原理和性能是航空的基础。我们将简单介绍飞机的基本构成及其主要系统的工作,然后引入许多飞行原理概念,研究飞行中四个力的基础——空气动力学原理,讨论飞机的稳定性和设计特点。最后介绍飞行性能、重量与平衡等有关知识。 第一节飞机结构 本节主要介绍飞机的主要组成部件及其功用、基本工作原理,最后介绍飞机的分类。 飞机的设计和形状虽然千差万别,但它们的主要部件却非常相似(图1—1)。 *飞机一般由五个部分组成:动力装置、机翼、尾翼和起落架, 它们都附着在机身上,所以机身也被看成是基本部件。 图1—1 一、机体 1.机身 机身是飞机的核心部件,它除了提供主要部件的安装点外,还包括驾驶舱、客舱、行李舱、仪表和其他重要设备。现代小型飞机的机身一般按结构类型分为构架式机身和半硬壳式机身。构架式机身所受的外力由钢管或铝管骨架承受;半硬壳式机身由铝合金蒙皮承受主要外力,其余外力由桁条、隔框及地板等构件承受。单发飞机的发动机通常安装于机身的前部。为了防止发动机失火时危及座舱内飞行员和乘客的安全,在发动机后部与座舱之间设置有耐高温不锈钢隔板,称为“防火墙”(图1—2)。

图1—2构架式和半硬壳式机身结构形式 2.机翼 机翼连接于机身两侧的中央翼接头处,横贯机身形成一个受力整体。飞行中空气流过机翼产生一种能使飞机飞起来的“升力”。现代飞机常采用一对机翼,称为单翼。机翼可以安装于机身的上部、中部或下部,分别称为上翼、中翼和下翼。民用机常采用下单翼或上单翼。许多上单翼飞机装有外部撑杆,称为“半悬臂式”;部分上单翼和大多数下单翼飞机无外部撑杆,称为“悬臂式”(图1—3)。 图1—3半悬臂式和悬臂式机翼 机翼的平面形状也多种多样,主要有平直翼和后掠翼,小型低速飞机常采用平直矩形翼或梯形翼。 机翼一般由铝合金制成,其主要构件包括翼梁、翼肋、蒙皮和桁条。一些飞机的机翼内都装设有燃油箱。在机翼两边后缘的外侧铰接有副翼,用来操纵飞机横滚;后缘内侧挂接襟翼,在起飞和着陆阶段使用(图1—4)。 *金属机翼由翼梁、翼肋、桁条和蒙皮等组成。翼梁承受大部分弯曲载荷, 蒙皮承受部分弯曲载荷和大部分扭转载荷,翼肋主要起维持翼型作用。 图1—4

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

无机材料物理性能重点

一·辨析 1. 铁电体与铁磁体的定义和异同 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体。铁磁体是指具有铁磁性的物质。 2. 本征(固有离子)电导与杂质离子电导 答:本征电导是源于晶体点阵的基本离子的运动。这种离子自身随着热振动离开晶体形成热缺陷。这种热缺陷无论是离子或者空位都是带电的,因而都可作为离子电导载流子。显然固有电导在高温下特别显著;第二类是由固定较弱的离子的运动造成的,主要是杂质离子。杂质离子是弱联系离子,所以在较低温度下杂质电导表现显著。 相同点:二者的离子迁移率 和电导率 表达形式相同 不同点:a.本征离子电导载流子浓度与温度有关,而杂质离子电导载流子浓度与温度无关,仅决定于杂质的含量 B.由于杂质载流子的生成不需要提供额外的活化能,即他的活化能比在正常晶格上的活化能要低得多,因此其系数B 比本征电导低一些 C.低温部分有杂质电导决定,高温部分由本征电导决定,杂质越多,转折点越高 3. 离子电导和电子电导 答:携带电荷进行定向输送形成电流的带点质点称为载流子。载流子为离子或离子空位的为离子电导;载流子是电子或空穴的为电子电导 不同点:a.离子电导是载流子接力式移动,电子电导是载流子直达式移动 B.离子电导是一个电解过程,符合法拉第电解定律,会发生氧化还原反应,时间长了会对介质内部造成大量缺陷及破坏;而电子电导不会对材料造成破坏 C.离子电导产生很困难,但若有热缺陷则会容易很多;一般材料不会产生电子电导,一般通过掺杂形式形成能量上的自由电子 D.电子电导的电导率远大于离子电导(原因:1.当温度升高时,晶体内的离子振动加剧,对电子产生散射,自由电子或电子空穴的数量大大增加,总的效应还是使电子电导非线性地大大增加;2.在弱电场作用下,电子电导和温度成指数式关系,因此电导率的对数也和温度的倒数成直线关系;3.在强电场作用下,晶体的电子电导率与电场强度之间不符合欧姆定律,而是随场强增大,电导率有指数式增加 4.铁电体与反铁电体 答:铁电体是指在一定温度范围内具有自发极化,并且自发极化方向可随外加电场作可逆转动的晶体;反铁电体是指晶体中相邻的离子沿反平行方向发生自发极化,宏观上自发极化为零且无电滞回线的材料 不同点:1.在反铁电体的晶格中,离子有自发极化,以偶极子形式存在,偶极子成对的按反平行方向排列,这两部分偶极子的偶极矩大小相等,方向相反;而在铁电体的晶格中,偶极子的极性是相同的,为平行排列 2.反铁电体具有双电滞回线,铁电体具有电滞回线 3.当外电场降至零时,反铁电体无剩余极化,铁电体存在剩余计 铁电体 铁磁体 自发极化 自发磁化 不含铁 含铁 电畴 磁畴 电滞回线 磁滞回线

相关文档
最新文档