复变函数综合测试题(1)(含参考解答)

复变函数综合测试题(1)(含参考解答)
复变函数综合测试题(1)(含参考解答)

复变函数综合测试题(一)

(解答)

一、选择题(单选题)

1、复数z i =的幅角主值为( C ) (A )

3π (B )3π- (C )6π- (D )6

π

2、复数1cos sin ,0z i θθθπ=-+≤≤的模为( A ) (A )2sin 2θ (B )2sin 2

θ

- (C )22cos θ- (D )2cos 2θ- 3、设

z =

,则z 的指数表示为( B ) (A )cos

sin

44z i π

π

=+ (B )4

i z e

π

?

= (C )cos

sin

44

z i π

π

=- (D )4

i z e

π

-?

=

4、若ω是方程3

10z -=的一个非零复数根,则2

1ωω++=( A )

(A )0 (B )i (C )2

ω (D )ω-

5、函数()f z z =在z 平面上( C )

(A )不连续 (B )连续且可导 (C )连续但处处不可导 (D )以上答案都不对 6、满足11z z -=+的点z 所组成的点集为(B )

(A )Im 0z = (B )Re 0z = (C )Im 0z > (D )Re 0z > 7、函数()f z u iv =+在区域D 内解析的充要条件是( D )

(A )

,,,u u v v

x y x y

????????都在D 内连续 (B )在D 内

,u v u v x y y x

????==-???? (C )

,,,u u v v x y x y

????????都在D 内存在,且,u v u v x y y x ????==-????

(D )

,,,u u v v x y x y

????????都在D 内连续,且,u v u v

x y y x ????==-????

8、

1

(0)()

n

z a dz z a ρ

ρ-=>-?

的值为( A ) (A )当1n =时为2i π;当1n ≠时为0 (B )0 (C )2i π (D )2n i π

9、

1

z

z e dz z

==?

( C ) (A )0 (B )

2

π

(C )2i π (D )(2)(0,1,2,)k i k π+= 10、()f z 在复平面上解析且有界,则()f z 在平面上为(B ) (A )0 (B )常数 (C )z (D )()n

z n N ∈ 11、复级数1n n z ∞

=∑收敛的必要条件是( D )

(A )对一切n ,0n z = (B )存在一列自然数{}k n ,使得0k

n z =

(C )lim 0n n z →∞

≠ (D )lim 0n n z →∞

=

12、幂级数11n

n n z n

=+∑的收敛半径为(A )

(A )+∞ (B )0 (C )1 (D )2 13、0z =为()sin f z z z =-的( D )

(A )极点 (B )非孤立奇点 (C )本性奇点 (D )3阶零点 14、设1

()1

z

f z e =

-,则0z =是()f z 的( A ) (A )1阶极点 (B )2阶极点 (C )可去奇点 (D )本性奇点 15、0z ≠∞是函数()f z 的可去奇点,则0Re (,)s f z =( B ) (A )0()f z (B )0 (C )2π (D )2i π

二、填空题(将正确的答案填在横线上)

1、复数(3)(2)

(3)(2)

i i z i i +-=

-+的模z =

1。

2、函数()f z 在区域D 内解析是指 f (z )在区域D 内每一点可导 。

3、

11

1

3

z dz z -==+?

4、刘维尔定理是指 有界整函数必为常数 。

5、幂级数0

2n

n n n z ∞

=?∑的收敛半径R =

1,收敛圆为2z <。

6、函数1

()1f z z =-在0z =处的幂级数展式为

()n

n f z z ∞

==∑。

7、设2

()1i z

e f z z ?=+,则Re (,)s f i =

112e i --。

三、判断题(正确的打“√”,错误的打“×”)

1、设1z 和2z 是两个不相等的复数,则1z 和2z 必可比较大小。 ( × )

2、()f z 在点a 解析是指()f z 在点a 可导。 ( × )

3、在复数范围内,3

1z =的充要条件是1z =。 ( × )

4、若()f z 在以围线C 为边界的单连通区域D 内解析,且在D D C =+上连续,则

()0C

f z dz =?

。 ( √ )

5、若0Re (,)s f z a =,则2

2

0Re (,)s f z a =。 ( × )

四、计算题

1、将复数2

(1cos sin )(0)z i ???π=++≤<化为指数形式。

解: 2

2

(1cos sin )4cos

(0)2

i z i e ??

???π=++=?≤<

2、在复数范围内解方程44

0(0)z a a +=>。 解:由原方程可得 444i z a a e π

=-=? 所以 方程的解为 (21)

4

0,1,2,3k i k z a e k π+=?=。

3、计算积分C

z dz ?,其中(1)C 是从1-到1的直线段;(2)C 是从1-到1的上半单位圆

周:1z =。

解:(1)C 的参数方程为(11)z t t =-≤≤,所以

1

1

1

21C

z dz t dt tdt -===???。

(2)因为在C 上,1z =,所以1(1)2C

C

z dz dz ==--=??。

4、求2

2

C

z dz z z

--?

,其中C 是圆周:2z =。 解:222121

()42211C

C C C

z dz dz dz dz i i i z z z z z z πππ-=-=-=-=---?

???。

5、求下列函数在0z =处的幂级数展开式

(1)2

z

e d ξξ?; (2)

2

1

(1)z -。

解:(1)2

221

00

0!(21)!

n

n z

z

n n z e d d n n n ξξξξ+∞

====+∑

??

,z <+∞。 (2)12

01

11()()(1)1n

n n n z nz z z ∞∞

-==''===--∑∑,1z <。

6、求实积分

2

sin 1x x

dx x +∞

-∞

+?

。 解:因

22

sin Im[]11ix

x x x dx e dx x x

+∞

+∞

-∞

-∞=++?

?,而21z z +在上半平面内仅有一个一阶极点z i =, 且在实数范围内 2

10z +≠

所以

11

22

12Re (,)2112

ix iz x z e dx i s e i i e e i x z πππ+∞

---∞

==?=++?

, 故 1

22

sin Im[]11ix x x x dx e dx e x x π+∞

+∞--∞

-∞

==++?

?。

五、证明题

1、证明:2

2

22

1212122()z z z z z z ++-=+,并说明其几何意义。

证明:因 22

2

12

12121212121212()()()()z z z z z z z z z z z z z z z z +=++=++=+++

而 1212122Re[]z z z z z z += 所以 2

22

1212122Re[]z z z z z z +=++ 同理可得 2

2

2

12

12122Re[]z z z z z z -=+-

两式相加得 22

22

1212

122()z z z z z z ++-=+

它表明以1z 和2z 为两邻边的平行四边形的对角线的平方和等于它的两邻边的平方和的两倍。

2、设3

2

(,)3u x y x xy =-,证明: (1)(,)u x y 是z 平面上的调和函数;

(2)求以(,)u x y 为实部的解析函数()f z ,使得(0)f i =。

证明:(1)因222

233,6u u x y x x x ??=-=??,226,6u u xy x y y

??=-=-?? 222

26(6)0u u

x x x y

??+=+-=?? 所以 (,)u x y 是z 平面上的调和函数。

(2)设所求的解析函数为()f z u iv =+,因2

22

2

2()3363z x z z y i

u u f z i x y xyi z x y +=

-=??'=

-=-+=

??

所以 3

()f z z c =+。

又 由(0)f i =可得 c i =,所以 所求的解析函数为 3

()f z z i =+。

3、(1)证明:1

02

C

dz z =+?

,其中:1C z =; (2)利用(1)的结果证明0

12cos 054cos d π

θ

θθ

+=+?

(1)证明:因为被积函数的不解析点21z z =-?≤,所以由柯西积分定理得

1

02

C

dz z =+?

(2)解:令,()i z e θ

πθπ=-≤≤,由复积分的参数方程计算公式得

1cos sin 2cos 12sin 022cos sin 54cos C

i i dz d d z i ππ

ππ

θθθθθθθθθ--+++===++++?

?? 2cos 1sin 254cos 54cos d i d π

π

π

π

θθ

θθθθ--+=

+++?

?

比较两边的实部和虚部得

12c o s

054c o s

d π

π

θθθ-+=+?

再注意到被积函数是偶函数得

12cos 112cos 054cos 254cos d d π

ππθθ

θθθθ

-++=?=++?

?。

复变函数习题及解答

第一章 复变函数习题及解答 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π2π,0,1,2,3k k +=±±L ;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 计算下列复数 (1 (2 答案 (1 (2)(/62/3) i n e ππ+ 已知x

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P Λ的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()() z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π =所以 4 ,4,(0,1,2,)n k n k k ππ===±±L 将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ 答案 53244235 (1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθ θθθθθ-+-+ 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有 对于复数 ,k k αβ,证明复数形式的柯西(Cauchy)不等式:

复变函数经典例题

第一章例题 例1.1试问函数二-把」平面上的下列曲线分别变成 ].;平面上的何种曲线? (1) 以原点为心,2为半径,在第一象项里的圆弧; (2) 倾角 二的直线; (3) 双曲线''■='。 解 设Z = x + =r(cosfi + ι SiIl θ)7 = y + jv = Λ(cos

0 特别,取 - ,则由上面的不等式得 ∣∕(z)∣>l∕(z o )∣-^ = M>0 因此, f ② 在匚邻域 内就恒不为0。 例1.3 设 /⑵ 4C ri ) (3≠o) 试证一 在原点无极限,从而在原点不连续。

证令变点匚—…:弓仁门 1 F ,则 而沿第一象限的平分角线 故「匚在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1 北)= 匚在二平面上处处不可微 证易知该函数在二平面上处处连续。但 Δ/ _ z+?z -z _ ?z ?z ?z ?z 零时,其极限为一1。故匚处处不可微。 证因UaJ )二倆,呛J ) = C I 。故 但 /(?) - /(0) _ λj?j ?z ? + i?y 从而 (沿正实轴。一 H ) 当I: 「时,极限不存在。因 二取实数趋于O 时,起极限为1 ,二取纯虚数而趋于 例2.2 在了 — 1满足定理 2.1的条件,但在_ I.不可微。 M (ΔJ 7O)-?(O,O) = 0 = v∕0,0) (O f O) = Ii(Q i Ly)-Ii(Ofi) Ay

201411455-场论与积分变换-教学大纲

场论与积分变换课程教学大纲 一、课程基本信息 课程编号:201411455 课程中文名称:场论与积分变换 课程英文名称:Field theory and integral transform 课程性质:自然科学与技术基础课程 开课专业:陈赓实验班 开课学期:第3学期 总学时: 32 (其中理论32学时,实验0学时,上机0学时,其它0学时) 总学分:2 二、课程目标 场论与积分变换是船舶与海洋工程专业后续专业课程学习所需要掌握的一门重要的数学课程。本课程的主要内容是场论及其初步应用、积分变换及其应用。通过本课程的教学,使学生掌握场和积分变换的基本理论和基本方法,培养学生在场论和积分变换方面的科学思维和数学功底,锻炼学生场论和积分变换运算能力以及应用场论与积分变换解决实际问题的能力,为进一步学习船舶与海洋工程专业后续课程奠定坚实的场论和基本变换的理论基础。 三、教学基本要求 通过本门课程系统的学习与严格的训练,全面掌握场论与积分变换的基本理论知识;培养逻辑思维能力与推理论证能力;具备熟练地运算能力与技巧;提高建立数学模型,并应用场论与积分变换的理论知识解决实际应用问题的能力。 四、教学内容与学时分配 1场论(12学时) 1.1场(2学时) 介绍场的概念、数量场的等值面、矢量场的矢量线、平行平面场。 1.2数量场的方向导数和梯度(2学时) 介绍方向导数、梯度的概念及理论。

1.3矢量场的通量及散度(2学时) 介绍通量、散度、平面矢量场的通量与散度的概念及理论。 1.4矢量场的环量及旋度(2学时) 介绍环量、旋度的概念及理论。 1.5几种重要的矢量场(2学时) 介绍有势场、惯性场和调和场等几种重要的矢量场。 1.6哈密顿算子(2学时) 介绍哈密段算子符号及其在数学公式中的应用。 2场的初步应用(4学时)(5号宋体) 2.1场论在力学中的初步应用(2学时) 介绍场论在流体力学、结构力学中的初步应用。 2.2格林公式及其推导(2学时) 介绍二维和三维格林公式及其推导。 3 傅立叶变换(6学时) 3.1 傅立叶变换(2学时) 介绍傅立叶变换的概念、单位脉冲函数与单位阶跃函数的相关理论。 3.2傅立叶变换的性质(2学时) 介绍傅立叶变换的线性性质、位移性质、微分性质、积分性质的理论及应用。3.3卷积(2学时) 介绍卷积的概念、性质以及卷积在傅立叶变换中的应用。 4 拉普拉斯变换(6学时) 4.1 拉普拉斯变换(2学时) 介绍拉普拉斯变换的存在条件、定义以及几种常用函数的拉普拉斯变换。 4.2 拉普拉斯变换的性质(2学时) 介绍拉普拉斯变换的线性性质、微分性质、积分性质、延迟性质、位移性质以及相似性质。 4.3拉普拉斯逆变换(2学时) 介绍拉普拉斯变换的逆变换及其求解方法。 5 积分变换的应用(4学时)

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

第一章复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3k k +=±±;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 1.2 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1) (2)(/62/3) i n e ππ+ 1.4 已知x 的实部和虚部.

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 22 1,(p q pq p x q x ?-=??=??=±==±+ 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1() ()1||||| |||||||1()az b az b az b z az b az b z bz a bz a z z bzz az b az b az +++++=====+++++ 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 ()( ) 00i i =≡+=+b a P b a P 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ()()()3 3331 02 3 0230233 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??????==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y =Θ ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 0210 2 2 x y =Θ ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 656121213 1 3121311+-=-++=??? ??++

复变函数课后习题答案全

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1 -+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤解:(1)2 cos sin 22 i i i e π ππ =+=

(2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+- )sin()](cos2sin 2)12 12 i i π π θθ=- +- + (2)12 )sin(2)]12 12 i i π θπ π θθ- =- +- =

复变函数练习题及答案

复变函数卷答案与评分标准 一、填空题: 1.叙述区域内解析函数的四个等价定理。 定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1)(,)u x y ,(,)v x y 在D 内可微, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1),,,x y x y u u v v 在D 内连续, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =? 。 (3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。(3分) 2.叙述刘维尔定理:复平面上的有界整函数必为常数。(3分) 3、方程2z e i =+的解为:11ln 5arctan 222 i k i π++,其中k 为整数。(3分) 4、设()2010sin z f z z +=,则()0Re z s f z ==2010。(3分) 二、验证计算题(共16分)。 1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。(8分) 解:(1)22u x x ?=+?,222u x ?=?;2u y y ?=-?,222u y ?=-?。 由于22220u u y x ??+=??,所以(,)u x y 为复平面上的调和函数。(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有 22v u x y x ??==+??,所以(,)2222()v x y x dy xy y C x =+=++? 2,v u y x y ??=-=??又2()v y C x x ?'=+? ,所以 ()0C x '=,即()C x 为常数。

复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i π ππ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 13i + 解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2 221cos sin 2sin 2sin cos 2sin (sin cos ) 2 2 2 2 2 2 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα ?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos 3sin 3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin 1i i e ee e i +==+ (7) 11i i -+ 解: 3/4 11cos 3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) a ib + 解: 1ar 2ar 2 2 22 4 21ar 2 2421ar 2242 b b i ctg k i ctg k a a b i ctg a b i ctg a a i b a b e a b e a b e a b e ππ?? ?? ++ ? ? ?? ?? += += +?+?=? ?-+? (2) 3 i 解:6 226 36346323 2332 2322 i k i i i i k i e i i e e e e i π ππππππππ?? ??++ ? ???????+ ?????+ ??? ?=+ ?? ??====-+? ??=-?

复变函数习题集(1-4)

第一章 复数与复变函数 一、选择题: 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π= -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 32 1+ - (D )i 2 12 3+ - 3.复数z -3(cos -isin )5 5 π π =的三角表示式为( ) A .44-3(cos isin )5 5 ππ+ B . 443(cos isin )55ππ- C . 443(cos isin )5 5 ππ+ D .44-3(cos isin )5 5 ππ- 4.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续 二、填空题 1.设) 2)(3()3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π=-=i z z ,则=z 4.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线. 5.=+++→)21(lim 4 2 1z z i z 三.求方程z 3+8=0的所有复根. 第二章 解析函数 一、选择题:

复变函数题库(包含好多试卷,后面都有答案)

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

复变函数习题解答

复变函数练习题解答 一、求出下列函数的奇点,并确定它们的类别<对于极点,要指明它 们的阶),对于无穷远点也要加以讨论. <1),<2) 解.<1)有奇点,因在扩充复平面上 有一阶零点,故有一阶极 点,易见0是的一阶极点的 极限点,因而0不是的孤立奇点. 解.<2)有奇点,因 0是的可去奇点,易见有一阶极点.事实 上

因而是的一阶极点的极限点,不是的孤立奇点. 二、考查函数的可微性和解读性,并求出导数<如 存在). 解.因,,,, ,,故仅在两个点满 足条件,,因此函数处处不 解读,仅在两个点可导和可微,且, . 三、求出圆到半平面的共形映射,使符合条件 1.将圆映为圆, 2.因将半平面映为圆,故逆映射 将圆映为上半平面 3.将上半平面映为右半平面 4.上述三个映射的复合将圆映为半平面 ,且符合 条件.

四、证明:级数收敛,但不绝对收敛,提示,写成实 部和虚部. 因 其实部条件收敛,虚部绝对收敛 因此级数收敛,但不绝对收敛. 五、计算下列积分 <1) <2) 解.<1),事实上 <2)已知,为求,令,则原积分 , 记,,则 六、设函数在区域内解读,试证

<1)设,则, <2)左 <3)由<2)和Laplace方程,知, 左, <4)由<3)和条件,知,左 <5)由<4)和知,右 <6)由<4)和<5)知,左=右. 七、设在内解读,且,,如果原点0是 的阶零点,则 <1)当时 <2) <3)如对于某一点,有,或者, ,那么,在内,其中是一复常数, 因原点0是的阶零点,故可以将在展成如下的幂级数,且, 记,则在内解读,, , 设,,则由最大模定理知, , 令,得,因此 (1)当时得证;

复变函数经典例题

第一章例题 例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线? (1)以原点为心,2为半径,在第一象项里的圆弧; (2)倾角的直线; (3)双曲线。 解设,则 因此 (1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。(2)在平面上对应的图形为:射线。 (3)因,故,在平面上对应的图形为:直线 。 例1.2设在点连续,且,则在点的某以邻域内恒不为0. 证因在点连续,则,只要,就有 特别,取,则由上面的不等式得 因此,在邻域内就恒不为0。 例1.3设 试证在原点无极限,从而在原点不连续。

证令变点,则 从而(沿正实轴) 而沿第一象限的平分角线,时,。 故在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1在平面上处处不可微 证易知该函数在平面上处处连续。但 当时,极限不存在。因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。故处处不可微。 例 2.2函数在满足定理2.1的条件,但在不可微。 证因。故 但

在时无极限,这是因让沿射线随 而趋于零,即知上式趋于一个与有关的值。 例2.3讨论的解析性 解因, 故 要使条件成立,必有,故只在可微,从而,处处不解析。例2.4讨论的可微性和解析性 解因, 故 要使条件成立,必有,故只在直线上可微,从而,处处不解析。 例2.5讨论的可微性和解析性,并求。 解因, 而 在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。且 。 例2.6设确定在从原点起沿负实轴割破了的平面上且,试求 之值。 解设,则

由代入得 解得:,从而 。 例2.7设则 且的主值为。 例2.8考查下列二函数有哪些支点 (a) (b) 解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即 从而 故的终值较初值增加了一个因子,发生了变化,可见0是的支点。同理1 也是其支点。 任何异于0,1的有限点都不可能是支点。因若设是含但不含0,1的简

复变函数积分(练习题)

基本要求 1. 正确理解复变函数积分的概念;01()lim ()n k k C k f z dz f z λζ→==?∑? 2. 掌握复变函数积分的一般计算法;()()()(())()C C f z dz u iv dx idy f z t z t dt βα '=++=??? 3. 掌握并能运用柯西—古萨基本定理和牛顿—莱布尼茨公式来计算积分; ()0C f z d z =? ,10 10()()()z z f z dz G z G z =-? 4. 掌握闭路变形定理、复合闭路定理,并能运用其计算积分; 1()()C C f z dz f z dz =?? ,1()()k n C C k f z dz f z dz ==∑?? 5. 掌握并能熟练运用柯西积分公式;00 ()2()C f z dz if z z z π=-? 6. 掌握解析函数的高阶导数公式,理解解析函数的导数仍是解析函数,会用高阶导数公式计算积分。 0102()()()! n C if z f z dz z z n π+=-? 一、填空题 1.2||122z dz z z ==++? ( ) ; 2.22|1|111z z dz z -=+=-? ( ) ; 3.2||1cos ()z z dz z π==-? ( ) ; 4.设()f z 在单连通域D 内解析且不为零,C 为D 内任一条简单闭曲线,则()2()1() C f z f z dz f z '''++=? ( ); 5.解析函数()f z 的导函数仍为( ),且()()n f z =( )。 二、计算下列各题 1.计算积分2(2)C iz dz +?,C 是由(1,0)A 到(0,1)B 的直线段; 111.33 i -+ 2.计算积分22z C e dz z z +? ,:||2C z =; 22(1).i e π--

第1章复变函数习题答案习题详解

第一章习题详解 1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1) i 231+ 解: () ()() 13 234 9232323231231i i i i i i -=+-=-+-= + 实部:133231 = ??? ?? +i Re 虚部:132231- =??? ?? +i Im 共轭复数:1323231 i i +=? ?? ?? + 模: 13 113 232312 2 2= += +i 辐角:πππk arctg k arctg k i i Arg 232213 3 13 22231231+?? ? ??-=+-=+?? ? ??+=??? ??+arg 2) i i i -- 131 解: () ()() 2 532 3321 133******** i i i i i i i i i i i i i i -= -+-= ++-- -=+-+- =-- 实部:23 131=??? ??-- i i i Re 虚部:25 131-=??? ??-- i i i Im 共轭复数:2 53131i i i i +=? ?? ??-- 模: 2 344 342 531312 2 2= = += -- i i i 辐角:πππk arctg k arctg k i i i i i i Arg 2352232 52131131+??? ??-=+??? ? ? ??-=+?? ? ??--=??? ??--arg

3) ()() i i i 25243-+ 解: ()()()2 2672 2672 72625243i i i i i i i --= -+= --= -+ 实部:()()2725243-=? ? ? ??-+i i i Re 虚部:()()1322625243-=- =?? ? ??-+i i i Im 共轭复数:()()226725243i i i i +-= ?? ? ??-+ 模: ()() 292 522627252432 2= ? ? ? ??-+??? ??-= -+i i i 辐角:()()ππk arctg k arctg i i i Arg 27262272 26 25243+??? ??=+??? ? ? ??--=?? ? ??-+ 4) i i i +-2184 解:i i i i i i 31414218-=+-=+- 实部:()14218=+-i i i Re 虚部:()3421 8 -=+-i i i Im 共轭复数:()i i i i 314218+=+- 模:103 142 221 8 =+=+-i i i 辐角:()()πππk arctg k arctg k i i i i i i Arg 23213244218218+-=+?? ? ? ?- =++-=+-arg 2. 当x 、y 等于什么实数时,等式() i i y i x +=+-++13531成立? 解:根据复数相等,即两个复数的实部和虚部分别相等。有: ()()()i i i y i x 8235131+=++=-++ ? ? ?=-=+832 1y x ???==?111y x 即1=x 、11=y 时,等式成立。

复变函数课后部分习题解答

(1)(3-i) 5 解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°] (3-i)5 =25[cos(30°?5)-isin(30°?5)] =25(-3/2-i/2) =-163-16i

(2)(1+i )6 解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2 tan θ=x y =1 x>0,y>0 ∴θ属于第一象限角 ∴θ= 4 π ∴1+i=2(cos 4π+isin 4 π ) ∴(1+i )6=(2)6(cos 46π+isin 4 6π ) =8(0-i ) =-8i 1.2求下式的值 (3)61-

因为 -1=(cos π+sin π) 所以 6 1-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6). 习题一 1.2(4)求(1-i)3 1的值。

解:(1-i)3 1 =[2(cos-4∏+isin-4 ∏ )]31 =62[cos(12)18(-k ∏)+isin(12 ) 18(-k ∏)] (k=0,1,2) 1.3求方程3z +8=0的所有根。 解:所求方程的根就是w=38- 因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2

其中ρ=3r=38=2 即 w=2[cosπ/3+isinπ/3]=1—3i 1 w=2[cos(π+2π)/3+isin(π+2π)/3]=-2 2 w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i 3 习题二 1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。 (1) Im(z)>0 解:设z=x+iy 因为Im(z)>0,即,y>0

《复变函数与积分变换》习题册

第一章 复数与复变函数 本章知识点和基本要求 掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念; 熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。 一、填空题 1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______. 2、设(12)(35)13i x i y i ++-=-,则x = ,y = 3、若1231i z i i +=--,则z = 4、若(3)(25) 2i i z i +-= ,则Re z = 5、若4 21i z i i +=- +,则z = 6、设(2)(2)z i i =+-+,则arg z = 7复数1z i =-的三角表示式为 ,指数表示式为 。 8、复数i z 212--=的三角表示式为 _________________,指数表示式为 _________________. 9、设i z 21=,i z -=12,则)(21z z Arg = _ _____. 10、设4 i e 2z π=,则Rez=____________. Im()z = 。z = 11、.方程0273=+z 的根为_________________________________. 12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程

为 。 13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数1 2 +-= z z w 的实部=),(y x u _________,虚部=),(y x v _________. 15、不等式114z z -++<所表示的区域是曲线 的部。 16 二、判断题(正确打√,错误打?) 1、复数7613i i +>+. ( ) 2、若z 为纯虚数,则z z ≠. ( ) 3、若 a 为实常数,则a a = ( ) 4、复数0的辐角为0. 5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在 00(,)x y 点连续。 ( ) 6、设21,z z 为复数,则2121z z z z ?=。 ( ) 7、1212z z z z +=+ ( ) 8、参数方程2 z t ti =+ (t 为实参数)所表示的曲线是抛物线2y x =. ( ) 三、单项选择题 1、下列等式中,对任意复数z 都成立的等式是 ( ) A.z·z =Re(z·z ) B. z·z =Im(z·z ) C. z·z =arg (z·z ) D. z·z =|z| 2、方程3z =8 的复根的个数为 ( ) A. 3个 B. 1个 C. 2个 D. 0个 3、当11i z i +=-时,1007550z z z ++的值等于 ( ) A i B i - C 1 D 1- 4、方程23z i +-= ( ) A 中心为23i -的圆周

复变函数论第三版课后习题标准答案

复变函数论第三版课后习题答案

————————————————————————————————作者:————————————————————————————————日期:

第一章习题解答 (一) 1.设132 i z -=,求z 及Arcz 。 解:由于3132 i i z e π--== 所以1z =,2,0,1,3 Arcz k k ππ=-+=±L 。 2.设121,312 i z z +==-,试用指数形式表示12z z 及12 z z 。 解:由于64121,322 i i i z e z i e ππ -+===-= 所以()6 46 41212222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程44 0,(0)z a a +=>。 解:1 24 444 4 (),0,1,2,3k i i z a a e ae k ππ π+=-===。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321 ===z z z 。证明z 1,z 2,z 3是内 接于单位圆1=z 的一个正三角形的顶点。 证 由于1321===z z z ,知321z z z ?的三个顶点均在单位圆上。 因为 333 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

相关文档
最新文档