卷第$$期*%%>=?@AB(>=#@B$$+C,+C$C(’&$C(D车辆路径优化问题的均衡性但正刚=蔡临宁=杜丽丽=郑力-清华大学工业工程系=北京$%%%D(.收稿日期E*%%’&%>&%F基金项目E国家自然科学基金资助项目-F%*%$%%D.作者简介E但正刚-$C" />

协同车辆路径问题的模糊规划模型和算法

协同车辆路径问题的模糊规划模型和算法
协同车辆路径问题的模糊规划模型和算法

车辆路径优化问题的均衡性

!""#$%%%&%%’( )#$$&***+,#清华大学学报-自然科学版. /012345678329-":2;0<:5.= *%%>年第(>卷第$$期 *%%>=?@A B(>=#@B$$ +C,+C $C(’&$C(D 车辆路径优化问题的均衡性 但正刚=蔡临宁=杜丽丽=郑力 -清华大学工业工程系=北京$%%%D(. 收稿日期E*%%’&%>&%F 基金项目E国家自然科学基金资助项目-F%*%$%%D. 作者简介E但正刚-$C F D&.=男-汉.=重庆=博士研究生G 通讯联系人E蔡临宁=副教授=H&I72A E:72A3J K1234567B.$$&$C(’&%( P Q R ST R U R V W X V YQ Z[\]^]\X W U] _Q‘[X V Ya_Q T U]b c d ef g h i j j k i j=l d m n o i i o i j=c pn o q o=f r s e t n o -u]a R_[b]V[Q Z v V S‘w[_X R U x V Y X V]]_X V Y=y w X V Y\‘R z V X^]_w X[{= |]X}X V Y~!!!"#=$\X V R. %T w[_R W[EO37A4@&2K5I’71L<9:G 本文利用文9F:的)A7&*<&-&245K-)&-.算法=并结合打包原则和装配线线均衡算法的思想=设计出一种新的启发式算法;;/01算法来解决?78配送均衡问题G ~模型建立 对于带有容积限制的?78问题=在图<=->= ?.上=>=@A%=A$=B=A C D代表节点集合=A%代表停车场=A E -E=$=B=C.代表第E个客户=每个客户的 需求为F E G对客户进行服务的车辆数为G=每辆车的 容积为H G G对于图<的每条弧-A E=A I.J?=都有一 个费用或距离值K E I G若两点间没有弧-A E=A I.相连= 则相应K E I 值为无穷大G该问题的可行解是=所有点 被服务且仅被服务$次=每条路径都开始和终止于A%=每辆车的负载不超过车辆的容积H G G具体数学模型如下E I23L=M E M I M G K E I N E I G B-$. M E F E O G E P H G=QG B-*. M G O G E=$=E=$=B=C B-+. O G E=%或$=E=%=$=B=C M QG= 点E任务由车辆G完成为$=否则为%B-(. N E I G=%或$=E=I=%=$=B=C M QG= 车辆G从E到I为$=否则为%B-’. 式-*.表示某单一路线的总运输量不超过车辆 的承载量=式-+.表示一个需求点仅被一辆车服务G 本文假设E$.车辆行驶时间与行驶路线长度成线 性关系=可简单按一定比例折算M*.车辆到达每个 需求点仅执行卸载操作M+.在工作时间约束范围 内=每辆车仅完成一个回路M(.某单一路线的总运  万方数据

小车自动避障及路径规划样本

第3章系统总体结构及工作原理 该系统主要以超声波测距为基本测距原理, 并在相应的硬件和软件的支持下, 达到机器人避障的效果。 3.1机器人总体硬件设计 3.1.1传感器的分布要求 为了全方位检测障物的分布状况, 并及时为机器人系统提供全面的数据, 可将所需的八个传感器均匀排列在机器人周围, 相邻每对传感器互成45度角。为了避免相互干扰, 八个传感器以程序运行周期为周期, 进行循环测距。传感器排列示意图如下: 图3.1.1 传感器分布图

图3.1.2 硬件设计总体框架图 上图为支持机器人运行实用程序的硬件部分的总体设计框架图, 由负责相关任务的同学提供。在超声波信号输入单片机以后, 由存储在单片机中的主程序调用避障子程序, 根据输入信号执行避障指令, 并使相关数据返回主程序, 转而提供给电机和LED显示器的驱动程序使用, 最后, 由电机执行转向指令, 结果则显示在LED显示器上。

图3.1.3 软件总体框架图 由上图可知, 本文作者负责的超声波避障程序为软件总体设计中的子程序部分。在主程序运行过程中, 若调用超声波避障程序, 机器人在自行轨迹规划后, 将程序处理所得数据送给电机处

理成立程序, 控制电机动作。具体的避障程序设计将在第4章进行。 3.2超声波测距原理 测距原理: 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段, 必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器, 习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器, 但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化即在发射超声波的时候, 将电能转换, 发射超声波; 而在收到回波的时候, 则将超声振动转换成电信号。[8] 超声波测距的原理一般采用渡越时间法TOF( time of flight) 。首先测出超声波从发射到遇到障碍物返回所经历的时间, 再乘以超声波的速度就得到二倍的声源与障碍物之间的距离, 即: [8] D=ct/2 其中D为传感器与障碍物之间的距离, 以m计, c为超声波速度, 这里以340m/s计, t为超声波从发送到接收的总时间, 以s计。

时间窗车辆路径问题【带有时间窗约束的车辆路径问题的一种改进遗传算法】

系 统 管理学报 第19卷 不同,文献[6]中100,本文30;③文献[6]中没有给出20次求解中有多少次求得最优解,本文算法在软硬2种时间窗下,求得最优解的概率分别为90%和75%。由此可以看出本文算法具有较快的收敛速度和较高的稳定性。 表2实例l。软时间窗下算法运行结果 第2个实例[6],该问题有8个客户,顾客的装货或卸货的时间为Ti,一般将t作为车辆的行驶时间的一部分计算费用,gf和[n,,6i]的含义同前,具体数据见表4。这些任务由仓库发出的容量为8t的车辆来完成,车辆行驶速度为50,仓库以及各个顾客之间的距离见表5。 6),达到最优解的概率为80%,其最终结果与文献[6]中相同最优解其费用值为910,对应的子路径

为(O一3一l一2—0)、(O一6—4一O)、(O一8—5—7一O)。然而,文献 [6]是在maxgen=50、popsize一20的情况下,达到最优解的概率为67%。这又说明了本文算法的有 效性。 表6实例2的算法运行结果 4 结语 尽管用带有子路径分隔符的自然数编码作为遗传算法解决VRPTW问题的编码方式有其优点,但缺陷也是显而易见的,为了弥补该缺陷,本文去掉了 子路径中的分隔符,并采用Split作为解码方式,就此设计了求解VRPTW的遗传算法,并进行了数值试验的对比分析,试验结果表明,该算法是十分有

效的。参考文献 DantziqG,Ramser J.Thetruckdispatchingproblem [J].Management science,1959,13(6)80一91. 谢秉磊,李军,郭耀煌.有时间窗的非满载车辆调 度问题的遗传算法[J].系统工程学报,2000,15 (3)290一294. 宋伟刚,张宏霞,佟玲.有时间窗约束非满载车辆调度问题的遗传算法[J].系统仿真学报,2005,17 (11)2593—2597. 刘诚,陈治亚,封全喜.带软时间窗物流配送车辆路径问题的并行遗传算法

车辆路径问题

一、车辆路径问题描述和建模 1. 车辆路径问题 车辆路径问题(Vehicle Routing Problem, VRP ),主要研究满足约束条件的最优车辆使用方案以及最优化车辆路径方案。 定义:设G={V,E}是一个完备的无向图,其中V={0,1,2…n}为节点集,其中0表示车场。V ,={1,2,…n}表示顾客点集。A={(i,j),I,j ∈V,i ≠j}为边集。一对具有相同装载能力Q 的车辆从车场点对顾客点进行配送服务。每个顾客点有一个固定的需求q i 和固定的服务时间δi 。每条边(i,j )赋有一个权重,表示旅行距离或者旅行费用c ij 。 标准车辆路径问题的优化目标为:确定一个具有最小车辆数和对应的最小旅行距离或者费用的路线集,其满足下列约束条件: ⑴每一条车辆路线开始于车场点,并且于车场点约束; ⑵每个顾客点仅能被一辆车服务一次 ⑶每一条车辆路线总的顾客点的需求不超过车辆的装载能力Q ⑷每一条车辆路线满足一定的边约束,比如持续时间约束和时间窗约束等。 2.标准车辆路径的数学模型: 对于车辆路径问题定义如下的符号: c ij :表示顾客点或者顾客点和车场之间的旅行费用等 d ij :车辆路径问题中,两个节点间的空间距离。 Q :车辆的最大装载能力 d i :顾客点i 的需求。 δi :顾客点i 的车辆服务时间 m:服务车辆数,标准车辆路径问题中假设所有的车辆都是同型的。 R :车辆集,R={1,2….,m} R i :车辆路线,R i ={0,i 1,…i m ,0},i 1,…i m ?V ,,i ?R 。 一般车辆路径问题具有层次目标函数,最小化车辆数和最小化车辆旅行费用,在文献中一般以车辆数作为首要优化目标函数,在此基础上使得对应的车辆旅行费用最小,下面给出标准车辆路径问题的数学模型。 下面给出标准车辆路径问题的数学模型。 对于每一条弧(I,j ),定义如下变量: x ijv = 1 若车辆v 从顾客i 行驶到顾客点j 0 否则 y iv = 1 顾客点i 的需求由车辆v 来完成0 否则 车辆路径问题的数学模型可以表述为: minF x =M x 0iv m i=1n i=1+ x ijv m v=1n j=0n i=0.c ij (2.1) x ijv n i=0m v=1≥1 ?j ∈V , (2.2)

粒子群优化算法车辆路径问题

粒子群优化算法 计算车辆路径问题 摘要 粒子群优化算法中,粒子群由多个粒子组成,每个粒子的位置代表优化问题在D 维搜索空间中潜在的解。根据各自的位置,每个粒子用一个速度来决定其飞行的方向和距离,然后通过优化函数计算出一个适应度函数值(fitness)。粒子是根据如下三条原则来更新自身的状态:(1)在飞行过程中始终保持自身的惯性;(2)按自身的最优位置来改变状态;(3)按群体的最优位置来改变状态。本文主要运用运筹学中粒子群优化算法解决车辆路径问题。车辆路径问题 由Dan tzig 和Ram ser 于1959年首次提出的, 它是指对一系列发货点(或收货点) , 组成适当的行车路径, 使车辆有序地通过它们, 在满足一定约束条件的情况下, 达到一定的目标(诸如路程最短、费用最小, 耗费时间尽量少等) , 属于完全N P 问题, 在运筹、计算机、物流、管理等学科均有重要意义。粒子群算法是最近出现的一种模拟鸟群飞行的仿生算法, 有着个体数目少、计算简单、鲁棒性好等优点, 在各类多维连续空间优化问题上均取得非常好的效果。本文将PSO 应用于车辆路径问题求解中, 取得了很好的效果。 针对本题,一个中心仓库、7个需求点、中心有3辆车,容量均为1,由这三辆车向7个需求点配送货物,出发点和收车点都是中心仓库。 1233,1,7. k q q q l =====货物需求 量12345670.89,0.14,0.28,0.33,0.21,0.41,0.57g g g g g g g =======, 且 m a x i k g q ≤。利用matlab 编程,求出需求点和中心仓库、需求点之间的各 个距离,用ij c 表示。求满足需求的最小的车辆行驶路径,就是求 m i n i j i j k i j k Z c x = ∑∑∑ 。经过初始化粒子群,将初始的适应值作为每个粒子的个

遗传算法的时相关动态车辆路径规划模型

基于遗传算法的时相关动态车辆路径规划模型 作者:唐健, 史文中, 孟令奎 作者单位:唐健(武汉大学遥感信息工程学院,武汉市珞喻路129号,430079;香港理工大学土地测量与地理资讯学系,香港九龙红磡), 史文中(香港理工大学土地测量与地理资讯学系,香港九龙红 磡), 孟令奎(武汉大学遥感信息工程学院,武汉市珞喻路129号,430079) 刊名: 武汉大学学报(信息科学版) 英文刊名:GEOMATICS AND INFORMATION SCIENCE OF WUNAN UNIVERSITY 年,卷(期):2008,33(8) 引用次数:1次 参考文献(11条) 1.Gendreau M,Potvin J Y.Dynamic Vehicle Routing and Dispatching[C].Fleet Management and Logis- tics,Kluwer,Boston,1998 2.Yang Jian,Jaillet P,Mahmassani H.Real-time Mul-tivehicle Truckload Pickup and Delivery Problems[J].Transportation Science,2004(38):135-148 3.Fabri A,Reeht P.On Dynamic Pickup and Delivery Vehicle Routing with Several Time Windows and Waiting Times[J].Transportation Research Part B,2006(40):335-350 4.Fleischmann B,Gnutzmann S,Sandvoss E.Dy-namic Vehicle Routing Based on Online Traffic In-formation[J].Transportation Science,2004 (38):420-433 5.李兵,郑四发,曹剑东,等.求解客户需求动态变化的车辆路径规划方法[J].交通运输工程学报,2007,7(1):106-110 6.Malandraki C,Daskin M S.Time-Dependent Vehi-cle Routing Problems:Formulations,Properties,and Heuristic Algorithms[J].Transportation Sci-ence,1992(26):185-200 7.Picard J C,Queryranne M.The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling[J].Operations Research,1978(26):86-110 8.Fox K R,Garish B,Graves S C.A n-Constraint Formulation of the (Time-Dependent) Traveling Salesman Problern[J].Operations Research,1980(28):1 018-1 021 9.Lucena A.Time-Dependent Traveling Salesman Problem-the Deliveryman Case[J].Networks,1990(120):753-763 10.Wiel R J V,Sahinidis N V.Heuristic Bounds and Test Problem Generation for the Time-Dependent Traveling Salesman Problem[J].Transportation Science,1995(29):167-183 11.Cheung B K S,Choy K L,Li C L,et al.Dynamic Routing Model and Solution Methods for Fleet Management with Mobile Technologies[J].Interna-tional Journal of Production Economics,2008,113 (2):694-7O5 相似文献(0条) 引证文献(1条) 1.胡明伟.唐浩时相关旅行时间车辆路径高效启发式算法[期刊论文]-深圳大学学报(理工版) 2009(3) 本文链接:https://www.360docs.net/doc/f016671048.html,/Periodical_whchkjdxxb200808027.aspx 下载时间:2010年4月8日

物流配送的车辆路径优化

物流配送的车辆路径优化 专业:[物流管理] 班级:[物流管理2班] 学生姓名:[江东杰] 指导教师:[黄颖] 完成时间:2016年6月30日

背景描述 物流作为“第三利润源泉”对经济活动的影响日益明显,越累越受到人们的重视,成为当前最重要的竞争领域。近年来,现代物流业呈稳步增长态势,欧洲、美国、日本成为当前全球范围内的重要物流基地。中国物流行业起步较晚,随着国民经济的飞速发展,物流业的市场需求持续扩大。特别是进入21世纪以来,在国家宏观调控政策的影响下,中国物流行业保持较快的增长速度,物流体系不断完善,正在实现传统物流业向现代物流业的转变。现代物流业的发展对促进产业结构调整、转变经济增长方式和增强国民经济竞争力等方面都具有重要意义。 配送作为物流系统的核心功能,直接与消费这相关联,配送功能完成质量的好坏及其达到的服务水平直接影响企业物流成本及客户对整个物流服务的满意程度。配送的核心部分是配送车辆的集货、货物分拣及送货过程,其中,车辆配送线路的合理优化对整个物流运输速度、成本、效益影响至关重要。 物流配送的车辆调度发展现状 VRP(车辆调度问题)是指对一系列装货点和卸货点,组织适当的行车线路,使车辆有序的通过,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量等限制)下,达到一定的目标(如路程最短、费用最少、时间最少、使用车辆数最少等)。一般认为,不涉及时间的是路径问题,涉及时间的是调度问题。VRP示意图如下 当然,VRP并不止是这样的一个小范围,而是又更多的客户点与一个仓库链接,从而达

到一整个物流集群。 根据路径规划前调度员对相关信息是否已知,VRP可分为静态VRP和动态VRP,动态VRP 是相对于静态VRP而言的。静态VRP指的是:假设在优化调度指令执行之前,调度中心已经知道所有与优化调度相关的信息,这些信息与时间变化无关。一旦调度开始,便认为这些信息不再改变。 而VRP发展到现在的问题也是非常突出的,例如,只有一单货物,配送成本远高于一单的客户所给的运费,在这种情况下,该如何调度车辆?甚至还有回程运输的空载问题,在这些问题之中,或多或少都涉及到了VRP的身影,那么在这样的配送中怎么有效的解决车辆的路径优化问题就是降低运输和物流成本的关键所在。 解决怎么样的问题? 现如今对于VRP研究现状主要有三种静态VRP的研究、动态VRP的研究以及随机VRP的研究。 而我对于VRP的看法主要有以下几点。 有效解决VRP或者优化车辆调度路径优化问题,那么将非常有效的降低物流环节对于成本的比重,有效的增大利润。 而我想到的方法,就是归类总结法。 建立完善的信息系统机制,将订单归类总结出来,可以按地区划分出来,一个地区一个地方的进行统一配送,这样也有效的降低了物流配送的车辆再使用问题,降低了成本。如下图所示。 仓库 客户 变换前 由上图可以看出来这样的路径,车辆需要来回两次,严重增加了配送成本,也增加了运输成本,使得利润并不能最大化。

《物流车辆路径算法的优化与设计》

物流车辆路径算法的优化与设计 【摘要】:随着物流业向全球化、信息化及一体化发展,配送在整个物流系统中的作用变得越来越重要。运输系统是配送系统中最重要的一个子系统,运输费用占整体物流费用的50%左右,所以降低物流成本首先要从降低物流配送的运输成本开始。 一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所装载货物不能超过它的容量。起初车辆都在中心点,顾客在空间任意分布,车把货物从车库运送到每一个顾客(或从每个顾客处把货物运到车库),要求满足顾客的需求,车辆最后返回车库,每个顾客只能被服务一次,怎样才能使运输费用最小。而顾客的需求或已知、或随机、或以时间规律变化,这正是本文要研究的课题。 【关键词】:物流配送;路径;车辆路径问题(VRP);MATLAB 1 前言 1.1 课题研究背景 运输线路是否合理直接影响到配送速度、成本和效益,特别是多用户配送线路的确定是一项复杂的系统工程。选取恰当的车辆路径,可以加快对客户需求的响应速度,提高服务质量,增强客户对物流环节的满意度,降低服务商运作成本。因此,自从1959年Danting和Rams er提出车辆路径问题(Vehicle Routing Problem,VRP)以来,VRP便成为近年来物流领域中的研究热点。 VRP一般定义为:对一系列发货点和/或收货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用最小、时间尽量少、使用车辆尽量少等)。本文围绕VRP展开了研究,共包括五章内容。首先,本文收集国内外关于

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用 摘要 蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB 的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。 关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法 1.车辆路径问题 车辆路径问题(VRP)来源于交通运输,1959年由Dantzig 提出,它是组合优化问题中一个典型的NP-hard问题。最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。

车路优化问题如下: 已知有一批客户,各客户点的位置坐标和货物需求已知,供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。 2、蚁群系统基本原理 在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻找过程中,整个蚁群通过相互留下的信息素作用交换着路径信息,最终找到最优路径。 3、基本蚁群算法求解车辆路径问题 求解VRP问题的蚂蚁算法中,每只蚂蚁是一个独立的用 于构造路线的过程,若干蚂蚁过程之间通过信息素值来交换信

车辆运输路径规划问题的几点建议

理论探讨 1、车辆运输路径规划问题及其分类 在当前的车辆运输路径规划中存在的问题主要包括:发货点和收货点,车辆的调用,规划适当的路线,使运输车辆能够有序的通过计划中的地点以及完成货物需求量与发货量,并且满足交货时间、车辆可载量限制、形式时间、里程等方面的要求与限制,达到实现最短时间内、最短运输成本下完成相应的目标。 在实际的车辆运输路径规划中,需要引入VRP并且按照不同的原则进行分类,再分配出的不同种类之间又存在着不同的取值,所以就形成了不同类型的问题。例如,在实际的车辆运输任务中,当车辆装载状况取值为非满载,配送中心取多配送中心,时间限制为硬时间窗并且车型数目采取单车时,就需要取值为不确定的需求信息值,这样的一个问题就属于载重量限制下的各种条件随机需求的VRP问题。而需要考虑的属性越多时,相对的问题就越复杂。在当前车辆运输路径规划中主要研究的问题类型有:多供货点问题、带有时间窗的问题、随机问题、回程时集货的问题、分批交货问题、集货供货一体化问题等等方面。 2、模型形式以及特点 在当前所研究的车辆运输路径规划模型分为,网络图模型和数学模型两类。 2.1 网络图模型 在经典的VRP定义图G--(V,E)上,对供货点使用vo表示,Q代表载重量相同的车辆,而m代表着已知的或者变化的车辆数目,其次对于不同的需求量、客户点、路段情况、费用等都采取相关的字母代表。在相关变量与控制量确定的条件下,求解运输路径的最小成本。在求解的过程中要注意,在每条路径的起点以及重点都是供货点,并且途径的客户只能被访问一次,车辆的总载重量必须能够满足每条路径中所有客户的总需求量。因此,这样的经典VRP模型定义是需要一定的前提条件作保障,就是所有的集货以及供货都是需求,并非是集货供货一体化。在这样的网络图模型中,具备着直观性强、容易理解的优点,但是也存在着参数容量小、有效地解法不多的缺点。因此,在需要较为具体的表达复杂问题时,往往规避此种模型。 2.2数学模型 随着我国不断地进行VRP的深入研究,有效地应用数学模型以后,能够针对不同问题条件而建立不同的模型形式。其中最具代表性的,就是以车流或者物流为基础的数学模型,并且具体的模拟了针对单车型、具有装载能力限制以及带硬时间窗等约束条件的车流变量数学模型以及针对多车型、最长行驶距离、集货送货一体化的物流变量数学模型。在数学模型中,其最大的特点就是容量大、灵活性高、通用性强。能够容纳任何大规模的问题,并且能够随着问题条件的变化而发生变化,如需增加或者减少一些约束条件,只需要操作相对应的内容。其次,在VRP在抽象成数学模型的过程中,失去了它本身问题的特征,简单的求解过程只是单纯的数据操作,结果不含有其他相关领域的数据以及信息,如若使其成为用户能够理解的形式,还需要进行建模的假定含义,导致整个过程非常的复杂。 3、车辆路径规划问题求解算法概述 在传统的求解算法中,常常将车辆运输路径问题构造成整数规划模型或者图论等,这些算法之间也存在着必然的联系。但是,总结起来说任何模型都可以看成是以车流为基础、以物流为基础、集覆盖等模型的变换组合得到。在求解方法上,我们常常以分枝定界法、线性规划法、切平面法、匹配理论、动态规划法、线搜索技术、状态空间松弛技术、概率分析、统计分析、经验分析等等为依托,应用优化算法和启发式算法两种方式。但是优化算法相对来说求解时间过长,并且其算法效率比较低,不适用于求解大规模的车辆运输路径规划,因此在实际的应用中得不到发展。启发式算法具备较快的求解速度,并且其结果相对比较固定,能够有效地逼近最优解,在实际的应用中得到了有效地发挥。 3.1传统启发式算法 经过相关研究发现,传统启发式算法分为先分组后安排线路方法、先安排线路后分组的方法、节约插入算法这三种方式。能够较快的求解出计算结果,并且得到最稳定的结果。通过三种不同的方式,无论是先进性分组还是先进行线路安排,都能够将每一组中的每一个点都考虑到,达到最节约的方式来进行线路规划,实现最大程度的节约构型。 3.2巨集启发式算法 所谓的巨集启发式算法,实质上是在传统启发式算法基础上经过改进和交换之后得到的。在实际的计算中先构建一个初始解,然后经过贪婪算法进行线路优化。这种算法能够始终保持求解的可行性,经过更加详细的求解来获取最佳的答案,并且有效地结合遗传算法、禁忌搜索算法、模拟退火法、蚁群算法等等方法。 3.3混合启发式算法 混合启发式算法是基于数学规划的一种算法,将车辆运输路径规划问题直接模拟成一个数学问题,再根据其特殊的构型来进行技术分解。将车辆运输线路有效地构成一个广义分派问题,在进行相应的数学规划、建模,最终得到相关费用。在经过交互式优化法进行人力优化,让具备高水平的决策者确定和修改相关参数,在优化模型中有效地融入主观估计,实现最优化的线路设计。 4、结语 本文针对车辆运输路径规划的实际特点和相关问题进行详细的探究,并提出具有针对性的建议。作为物流系统中最为关键的环节,车辆运输路径规划越来越受到社会的关注,相关研究部门应该从模型与算法、模型知识化和智能化、算法改进、VRP决策支持系统等方面进行优化与改进,为车辆运输路径规划的发展提供有效保障。 参考文献 [1]黄华芳,王以忠,李达果.蔬运输车辆路径再规划.《农业机械学报》.2012年4期. [2]孙莹,连民杰.基于改进蚁群算法的地下矿车辆生产调度路径优化研究.《金属矿山》.2010年2期. 车辆运输路径规划问题的几点建议 高永新 新疆天业节水灌溉股份有限公司 新疆 石河子 832014 【摘 要】车辆运输路径的规划是物流配送或者人、物运输过程中的最重要环节,这一环节的好坏将直接的影响对客户需求的响应速度,以及企业运输的成本效益。为了更好地解决车辆运输路径的规划问题,有效地提高车辆运输的迅速性与高效性,可以通过建立合理有效的路径模型等方法进行。本文笔者主要针对车辆运输路径规划的问题进行讨论,并提出相关可行性建议。 【关键词】车辆运输 路径规划 问题 探讨 建议 466 Economic Vision2014. 3

动态车辆路径问题的优化方法

第29卷第4期2008年4月 东北大学学报(自然科学版) JournalofNortheasternUniversity(NaturalScience) V01.29.No.4 Apr.2008动态车辆路径问题的优化方法 刘士新,冯海兰 (东北大学流程工业综合自动化教育部重点实验室,辽宁沈阳110004) 摘要:设计了在动态环境下进行车辆路径优化的导向局域搜索算法.算法在产生初始解以后的动态求解过程中,不再做车辆之间的顾客调整,而只应用2-opt局域搜索算子更新车辆服务顾客的顺序,即针对每辆车辆的旅行路线求解一个旅行商问题.建立了在动态环境下车辆执行运输任务过程的仿真模型.仿真过程中,应用算法根据交通路网实际情况实时优化车辆路径。并采用4种接受准则判别是否接受新的车辆路径.仿真结果表明:算法具有实时、高效的特点,满足动态车辆路径问题的求解要求. 关键词:智能交通系统;动态车辆路径问题;交通模拟;导向局部搜索 中图分类号:C934文献标识码:A文章编号:1005—3026(2008)04—0484—04 OptimizationApproachtoSolvingDynamicVehicleRoutingProblems L儿,Shi.xin,FENGH.口i—lan (KeyLaboratoryofIntegratedAutomationDfProcessIndustry,MinistryofEducation,NortheasternUniversity,Shenyang110()04,China.Correspondent:LIUShi—xin,E-mail:sxliu@mail.neu.edu.cn) Abstract:Aguidedlocalsearch(GLS)algorithmispresentedtosolvedynamicvehicleroutingproblems(DVRP).Inthedynamicsolvingprocessafterallinitialsolution,theGLSdoesnotexchangecustomersbetweenvehiclesbutappliesthe2一optlocalsearchoperatortoupdatingtheservicingsequenceforcustomers,i.e.,tosolveatravelingsalesmanproblemoftravelingroutingofeachvehicle。Asimulationmodelisthusdevelopedforthedynamicprocessduringwhichvehiclesareintraffic.InthesimulationmodeltheGLSalgorithmisappliedtooptimizingthevehicleroutesinaccordancetothereal—timetrafficsituation,andfourrulesayeappliedtojudgingifthenewlyoptimizedvehicleroutesareaccepted.ThesimulationresultsrevealthattheGLS algorithmcanprovidereal-timeresponsetodynamicinformationtosatisfytherequirementsofsolvingDVI王P. Keywords:intelligenttransportationsystem;DVRP;trafficsimulation;GLS 物流优化已经成为当代企业的一个重要利润源泉.车辆路径问题(vehicleroutingproblems,Ⅵ冲)是物流领域的核心和热点研究问题,吸引了众多学者和业者的研究和关注.现代物流市场的激烈竞争和顾客的个性化需求不断提高,使得现代物流配送运作更加复杂,要求物流配送系统更加灵活、高效地针对变化的环境调整作业计划.计算机及通讯技术的迅速发展,使得交通状况及运输工具的实时信息更易获取,为解决物流配送面对的新问题提供了基础.动态VRP(dynamicVRP,DvRP)正是在这样的背景下开始受到了关注和研究.现有研究主要是针对环境变化,对车辆路径计划进行重计划或局部调整,涉及的方法有元启发式算法和局域搜索算法等【1-2J.本文针对城市复杂交通系统的环境变化,提出了一种DVRP中更新车辆路径的导向局域搜索(guidedlocalsearch,GLS)算法,设计了动态交通环境的仿真模型,通过对71个节点交通路网的仿真实验,得出了咖车辆路径的更新原则,研究成果对于现代城市智能交通系统中的车辆路径优化 收稿日期:2007一04—05 基金项目:国家自然科学基金资助项目(70301007,70771020,70431003);新世纪优秀人才支持计划项目(NCET-06-0286).作者简介:刘士新(1968一),男,辽宁调兵山人,东北大学教授.  万方数据

TransRouter车辆路径规划软件产品介绍

TransRouter产品介绍 1.TransRouter产品简介 TransRouter智能车辆配送路径规划系统,是专门规划配送车辆路线的智能优化物流集成系统,是用于多车循环取送货智能路径规划的实用软件。具有高效的自动排程与优化的运算机制,让您摆脱之前繁重的运送或服务工作,快速生成高效、可行的配送计划,在提高准时交货率的同时节约运输成本,在满足实际业务限制的同时,大幅度提高您企业的运营收益。 2.TransRouter产品功能 地图的操作控制 采用Google Map地图控制引擎,可放大、缩小、移动,操作无比顺畅; 地图显示信息与显示方式根据用户需求适时调整; 地址的定位搜寻 智能地址定位,只须输入顾客地址,进行相应操作后马上为您呈现附近的地图; 实时在电子地图上自动标示顾客地点位置,并显示经度与纬度坐标资料; 可利用鼠标在电子地图上移动顾客地点,达到弹性调整的目的; 智能车辆路径规划 调用高效快速的配送路径规划算法,得到满足特定时间、装载量等条件的最优配送方案;

结合最新最精确的交通路网数值,精准估算配送成本; 精确预测出发时间与到达时间; 可视化配送方案编辑 临时追加订单时的配送路线编辑,以及配送顺序先后的弹性调整; 拖曳式编辑各条路径间的配送订单; 调整时地图上的路径与时间窗连动显示,编辑后违反条件的有无警告显示; 报表输出与订单批量导入 各种报表的输出与打印; 短信输出配送详细信息; 订单数据汇入; 时间窗限制 让您在指定的时间范围内,自动选择最适到达时间将商品送达,提升配送精准度。在物流中心指定的时间带内进行装卸货; 按顾客需求的指定时间带内进行送取货; 依据顾客所指定的多时段时间带,智能型探索选择最适配送时间带进行送取货。实时监控

基于Dubins路径的智能车辆路径规划算法

收稿日期:2015-05-10 修回日期:2015-06-09 基金项目: 山西省科技攻关基金资助项目(20130321005-04)作者简介:宋国浩(1990-),男,山东曲阜人,在读硕士研究生。研究方向:机械工程、智能车辆。 *摘 要:路径规划是车辆智能化的核心问题之一,而所有路径均可分解为简单的Dubins 路径。在Dubins 路径的 思想下对智能车辆的行驶路径进行分段研究,并利用经典PID 控制对该算法的执行性能进行检验。研究表明:算法能计算出车辆行驶的最短路径,减少了车辆行驶的路径长度,缩短了行驶时间,减少了控制系统的计算量,提高了车辆执行系统的执行力度,降低了执行误差,对最优路径具有较好的选择性。 关键词:智能车,路径规划,Dubins 路径,最短路径中图分类号:TP273+.1 文献标识码:A 基于Dubins 路径的智能车辆路径规划算法* 宋国浩,黄晋英,兰艳亭 (中北大学机械与动力工程学院,太原030051) Intelligent Vehicles Path Planning Algorithm Based on Dubins Path SONG Guo-hao ,HUANG Jin-ying ,LAN Yan-ting (School of Mechanical and Power Engineering ,North University of China ,Taiyuan 030051,Chian ) Abstract :The path planning is one of the core issues of intelligent vehicles.All paths can be decomposed into Dubins path.This paper sectionally researches into the intelligent vehicles ’travel path under the idea of Dubins path and carries out tests on the execution performance of the algorithm using PID control strategy.Researches showed that this algorithm can calculate the vehicles ’shortest path ,reduce the vehicles ’path length ,shorten the time of driving ,reduce the computation amount of the control system ,improve the enforcement of the vehicle execution system ,reduce the execution error ,and have a good selectivity of the optimal path. Key words : intelligent vehicles ,path planning ,dubins path ,the shortest path 0引言 路径规划应用在很多领域,例如:军事无人机、 航天探测机器人、智能车辆以及监视和侦察等工作 [1-3] 。路径规划在现代汽车领域中是一个研究热门领域,需要考虑多方面的因素,如:汽车自身约束条件,车辆行驶环境的约束以及其他的行驶问题。在路径规划中,首先应考虑车辆的可行驶性,在对车辆行驶路线进行规划时,应保证其安全行驶的前提下,尽可能大地规划出车辆行使范围。在保证车辆安全行驶的问题中,需要使车辆自主地绕开其他影响车辆行驶的物体,使车辆避免与障碍物相撞。路径规划算法应具有精确性,占有较小的内存,并满 足实时性的要求,在执行过程中没有明显的延时问 题[4-5]。此外,为了使行驶路径达到最优,提高行驶效率,还应缩短车辆行驶长度。 目前,在有关路径规划的研究中,如张明环等[6]提出的触须算法,此算法是在车辆行驶前,首先对车辆将要行驶的路线进行规划,让车辆按照规划好的16*81条可使用的路径行驶,这样可以使车辆节省大量的反应时间,但却不能够处理突变情况,研究背景过于理想化;王凯等[7]提出了改进的人工势场法,将此算法应用在智能车路径规划中的避障环节,解决了传统人工势场法在路径规划中易陷入局部极小值的问题,具有一定的实时性,但其受限于所用传感器性能的影响,其作用范围较小,且易受 文章编号:1002-0640(2016) 06-0041-05Vol.41,No.6Jun ,2016 火力与指挥控制 Fire Control &Command Control 第41卷第6期2016年6月 41··

相关文档
最新文档